इंटरबैंड कैस्केड लेजर: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
इंटरबैंड कैस्केड लेजर (आईसीएलएस) एक प्रकार का | '''इंटरबैंड कैस्केड लेजर''' (आईसीएलएस) एक प्रकार का लेज़र डायोड है जो विद्युत चुम्बकीय स्पेक्ट्रम के मध्य-अवरक्त क्षेत्र के एक बड़े भाग पर सुसंगत विकिरण का उत्पादन कर सकता है। वे एपिटैक्स के रूप में रूप से विकसित अर्धचालक हेट्रोस्ट्रक्चर से निर्मित होते हैं, जो इमारत (आई एन ए एस), गैलियम एंटिमोनाइड (जीएएसबी), एल्यूमीनियम एंटिमोनाइड (एएलएसबी), और संबंधित मिश्र धातुओं की परतों से बने होते हैं। ये लेजर कई तरीकों से क्वांटम कैस्केड लेजर (क्यूसीएल) के समान हैं। क्यूसीएलएस की तरह, क्यूसीएल एक अनुकूलित लेजर डिज़ाइन प्राप्त करने के लिए बैंडस्ट्रक्चर इंजीनियरिंग की अवधारणा को नियोजित करते हैं और कई फोटॉन का उत्सर्जन करने के लिए इंजेक्ट किए गए इलेक्ट्रॉनों का पुन: उपयोग करते हैं। चूंकि, आईसीएल में, फोटॉन क्यूसीएल में उपयोग किए जाने वाले इंटरसबबैंड संक्रमणों के अतिरिक्त इंटरबैंड संक्रमण के साथ उत्पन्न होते हैं। परिणाम स्वरुप, जिस दर पर वाहक ऊपरी लेजर सबबैंड में इंजेक्ट किए गए थे, वे निचले सबबैंड के लिए थर्मल रूप से आराम करते हैं, इंटरबैंड बरमा, विकिरण, और शॉक्ले-रीड कैरियर वाहक पीढ़ी और पुनर्संयोजन द्वारा निर्धारित किया जाता है। ये प्रक्रियाएं सामान्यतः पर अनुदैर्ध्य ऑप्टिकल फोनन इंटरैक्शन की तुलना में बहुत धीमी समय के पैमाने पर होती हैं जो मध्य-आईआर क्यूसीएल में इंजेक्ट किए गए इलेक्ट्रॉनों के इंटरसबबैंड विश्राम की मध्यस्थता करती हैं। इंटरबैंड संक्रमणों का उपयोग आईसीएल में लेजर कार्रवाई को कम विद्युत इनपुट शक्तियों पर प्राप्त करने की अनुमति देता है, जो क्यूसीएल के साथ संभव है। | ||
[[File:6point1FamilyOfMaterials.jpg|thumb|upright=1.2|इंटरबैंड कैस्केड लेजर में | [[File:6point1FamilyOfMaterials.jpg|thumb|upright=1.2|इंटरबैंड कैस्केड लेजर में प्रयुक्त सामग्रियों का बैंड संरेखण और जाली स्थिरांक।]]एक आईसीएल की मूल अवधारणा 1994 में रुई क्यू . यांग द्वारा प्रस्तावित की गई थी।<ref>{{cite journal |last=Yang |first=R. Q. |year=1995 |title=Infrared Laser based on Intersubband Transitions in Quantum Wells |journal=Superlattices and Microstructures |volume=17 |issue=1|pages=77–83|doi=10.1006/spmi.1995.1017 |bibcode = 1995SuMi...17...77Y }}</ref> उनके पास महत्वपूर्ण अंतर्दृष्टि यह थी कि गुंजयमान-टनलिंग डायोड में उपयोग किए जाने वाले टाइप- II हेटरोस्ट्रक्चर का समावेश कैस्केड लेज़रों की संभावना को सुविधाजनक बनाएगा जो फोटॉन पीढ़ी के लिए इंटरबैंड संक्रमण का उपयोग करते हैं। प्रौद्योगिकी के डिजाइन और विकास में और सुधार यांग और उनके सहयोगियों द्वारा कई संस्थानों में, साथ ही साथ नौसेना अनुसंधान प्रयोगशाला और अन्य संस्थानों में समूहों द्वारा किया गया था। कमरे के तापमान पर निरंतर लहर ( CW) मोड में आईसीएलएस लेसिंग को पहली बार 2008 में प्रदर्शित किया गया था। इस लेजर में 3.75 माइक्रोन का उत्सर्जन तरंग दैर्ध्य था।