अंकगणितीय औसत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 93: Line 93:
*[http://www.sengpielaudio.com/calculator-geommean.htm दो संख्याओं के अंकगणितीय माध्य और ज्यामितीय माध्य के बीच गणना और तुलना]
*[http://www.sengpielaudio.com/calculator-geommean.htm दो संख्याओं के अंकगणितीय माध्य और ज्यामितीय माध्य के बीच गणना और तुलना]
*[http://www.fxsolver.com/browse/formulas/Arithmetic+Mean fxSolver पर संख्याओं की श्रृंखला के अंकगणितीय माध्य की गणना करें]
*[http://www.fxsolver.com/browse/formulas/Arithmetic+Mean fxSolver पर संख्याओं की श्रृंखला के अंकगणितीय माध्य की गणना करें]
{{DEFAULTSORT:Arithmetic Mean}}[[Category: साधन]]
{{DEFAULTSORT:Arithmetic Mean}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Arithmetic Mean]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Citation Style 1 templates|M]]
[[Category:Created On 21/03/2023]]
[[Category:Collapse templates]]
[[Category:Created On 21/03/2023|Arithmetic Mean]]
[[Category:Lua-based templates|Arithmetic Mean]]
[[Category:Machine Translated Page|Arithmetic Mean]]
[[Category:Missing redirects|Arithmetic Mean]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors|Arithmetic Mean]]
[[Category:Short description with empty Wikidata description|Arithmetic Mean]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Arithmetic Mean]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite magazine]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category|Arithmetic Mean]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions|Arithmetic Mean]]
[[Category:Templates using TemplateData|Arithmetic Mean]]
[[Category:Wikipedia fully protected templates|Cite magazine]]
[[Category:Wikipedia metatemplates]]
[[Category:साधन|Arithmetic Mean]]

Latest revision as of 12:03, 20 October 2023

गणित और सांख्यिकी में, अंकगणितीय माध्य ( /ˌærɪθˈmɛtɪk ˈmn/ arr-ith-MET-ik), अंकगणितीय औसत, या केवल माध्य या औसत (जब संदर्भ स्पष्ट होता है), संग्रह में संख्याओं की संख्या से विभाजित संख्याओं के संग्रह का योग होता है।[1] संग्रह अधिकांशतः विशेष प्रयोग, अवलोकन संबंधी अध्ययन, या सर्वेक्षण (सांख्यिकी) से परिणामों का समूह होता है। इस प्रकार ''अंकगणित माध्य'' शब्द को कुछ गणित और सांख्यिकी संदर्भों में पसंद किया जाता है जिससे कि यह इसे अन्य प्रकार के साधनों, जैसे कि ज्यामितीय माध्य और अनुकूल माध्य से भिन्न करने में सहायता करता है।

गणित और सांख्यिकी के अतिरिक्त, अंकगणित माध्य अधिकांशतः अर्थशास्त्र, नृविज्ञान, इतिहास और लगभग प्रत्येक शैक्षणिक क्षेत्र में कुछ सीमा तक उपयोग किया जाता है। उदाहरण के लिए, प्रति व्यक्ति आय किसी देश की जनसंख्या की अंकगणितीय औसत आय होती है।

जबकि अंकगणित माध्य का उपयोग अधिकांशतः केंद्रीय प्रवृत्ति की सूची करने के लिए किया जाता है, यह शक्तिशाली आँकड़ा नहीं है। यह ग़ैर से अधिक (अधिकांश अन्य की तुलना में बहुत बड़ा या छोटा मान) प्रभावित होता है। इस प्रकार विषम वितरण के लिए, जैसे कि आय का वितरण जिसके लिए कुछ लोगों की आय अधिकांश लोगों की तुलना में अधिक होती है, अतः अंकगणितीय माध्य किसी की "मध्यम" की धारणा के साथ मेल नहीं खा सकता है। उस स्थिति में, माध्यिका जैसे मजबूत आँकड़े, केंद्रीय प्रवृत्ति का उत्तम विवरण प्रदान कर सकते हैं।

परिभाषा

डेटा समूह दिया गया , अंकगणितीय माध्य (माध्य या औसत भी), निरूपित (पढ़ना बार), मान का माध्य है।[2]

