सम्मिश्र विश्लेषणात्मक विविधता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Generalization of a complex manifold which allows the use of singularities}}
{{Short description|Generalization of a complex manifold which allows the use of singularities}}
गणित में, विशेष रूप से विभेदक ज्यामिति और [[जटिल ज्यामिति]] में, एक जटिल विश्लेषणात्मक विविधता <ref group=note>Complex analytic variety (or just variety) is sometimes required to be irreducible  
गणित में, विशेष रूप से विभेदक ज्यामिति और [[जटिल ज्यामिति]] में, जटिल विश्लेषणात्मक विविधता <ref group=note>Complex analytic variety (or just variety) is sometimes required to be irreducible  
and (or) [[Reduced ring|reduced]]</ref> या जटिल विश्लेषणात्मक स्थान एक [[जटिल कई गुना]] का सामान्यीकरण है जो [[विलक्षणता सिद्धांत]] की उपस्थिति की अनुमति देता है। जटिल विश्लेषणात्मक किस्में स्थानीय रूप से चक्राकार स्थान हैं जो स्थानीय मॉडल स्थानों के लिए स्थानीय रूप से आइसोमोर्फिक हैं, जहां एक स्थानीय मॉडल स्थान [[होलोमॉर्फिक फ़ंक्शन]] के परिमित सेट के लुप्त होने वाले स्थान का एक खुला उपसमुच्चय है।
and (or) [[Reduced ring|reduced]]</ref> या जटिल विश्लेषणात्मक स्थान [[जटिल कई गुना]] का सामान्यीकरण है जो [[विलक्षणता सिद्धांत]] की उपस्थिति की अनुमति देता है। जटिल विश्लेषणात्मक किस्में स्थानीय रूप से चक्राकार स्थान हैं जो स्थानीय मॉडल स्थानों के लिए स्थानीय रूप से आइसोमोर्फिक हैं, जहां स्थानीय मॉडल स्थान [[होलोमॉर्फिक फ़ंक्शन]] के परिमित सेट के लुप्त होने वाले स्थान का एक खुला उपसमुच्चय है।


== परिभाषा ==
== परिभाषा ==


मूल्य के साथ एक स्थलीय स्थान पर निरंतर [[शीफ (गणित)]] को निरूपित करें <math>\mathbb{C}</math> द्वारा <math>\underline{\mathbb{C}}</math>. <math>\mathbb{C}</math>-अंतरिक्ष एक स्थानीय रूप से चक्राकार स्थान <math>(X, \mathcal{O}_X)</math> है , जिसकी [[संरचना शीफ]] ​​एक फील्ड ओवर पर एक बीजगणित है <math>\underline{\mathbb{C}}</math>.
मूल्य के साथ स्थलीय स्थान पर निरंतर [[शीफ (गणित)]] को निरूपित करें <math>\mathbb{C}</math> द्वारा <math>\underline{\mathbb{C}}</math>. <math>\mathbb{C}</math>-अंतरिक्ष स्थानीय रूप से चक्राकार स्थान <math>(X, \mathcal{O}_X)</math> है , जिसकी [[संरचना शीफ]] ​​फील्ड <math>\underline{\mathbb{C}}</math>ओवर पर एक बीजगणित है .


एक खुला उपसमुच्चय चुनें <math>U</math> कुछ [[जटिल एफ़िन स्पेस]] की <math>\mathbb{C}^n</math>, और सूक्ष्म रूप से कई होलोमोर्फिक कार्यों को ठीक करें <math>f_1,\dots,f_k</math> में <math>U</math>. होने देना <math>X=V(f_1,\dots,f_k)</math> इन होलोमॉर्फिक कार्यों का सामान्य लुप्त हो जाना, अर्थात <math>X=\{x\mid f_1(x)=\cdots=f_k(x)=0\}</math>. अंगूठियों के एक शीफ को परिभाषित करें <math>X</math> जैसे भी हो <math>\mathcal{O}_X</math> पर प्रतिबंध हो <math>X</math> का <math>\mathcal{O}_U/(f_1, \ldots, f_k)</math>, जहां <math>\mathcal{O}_U</math> होलोमॉर्फिक कार्यों का शीफ ​​है <math>U</math>. फिर स्थानीय बज उठा <math>\mathbb{C}</math>-अंतरिक्ष <math>(X, \mathcal{O}_X)</math> एक स्थानीय मॉडल स्थान है।
एक खुला उपसमुच्चय चुनें <math>U</math> कुछ [[जटिल एफ़िन स्पेस]] की <math>\mathbb{C}^n</math>, और सूक्ष्म रूप से कई होलोमोर्फिक कार्यों को ठीक करें <math>f_1,\dots,f_k</math> में <math>U</math>. होने देना <math>X=V(f_1,\dots,f_k)</math> इन होलोमॉर्फिक कार्यों का सामान्य लुप्त हो जाना, अर्थात <math>X=\{x\mid f_1(x)=\cdots=f_k(x)=0\}</math>. अंगूठियों के एक शीफ को परिभाषित करें <math>X</math> जैसे भी हो <math>\mathcal{O}_X</math> पर प्रतिबंध हो <math>X</math> का <math>\mathcal{O}_U/(f_1, \ldots, f_k)</math>, जहां <math>\mathcal{O}_U</math> होलोमॉर्फिक कार्यों का शीफ ​​है <math>U</math>. फिर स्थानीय बज उठा <math>\mathbb{C}</math>-अंतरिक्ष <math>(X, \mathcal{O}_X)</math> एक स्थानीय मॉडल स्थान है।