<ref>{{cite journal |last=Kim |first=M. |author2=C.L. Canedy |author3=W.W. Bewley |author4=C.S. Kim |author5=J.R. Lindle |author6=J. Abell |author7=I. Vurgaftman |author8=J.R. Meyer |year=2008 |title=Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature |journal=Applied Physics Letters |volume=92 |issue=19 |pages=191110|doi=10.1063/1.2930685 |bibcode = 2008ApPhL..92s1110K }}</ref> इसके बाद, कमरे के तापमान पर आईसीएल के CW ऑपरेशन को उत्सर्जन तरंग दैर्ध्य के साथ 2.9 माइक्रोन से 5.7 माइक्रोन तक का प्रदर्शन किया गया है।<ref name="Bewley2012-1">{{cite journal |last=Bewley |first=W.W. |author2=C.L. Canedy |author3=C.S. Kim |author4=M. Kim |author5=C.D. Merritt |author6=J. Abell |author7=I. Vurgaftman |author8=J.R. Meyer |year=2012 |title=Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm |journal=Optics Express |volume=20 |issue=3 |pages=3235–3240|doi=10.1364/OE.20.003235 |pmid=22330561 |bibcode = 2012OExpr..20.3235B |doi-access=free }}</ref> कूलर तापमान पर आईसीएल को 2.7 माइक्रोन से 11.2 माइक्रोन के बीच उत्सर्जन तरंग दैर्ध्य के साथ प्रदर्शित किया गया है।<ref>{{cite journal |last=Li |first=L. |author2=H. Ye |author3=Y. Jiang |author4=R.Q. Yang |author5=J. C. Keay |author6=T.D. Mishima |author7=M.B. Santos |author8=M.B. Johnson |year=2015 |title=MBE-grown long-wavelength interband cascade lasers on InAs substrates |journal=J. Cryst. Growth |volume=426 |pages=369–372|doi=10.1016/j.jcrysgro.2015.02.016 |bibcode=2015JCrGr.425..369L |doi-access=free }}</ref> परिवेश के तापमान पर CW मोड में काम करने वाले आईसीएल मध्य-आईआर सेमीकंडक्टर लेजर प्रौद्योगिकियों की प्रतिस्पर्धा की तुलना में बहुत कम इनपुट शक्तियों पर लेसिंग प्राप्त करने में सक्षम हैं।<ref name="VurgaftmanNatCom">{{cite journal |last=Vurgaftman |first=I. |author2=W.W. Bewley |author3=C.L. Canedy |author4=C.S. Kim |author5=M. Kim |author6=C.D. Merritt |author7=J. Abell |author8=J.R. Lindle |author9=J.R. Meyer |year=2011 |title=Rebalancing of internally generated carriers for mid-infrared cascade lasers with very low power consumption |journal=Nature Communications |volume=2 |pages=585|doi=10.1038/ncomms1595 |bibcode = 2011NatCo...2..585V |pmid=22158440|doi-access=free }}</ref> | ||
== ऑपरेशन का सिद्धांत == | == ऑपरेशन का सिद्धांत == | ||