अंकगणित माध्य किसी डेटा समूह की केंद्रीय प्रवृत्ति का सबसे अधिक उपयोग किया जाने वाला और सरलता से समझा जाने वाला माप है। सामान्यतः सांख्यिकी में, औसत शब्द केंद्रीय प्रवृत्ति के किसी भी माप को संदर्भित करता है। अवलोकन किए गए डेटा के समूह का अंकगणितीय माध्य प्रत्येक अवलोकन के संख्यात्मक मानों के योग के सामान्तर होता है, जिसे प्रेक्षणों की कुल संख्या से विभाजित किया जाता है। इस प्रकार सांकेतिक रूप से, मानों से युक्त डेटा समूह के लिए , अंकगणितीय माध्य सूत्र द्वारा परिभाषित किया गया है:

[3]

( योग ऑपरेटर की व्याख्या के लिए, समेशन देखें।)

उदाहरण के लिए, यदि मासिक वेतन कर्मचारी हैं , तो अंकगणितीय माध्य है:

यदि डेटा समूह सांख्यिकीय जनसंख्या है (अर्थात्, इसमें प्रत्येक संभव अवलोकन सम्मिलित है और न केवल उनका उपसमुच्चय), तब उस जनसंख्या के माध्य को जनसंख्या माध्य कहा जाता है और इसे ग्रीक वर्णमाला द्वारा निरूपित किया जाता है। यदि डेटा समूह नमूनाकरण (सांख्यिकी) (जनसंख्या का उपसमूह) है, तब इसे नमूना माध्य कहा जाता है (जो डेटा समूह के लिए के रूप में दर्शाया गया है)।

अंकगणित माध्य को समान रूप से सदिश (गणित और भौतिकी) के लिए अनेक आयामों में परिभाषित किया जा सकता है, न कि केवल अदिश (गणित) मान में परिभाषित किया जा सकता है। इसे अधिकांशतः केन्द्रक के रूप में जाना जाता है। सामान्यतः, जिससे कि अंकगणितीय माध्य उत्तल संयोजन है (अर्थात् इसके गुणांकों का योग होता है), इसे उत्तल स्थान पर परिभाषित किया जा सकता है, न कि केवल सदिश स्थान पर।

प्रेरक गुण

विशेष रूप से केंद्रीय प्रवृत्ति के माप के रूप में अंकगणितीय माध्य में अनेक गुण होते हैं जो इसे रोचक बनाते हैं। इसमे सम्मिलित है:

  • यदि अंक का माध्य है, तब . तब से किसी दी गई संख्या से माध्य की दूरी होती है, इस गुण की व्याख्या करने की विधि यह है कि माध्य के बाईं ओर की संख्या को दाईं ओर की संख्या द्वारा संतुलित किया जाता है। इस प्रकार माध्य ही एकमात्र ऐसी संख्या है जिसके लिए आंकड़ों में त्रुटियां और अवशेष (अनुमान से विचलन) का योग शून्य होता है। इसे यह कहते हुए भी व्याख्यायित किया जा सकता है कि कारण किसी भी वास्तविक संख्या के अर्थ में अनुवादिक समरूपता है।
  • यदि ज्ञात संख्याओं के समूह के लिए विशिष्ट मान के रूप में एकल संख्या का उपयोग करना आवश्यक होता है, तब संख्याओं का अंकगणितीय माध्य यह सबसे अच्छा करता है जिससे कि यह विशिष्ट मान से वर्ग विचलन के योग को कम करता है। इसका योग नमूना माध्य भी सबसे अच्छा एकल भविष्यवक्ता है जिससे कि इसमें सबसे कम मूल माध्य चुकता त्रुटि है।[2] यदि संख्याओं की जनसंख्या का अंकगणितीय माध्य वांछित होता है, तब इसका अनुमान जो कि निष्पक्ष अनुमान है, जनसंख्या से निकाले गए नमूने का अंकगणितीय माध्य होता है।
  • अंकगणित माध्य माप की इकाइयों के पैमाने से स्वतंत्र है, इस अर्थ में कि इसलिए, उदाहरण के लिए, लीटर के माध्य की गणना करना और फिर गैलन में परिवर्तित करना वैसा ही है जैसे पहले गैलन में परिवर्तित करना और फिर माध्य की गणना करना होता है। इसे सजातीय कार्य भी कहा जाता है।

अतिरिक्त गुण

  • किसी नमूने का अंकगणितीय माध्य सदैव उस नमूने के सबसे बड़े और सबसे छोटे मानों के मध्य होता है।
  • समान आकार के संख्या समूहों की किसी भी राशि का अंकगणितीय माध्य प्रत्येक समूह के अंकगणितीय माध्य का अंकगणितीय माध्य है।