Revision as of 20:25, 26 April 2023

गणित में, विशेष रूप से विभेदक ज्यामिति और जटिल ज्यामिति में, जटिल विश्लेषणात्मक विविधता [note 1] या जटिल विश्लेषणात्मक स्थान जटिल कई गुना का सामान्यीकरण है जो विलक्षणता सिद्धांत की उपस्थिति की अनुमति देता है। जटिल विश्लेषणात्मक किस्में स्थानीय रूप से चक्राकार स्थान हैं जो स्थानीय मॉडल स्थानों के लिए स्थानीय रूप से आइसोमोर्फिक हैं, जहां स्थानीय मॉडल स्थान होलोमॉर्फिक फ़ंक्शन के परिमित सेट के लुप्त होने वाले स्थान का एक खुला उपसमुच्चय है।

परिभाषा

मूल्य के साथ स्थलीय स्थान पर निरंतर शीफ (गणित) को निरूपित करें द्वारा . -अंतरिक्ष स्थानीय रूप से चक्राकार स्थान है , जिसकी संरचना शीफ ​​फील्ड ओवर पर एक बीजगणित है .

एक खुला उपसमुच्चय चुनें कुछ जटिल एफ़िन स्पेस की , और सूक्ष्म रूप से कई होलोमोर्फिक कार्यों को ठीक करें में . होने देना इन होलोमॉर्फिक कार्यों का सामान्य लुप्त हो जाना, अर्थात . अंगूठियों के एक शीफ को परिभाषित करें जैसे भी हो पर प्रतिबंध हो का , जहां होलोमॉर्फिक कार्यों का शीफ ​​है . फिर स्थानीय बज उठा -अंतरिक्ष एक स्थानीय मॉडल स्थान है।

एक जटिल विश्लेषणात्मक विविधता स्थानीय रूप से चक्राकार है -अंतरिक्ष जो स्थानीय मॉडल स्थान के लिए स्थानीय रूप से आइसोमोर्फिक है।

जटिल विश्लेषणात्मक किस्मों के मॉर्फिज़म्स को अंतर्निहित स्थानीय रूप से चक्राकार स्थानों के मॉर्फिज़म्स के रूप में परिभाषित किया गया है, उन्हें होलोमोर्फिक मानचित्र भी कहा जाता है। एक संरचना शीफ ​​में नीलपोटेंट तत्व हो सकता है,[1] और यह भी, जब जटिल विश्लेषणात्मक स्थान जिसका संरचना शीफ ​​कम हो जाता है, तो जटिल विश्लेषणात्मक स्थान कम हो जाता है, अर्थात जटिल विश्लेषणात्मक स्थान कम नहीं हो सकता है।

एक संबद्ध जटिल विश्लेषणात्मक स्थान (विविधता) इस प्रकार कि;[1]

यदि X परिमित प्रकार की योजना (गणित) है जो , पर सीमित है, और X को खुले अफीन उपसमूह से ढंका गया है, जहां () (एक अंगूठी का स्पेक्ट्रम)। तब प्रत्येक परिमित प्रकार का एक बीजगणित है जो , पर सीमित है, और . है, जहां में बहुपद हैं जो कि , जिसे एक होलोमोर्फिक फ़ंक्शन के रूप में माना जा सकता है . पर एक वैश्विक एनालिटिक फ़ंक्शन के रूप में देखा जा सकता है। इसलिए, इनके सामान्य शून्य स्थान . है, जहां X के लिए एक संबंधित बीजगणितीय उपग्रह , का नाम दिया जा सकता है। वही डेटा X को ग्लू करने से प्राप्त किया गया है, और फिर उसी डेटा का उपयोग करके बीजगणितीय उपग्रह को ग्लू किया जा सकता है जो एक बीजगणितीय उपग्रह को मिलता है, इसलिए हम के संबद्ध बीजगणितीय उपग्रह कहते हैं सम्पर्कित ज्यामितिक गणितीय स्थान X घटित है यदि और केवल यदि संबंधित ज्यामितिक गणितीय स्थान घटित है।[2]


यह भी देखें

नोट

  1. 1.0 1.1 Hartshorne 1977, p. 439.
  2. Grothendieck & Raynaud (2002) (SGA 1 §XII. Proposition 2.1.)

एनोटेशन

  1. Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced

संदर्भ


बाहरी संबंध