[[File:ICLTEMImage.jpg|thumb|upright=2.25|right| | [[File:ICLTEMImage.jpg|thumb|upright=2.25|right|gASb पर उगाए गए लेजर के लिए समग्र एपिटैक्सियल संरचना का योजनाबद्ध।माइक्रोस्कोप छवि पतली-परत के कैस्केड चरणों में से चार दिखाती है।यह छवि ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी का उपयोग करके ली गई थी।]]एक मानक क्वांटम अच्छी तरह से लेजर में, फोटॉन उत्पन्न करने के लिए उपयोग किए जाने वाले सक्रिय क्वांटम कुओं को समानांतर में जोड़ा जाता है।परिणाम स्वरुप, एक बड़े [[विद्युत प्रवाह]] को इलेक्ट्रॉनों के साथ प्रत्येक सक्रिय अच्छी तरह से फिर से भरने के लिए आवश्यक है क्योंकि यह प्रकाश का उत्सर्जन करता है। एक कैस्केड लेजर में, कुओं को श्रृंखला में जुड़ा हुआ है, जिसका अर्थ है कि वोल्टेज अधिक है किन्तु वर्तमान कम है। यह ट्रेडऑफ़ फायदेमंद है क्योंकि इनपुट पावर डिवाइस की [[श्रृंखला प्रतिरोध]], आर द्वारा विघटित है<sub>s</sub>, मैं के बराबर है<sup>2 </sup> r<sub>s</sub>, जहां मैं डिवाइस के माध्यम से बहने वाला विद्युत प्रवाह है। इस प्रकार, एक कैस्केड लेजर में कम करंट डिवाइस की श्रृंखला प्रतिरोध से कम बिजली की हानि का परिणाम है। चूंकि, अधिक चरणों वाले उपकरणों में खराब थर्मल प्रदर्शन होता है, क्योंकि [[ताप सिंक]] से अधिक [[गर्मी]] के स्थानों में अधिक गर्मी उत्पन्न होती है। चरणों की इष्टतम संख्या तरंग दैर्ध्य, उपयोग की जाने वाली सामग्री और कई अन्य कारकों पर निर्भर करती है। इस संख्या का अनुकूलन सिमुलेशन द्वारा निर्देशित है, किन्तु अंततः प्रयोगात्मक लेजर प्रदर्शन का अध्ययन करके अनुभवजन्य रूप से निर्धारित किया गया है। | ||
आईसीएल को [[आणविक बीम एपिटैक्सी]] (एमबीई) का उपयोग करके उगाए गए अर्धचालक हेटरोस्ट्रक्चर से गढ़ा जाता है। संरचना में उपयोग की जाने वाली सामग्री आई एन ए एस, जीएएसबी, एएलएसबी और संबंधित मिश्र धातु हैं।ये तीन बाइनरी सामग्री 6.1 Å के करीब जाली मापदंडों के साथ बहुत निकटता से मिलान होती है।इस प्रकार, इन सामग्रियों को एक महत्वपूर्ण मात्रा में [[विरूपण (यांत्रिकी)]] की एक महत्वपूर्ण मात्रा प्रस्तुत किए बिना एक ही हेट्रोस्ट्रक्चर में एक साथ सम्मलित किया जा सकता है आईएमबीई विकास सामान्यतः एक जीएएसबी या आई एन ए एस सब्सट्रेट पर किया जाता है। | आईसीएल को [[आणविक बीम एपिटैक्सी]] (एमबीई) का उपयोग करके उगाए गए अर्धचालक हेटरोस्ट्रक्चर से गढ़ा जाता है। संरचना में उपयोग की जाने वाली सामग्री आई एन ए एस, जीएएसबी, एएलएसबी और संबंधित मिश्र धातु हैं।ये तीन बाइनरी सामग्री 6.1 Å के करीब जाली मापदंडों के साथ बहुत निकटता से मिलान होती है।इस प्रकार, इन सामग्रियों को एक महत्वपूर्ण मात्रा में [[विरूपण (यांत्रिकी)]] की एक महत्वपूर्ण मात्रा प्रस्तुत किए बिना एक ही हेट्रोस्ट्रक्चर में एक साथ सम्मलित किया जा सकता है आईएमबीई विकास सामान्यतः एक जीएएसबी या आई एन ए एस सब्सट्रेट पर किया जाता है। | ||
Line 12: | Line 12: | ||
=== कैस्केड स्टेज डिज़ाइन === | === कैस्केड स्टेज डिज़ाइन === | ||
एक विशिष्ट इंटरबैंड कैस्केड लेजर में एक ही चरण का अधिकार। कैस्केड चरण को एक [[सक्रिय लेजर माध्यम]], इलेक्ट्रॉन इंजेक्टर और होल इंजेक्टर में विभाजित किया गया है। क्वांटम कुओं के समूह जो प्रत्येक क्षेत्र का गठन करते हैं, उन्हें इंगित किया जाता है। सबबैंड एक्सट्रैमा ऊर्जा और इसी वर्ग की [[तरंग]]ों को उन सबबैंड्स के लिए प्लॉट किया जाता है जो डिवाइस ट्रांसपोर्ट और लेजर एक्शन के लिए सबसे अधिक प्रासंगिक हैं। | |||