माध्यिका के साथ तुलना करें

अंकगणित माध्य की तुलना माध्यिका से की जा सकती है। इस प्रकार माध्यिका को इस प्रकार परिभाषित किया गया है कि आधे से अधिक मान बड़े नहीं होते हैं, और आधे से अधिक इससे छोटे नहीं होते हैं। यदि अंकगणितीय प्रगति में तत्वों को किसी क्रम में रखा जाता है, तब माध्यिका और अंकगणितीय औसत सामान्तर होते हैं। उदाहरण के लिए, डेटा नमूना पर विचार करें . कारण है , जैसा कि माध्यिका है। चूँकि, जब हम ऐसे नमूने पर विचार करते हैं जिसे अंकगणितीय रूप से बढ़ाने के लिए व्यवस्थित नहीं किया जा सकता है, जैसे , माध्यिका और अंकगणितीय औसत महत्वपूर्ण रूप से भिन्न हो सकते हैं। इस स्थितियों में, अंकगणितीय औसत होता है, जबकि माध्यिका है। इस प्रकार नमूने में अधिकांश मूल्यों से औसत मूल्य अधिक भिन्न हो सकता है और अधिक से अधिक बड़ा या छोटा हो सकता है।

अनेक क्षेत्रों में इस घटना के अनुप्रयोग होते हैं। उदाहरण के लिए, सन्न 1980 के दशक के पश्चात् से, संयुक्त राज्य में औसत आय के अंकगणितीय औसत की तुलना में धीमी गति से बढ़ी है।[4]

सामान्यीकरण

भारित औसत

भारित औसत, या भारित माध्य, औसत होता है जिसमें कुछ डेटा अंक दूसरों की तुलना में अधिक महत्वपूर्ण होते हैं जिससे कि उन्हें गणना में अधिक वजन दिया जाता है।[5] उदाहरण के लिए, और का अंकगणितीय माध्य है, या समकक्ष होता है। इसके विपरीत, भारित माध्य जिसमें पहली संख्या प्राप्त होती है, उदाहरण के लिए, दूसरे से दोगुना वजन (संभवतः इसलिए होता है कि यह सामान्य जनसंख्या में दो बार दिखाई देने वाला माना जाता है जिससे इन नंबरों का नमूना लिया गया था) की गणना की जाती है। यहाँ भार, जिनका योग आवश्यक रूप से और है, पूर्व दो बार उत्तरार्द्ध होता है। अंकगणित माध्य (कभी-कभी भारित औसत या समान भारित औसत कहा जाता है) को भारित औसत के विशेष स्थितियों के रूप में व्याख्या किया जा सकता है जिसमें सभी भार ही संख्या के सामान्तर होते हैं (उपरोक्त उदाहरण में और के साथ स्थिति में संख्याओं का औसत निकाला जा रहा है)।

सतत संभाव्यता वितरण

दो लॉग-सामान्य वितरण की तुलना समान माध्यिका के साथ, किन्तु भिन्न-भिन्न तिरछापन, जिसके परिणामस्वरूप विभिन्न साधन और मोड (आँकड़े) होते हैं

यदि कोई संख्यात्मक गुण, और उससे प्राप्त डेटा का कोई भी नमूना, उदाहरण के लिए, केवल पूर्णांकों के अतिरिक्त निरंतर श्रेणी से कोई भी मान ले सकता है, तब किसी संख्या के संभावित मानों की किसी सीमा में गिरने की संभावना को एकीकृत करके वर्णित किया जा सकता है। इस श्रेणी में निरंतर संभाव्यता वितरण, तब भी जब नमूना संख्या के लिए असीम रूप से अनेक से निश्चित मान लेने की सहज संभावना शून्य होती है। इस संदर्भ में, भारित औसत का एनालॉग, जिसमें प्रत्येक श्रेणी में चर के त्रुटिहीन मान के लिए अपरिमित रूप से अनेक संभावनाएँ होती हैं, अतः संभाव्यता बंटन का माध्य कहलाता है। इस प्रकार सबसे व्यापक रूप से सामना किए जाने वाले संभाव्यता वितरण को सामान्य वितरण कहा जाता है। इसकी संपत्ति है कि इसकी केंद्रीय प्रवृत्ति के सभी उपाय, न केवल माध्य किंतु ऊपर वर्णित माध्यिका और मोड (तीन एमएस),[6] सामान्तर होते हैं। यह समानता अन्य संभाव्यता वितरणों के लिए नहीं होता है, जैसा कि यहां लॉग-सामान्य वितरण के लिए सचित्र होता है।