प्रत्येक कैस्केड चरण में, पतली आईएनएएस परतें [[इलेक्ट्रॉन होल]] के लिए इलेक्ट्रॉनों और बाधाओं के लिए सीमित क्वांटम अच्छी तरह से (क्यू डब्ल्यू) परतों के रूप में कार्य करती हैं।जीएएसबी (या जीएआईएनएसबी) परतें इलेक्ट्रॉनों के लिए छेद और बाधाओं के लिए क्यूडब्ल्यूएस के रूप में कार्य करती हैं, चूँकि एएलएसबी परतें इलेक्ट्रॉनों और छेद दोनों के लिए बाधाओं के रूप में काम करती हैं।एक इंटरबैंड डायोड के भीतर कैस्केडिंग की प्राप्ति को सक्षम करने वाली प्रमुख विशेषता तथाकथित टाइप- II, या टूटी-फूटी-अंतराल, आई एन ए एस और जीएएसबी के बीच बैंड संरेखण है।जबकि टाइप- I क्यूडब्ल्यूएस के अधिक सामान्य वर्ग में दोनों इलेक्ट्रॉनों और छेद एक ही सामग्री परत के भीतर सीमित हैं, आई एन ए एस-जीएएसबी प्रणाली टाइप- II है क्योंकि आईएनए का [[चालन बैंड]] न्यूनतम आई एन ए एस [[संयोजी बंध]] अधिकतम की तुलना में कम ऊर्जा पर स्थित है। गैसब की।यह कम आम व्यवस्था सरल लोचदार [[बिखरने]] के माध्यम से अगले चरण के चालन बैंड में आईसीएल के एक चरण के वैलेंस बैंड से इलेक्ट्रॉनों को फिर से इंजेक्ट करना आसान बनाती है। | प्रत्येक कैस्केड चरण में, पतली आईएनएएस परतें [[इलेक्ट्रॉन होल]] के लिए इलेक्ट्रॉनों और बाधाओं के लिए सीमित क्वांटम अच्छी तरह से (क्यू डब्ल्यू) परतों के रूप में कार्य करती हैं।जीएएसबी (या जीएआईएनएसबी) परतें इलेक्ट्रॉनों के लिए छेद और बाधाओं के लिए क्यूडब्ल्यूएस के रूप में कार्य करती हैं, चूँकि एएलएसबी परतें इलेक्ट्रॉनों और छेद दोनों के लिए बाधाओं के रूप में काम करती हैं।एक इंटरबैंड डायोड के भीतर कैस्केडिंग की प्राप्ति को सक्षम करने वाली प्रमुख विशेषता तथाकथित टाइप- II, या टूटी-फूटी-अंतराल, आई एन ए एस और जीएएसबी के बीच बैंड संरेखण है।जबकि टाइप- I क्यूडब्ल्यूएस के अधिक सामान्य वर्ग में दोनों इलेक्ट्रॉनों और छेद एक ही सामग्री परत के भीतर सीमित हैं, आई एन ए एस-जीएएसबी प्रणाली टाइप- II है क्योंकि आईएनए का [[चालन बैंड]] न्यूनतम आई एन ए एस [[संयोजी बंध]] अधिकतम की तुलना में कम ऊर्जा पर स्थित है। गैसब की।यह कम आम व्यवस्था सरल लोचदार [[बिखरने]] के माध्यम से अगले चरण के चालन बैंड में आईसीएल के एक चरण के वैलेंस बैंड से इलेक्ट्रॉनों को फिर से इंजेक्ट करना आसान बनाती है। | ||
Line 34: | Line 34: | ||
== आईसीएल प्रदर्शन की वर्तमान स्थिति == | == आईसीएल प्रदर्शन की वर्तमान स्थिति == | ||
3.7 पर उत्सर्जित करने वाले आईसीएल; यूएम ने CW मोड में 118° C के अधिकतम तापमान तक संचालित किया है।<ref name="Bewley2012-2">{{cite journal |last=Bewley |first=W.W. |author2=C.L. Canedy |author3=C.S. Kim |author4=M. Kim |author5=C.D. Merritt |author6=J. Abell |author7=I. Vurgaftman |author8=J.R. Meyer |year=2012 |title=High-power room-temperature continuous-wave mid-infrared interband cascade lasers |journal=Optics Express |volume=20 |issue=19 |pages=20894–20901|doi=10.1364/OE.20.020894 |pmid=23037213 |bibcode = 2012OExpr..2020894B |doi-access=free }}</ref><ref name="Vurgaftman2015">{{cite journal |last=Vurgaftman |first=I. |author2=R. Weih |author3=M. Kamp |author4=J.R. Meyer |author5=C.L. Canedy |author6=M. Kim |author7=W.W. Bewley |author8=C.D. Merritt |author9=J. Abell |author10=S. Hoefling |year=2015 |title=Topical Review - Interband cascade lasers |journal=Journal of Physics D: Applied Physics |volume=48 |issue=12 |pages=123001–123017|doi=10.1088/0022-3727/48/12/123001|bibcode = 2015JPhD...48l3001V |s2cid=221719163 }}</ref> लगभग 0.5 डब्ल्यू की अधिकतम CW आउटपुट पावर को कमरे के तापमान पर प्रदर्शित किया गया है, जिसमें 200-300 | 3.7 पर उत्सर्जित करने वाले आईसीएल; यूएम ने CW मोड में 118° C के अधिकतम तापमान तक संचालित किया है।<ref name="Bewley2012-2">{{cite journal |last=Bewley |first=W.W. |author2=C.L. Canedy |author3=C.S. Kim |author4=M. Kim |author5=C.D. Merritt |author6=J. Abell |author7=I. Vurgaftman |author8=J.R. Meyer |year=2012 |title=High-power room-temperature continuous-wave mid-infrared interband cascade lasers |journal=Optics Express |volume=20 |issue=19 |pages=20894–20901|doi=10.1364/OE.20.020894 |pmid=23037213 |bibcode = 2012OExpr..2020894B |doi-access=free }}</ref><ref name="Vurgaftman2015">{{cite journal |last=Vurgaftman |first=I. |author2=R. Weih |author3=M. Kamp |author4=J.R. Meyer |author5=C.L. Canedy |author6=M. Kim |author7=W.W. Bewley |author8=C.D. Merritt |author9=J. Abell |author10=S. Hoefling |year=2015 |title=Topical Review - Interband cascade lasers |journal=Journal of Physics D: Applied Physics |volume=48 |issue=12 |pages=123001–123017|doi=10.1088/0022-3727/48/12/123001|bibcode = 2015JPhD...48l3001V |s2cid=221719163 }}</ref> लगभग 0.5 डब्ल्यू की अधिकतम CW आउटपुट पावर को कमरे के तापमान पर प्रदर्शित किया गया है, जिसमें 200-300 एक विवर्तन सीमा में mw। लगभग-डिफ्रेक्शन-सीमित बीम।लगभग 15% की अधिकतम कमरे-तापमान CW दीवार-प्लग दक्षता भी प्राप्त की गई है।जबकि क्यूसीएल को सामान्यतः कमरे के तापमान पर संचालित करने के लिए लगभग 1 डब्ल्यू और उच्चतर के इनपुट विद्युत शक्तियों की आवश्यकता होती है, आईसीएल 29 और एनबीएसपी के रूप में कम इनपुट शक्तियों के लिए लेस करने में सक्षम होते हैं; बहुत लंबे समय तक इंटरबैंड वाहक जीवनकाल के कारण।<ref name="VurgaftmanNatCom" />कम विघटित शक्तियों के साथ कमरे-तापमान CW ऑपरेशन को लगभग 3.0 um और 5.6 um के बीच तरंग दैर्ध्य के लिए प्राप्त किया जा सकता है।<ref name="Bewley2012-1" /> | ||