कोण

सामान्यतः चरण या कोण जैसे चक्रीय डेटा का उपयोग करते समय विशेष देखभाल की आवश्यकता होती है। इस प्रकार 1° और 359° का अंकगणितीय माध्य लेने पर 180° (कोण) का परिणाम प्राप्त होता है।

यह दो कारणों से गलत होता है:

  • सबसे पहले, कोण माप केवल 360° ( या , अगर कांति में माप रहे हैं)। इस प्रकार, इन्हें सरलता से 1° और -1°, या 361° और 719° कहा जा सकता है, जिससे कि इनमें से प्रत्येक भिन्न औसत उत्पन्न करता है।
  • दूसरा कारण, इस स्थिति में, 0° (या 360°) ज्यामितीय रूप से उत्तम औसत मान होता है। इसके बारे में कम सांख्यिकीय फैलाव होता है (इससे 1° और 180° से 179°, अंक ख्यात औसत दोनों होते हैं)।

सामान्य अनुप्रयोग में, इस प्रकार के निरीक्षण से औसत मूल्य कृत्रिम रूप से संख्यात्मक सीमा के मध्य की ओर बढ़ जाता है। इस समस्या का समाधान अनुकूलन सूत्रीकरण का उपयोग करना है (अर्थात्, मध्य बिंदु के रूप में कारण को परिभाषित करते है। वह बिंदु जिसके बारे में सबसे कम फैलाव होता है) और अंतर को मॉड्यूलर दूरी (अर्थात् सर्कल पर दूरी) के रूप में फिर से परिभाषित करते है। इसलिए 1° और 359° के मध्य की मॉड्यूलर दूरी 2°, 358° नहीं होती है)।

Proof without words of the inequality of arithmetic and geometric means:
is the diameter of a circle centered on ; its radius is the arithmetic mean of and . Using the geometric mean theorem, triangle 's altitude is the geometric mean. For any ratio , .

प्रतीक और एन्कोडिंग

अंकगणित माध्य को अधिकांशतः बार विंकुलम (प्रतीक) या मैक्रोन (विशेषक) द्वारा निरूपित किया जाता है, जैसा कि .[2]

कुछ सॉफ़्टवेयर (टेक्स्ट प्रोसेसिंग, वेब ब्राउज़र) x̄ प्रतीक को सही रूप से प्रदर्शित नहीं कर सकते हैं। उदाहरण के लिए, एचटीएमएल प्रतीक x̄ दो कोडों को जोड़ता है - आधार अक्षर एक्स प्लस उपरोक्त पंक्ति के लिए कोड (̄ या ¯) होता है।[7]

सामान्यतः कुछ दस्तावेज़ स्वरूपों (जैसे पीडीएफ) में, माइक्रोसॉफ्ट वर्ड जैसे टेक्स्ट प्रोसेसर में कॉपी किए जाने पर प्रतीक को ¢ (यूरो सिक्के) प्रतीक द्वारा प्रतिस्थापित किया जा सकता है।

यह भी देखें

Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [8]

संदर्भ

  1. Jacobs, Harold R. (1994). Mathematics: A Human Endeavor (Third ed.). W. H. Freeman. p. 547. ISBN 0-7167-2426-X.
  2. 2.0 2.1 2.2 Medhi, Jyotiprasad (1992). Statistical Methods: An Introductory Text. New Age International. pp. 53–58. ISBN 9788122404197.
  3. Weisstein, Eric W. "अंकगणित औसत". mathworld.wolfram.com (in English). Retrieved 2020-08-21.
  4. Krugman, Paul (4 June 2014) [Fall 1992]. "The Rich, the Right, and the Facts: Deconstructing the Income Distribution Debate". The American Prospect.
  5. "Mean | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-21.
  6. Thinkmap Visual Thesaurus (2010-06-30). "The Three M's of Statistics: Mode, Median, Mean June 30, 2010". www.visualthesaurus.com. Retrieved 2018-12-03.
  7. "स्टेट सिंबल के लिए यूनिकोड पर नोट्स". www.personal.psu.edu. Retrieved 2018-10-14.
  8. If AC = a and BC = b. OC = AM of a and b, and radius r = QO = OG.
    Using Pythagoras' theorem, QC² = QO² + OC² ∴ QC = √QO² + OC² = QM.
    Using Pythagoras' theorem, OC² = OG² + GC² ∴ GC = √OC² − OG² = GM.
    Using similar triangles, HC/GC = GC/OC ∴ HC = GC²/OC = HM.

अग्रिम पठन

बाहरी संबंध