दाईं ओर का आंकड़ा CW मोड में काम करने वाले कमरे के तापमान पर संकीर्ण रिज-वेवगाइड इंटरबैंड कैस्केड लेजर की प्रदर्शन विशेषताओं को दर्शाता है।<ref name="Bewley2012-2" /> विशेष रूप से, यह आंकड़ा एक दिए गए इंजेक्शन करंट के लिए विभिन्न रिज चौड़ाई के साथ लेज़रों द्वारा उत्सर्जित शक्ति की मात्रा के भूखंडों को दर्शाता है। इनमें से प्रत्येक लेजर में पांच कैस्केड चरण और गुहा की लंबाई 4 & ; मिमी थी।इन लेज़रों को इसलिए लगाया गया था जिससे एपिटैक्सियल संरचना के शीर्ष (सब्सट्रेट के अतिरिक्त) इष्टतम गर्मी के डिसिपेशन को प्राप्त करने के लिए [[ताँबा]] हीट सिंक (सामान्यतः एपिटैक्सियल साइड डाउन कॉन्फ़िगरेशन के रूप में संदर्भित) के संपर्क में थे।इसके अतिरिक्त, वे नालीदार फुटपाथों के साथ गढ़े गए थे।कम फोटॉनों को उच्च-ऑर्डर [[ऑप्टिकल मोड]] में उत्पन्न करने के लिए साइडवॉल गलियारा ऑप्टिकल हानि को कम करता है जो ऑप्टिकल बिखरने के हानि के लिए अधिक अतिसंवेदनशील होते हैं। | दाईं ओर का आंकड़ा CW मोड में काम करने वाले कमरे के तापमान पर संकीर्ण रिज-वेवगाइड इंटरबैंड कैस्केड लेजर की प्रदर्शन विशेषताओं को दर्शाता है।<ref name="Bewley2012-2" /> विशेष रूप से, यह आंकड़ा एक दिए गए इंजेक्शन करंट के लिए विभिन्न रिज चौड़ाई के साथ लेज़रों द्वारा उत्सर्जित शक्ति की मात्रा के भूखंडों को दर्शाता है। इनमें से प्रत्येक लेजर में पांच कैस्केड चरण और गुहा की लंबाई 4 & ; मिमी थी।इन लेज़रों को इसलिए लगाया गया था जिससे एपिटैक्सियल संरचना के शीर्ष (सब्सट्रेट के अतिरिक्त) इष्टतम गर्मी के डिसिपेशन को प्राप्त करने के लिए [[ताँबा]] हीट सिंक (सामान्यतः एपिटैक्सियल साइड डाउन कॉन्फ़िगरेशन के रूप में संदर्भित) के संपर्क में थे।इसके अतिरिक्त, वे नालीदार फुटपाथों के साथ गढ़े गए थे।कम फोटॉनों को उच्च-ऑर्डर [[ऑप्टिकल मोड]] में उत्पन्न करने के लिए साइडवॉल गलियारा ऑप्टिकल हानि को कम करता है जो ऑप्टिकल बिखरने के हानि के लिए अधिक अतिसंवेदनशील होते हैं। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
[[स्पेक्ट्रोस्कोपी]] सेंसिंग अनुप्रयोगों के लिए मध्य-अवरक्त लेजर महत्वपूर्ण उपकरण हैं। प्रदूषण और | [[स्पेक्ट्रोस्कोपी]] सेंसिंग अनुप्रयोगों के लिए मध्य-अवरक्त लेजर महत्वपूर्ण उपकरण हैं। प्रदूषण और ग्रीन हाउस गैसों में कई अणुओं में स्पेक्ट्रम के मध्य-अवरक्त क्षेत्र में मजबूत घूर्णी और कंपन प्रतिध्वनि होती है।अधिकांश सेंसिंग अनुप्रयोगों के लिए, लेजर तरंग दैर्ध्य भी सिग्नल क्षीणन से बचने के लिए [[अवरक्त खिड़की]] में से एक के भीतर होना चाहिए। | ||
इस प्रकार के आवेदन के लिए एक महत्वपूर्ण आवश्यकता यह है कि एकल-मोड उत्सर्जन प्राप्त होता है। आईसीएल के साथ, यह [[वितरित प्रतिक्रिया लेजर]] बनाकर किया जा सकता है।<ref>{{cite journal |last=Yang |first=R.Q. |author2=C.J..Hill |author3=K. Mansour |author4=Y. Qiu |author5=A. Soibel |author6=R.E. Muller |author7=P.M. Echternach |year=2007 |title=Distributed Feedback Mid-IR Interband Cascade Lasers at Thermoelectric Cooler Temperatures |journal=IEEE Journal of Selected Topics in Quantum Electronics |volume=13 |issue=5 |pages=1074–1078|doi=10.1109/JSTQE.2007.903014 |bibcode=2007IJSTQ..13.1074Y |s2cid=31177718 }}</ref> [[मीथेन]] गैस के उत्तेजना के लिए वितरित-फीडबैक आईसीएल डिज़ाइन किया गया और [[नासा जेट प्रोपल्शन लेबोरेटरी]] प्रयोगशाला में विकसित किया गया था और इसमें [[क्यूरियोसिटी रोवर]] पर ट्यून करने योग्य लेजर स्पेक्ट्रोमीटर पर एक उपकरण के रूप में सम्मलित किया गया था जिसे मंगल के वातावरण का पता लगाने के लिए भेजा गया था। अभी जल्दी में वितरित प्रतिक्रिया आईसीएल 40 डिग्री सेल्सियस पर संचालित होने पर 3.79 माइक्रोन पर एकल वर्णक्रमीय मोड में 27 मेगावाट तक और 80 डिग्री सेल्सियस पर संचालन के लिए 1 मेगावाट तक उत्सर्जित होता है।<ref>{{cite journal |last=Kim |first=C.S. |author2=M. Kim |author3=J. Abell |author4=W.W. Bewley |author5=C.D. Merritt |author6=C.L. Canedy |author7=I.Vurgaftman |author8=J.R. Meyer |year=2012 |title= Mid-IR Distributed-Feedback Interband Cascade Lasers with Continuous-Wave Single-Mode Emission to 80 °C.|journal=Applied Physics Letters |volume=101 |issue=6 |pages=061104|doi=10.1063/1.4744445 |bibcode = 2012ApPhL.101f1104K }}</ref> | |||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} | ||
Line 50: | Line 48: | ||
== बाहरी कड़ियाँ == | == बाहरी कड़ियाँ == | ||
* [http://microdevices.jpl.nasa.gov/news/news-tunable-laser-spectrometer.php Jet Propulsion Lab webpage on Tunable Laser Spectrometer for Mars Science Mission] | * [http://microdevices.jpl.nasa.gov/news/news-tunable-laser-spectrometer.php Jet Propulsion Lab webpage on Tunable Laser Spectrometer for Mars Science Mission] | ||
== यह भी देखें == | == यह भी देखें == | ||
*लेजर | *लेजर | ||
* | *लेज़र डायोड | ||
* | *क्वांटम कैस्केड लेजर | ||
* | *ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी | ||
{{Semiconductor laser}} | {{Semiconductor laser}} | ||
{{DEFAULTSORT:Interband Cascade Laser}} | {{DEFAULTSORT:Interband Cascade Laser}} | ||
[[Category: | [[Category:Collapse templates|Interband Cascade Laser]] | ||
[[Category:Created On 01/02/2023]] | [[Category:Created On 01/02/2023|Interband Cascade Laser]] | ||
[[Category:Machine Translated Page|Interband Cascade Laser]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Interband Cascade Laser]] | |||
[[Category:Pages with script errors|Interband Cascade Laser]] | |||
[[Category:Sidebars with styles needing conversion|Interband Cascade Laser]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats|Interband Cascade Laser]] | |||
[[Category:Templates that are not mobile friendly|Interband Cascade Laser]] | |||
[[Category:Templates using TemplateData|Interband Cascade Laser]] | |||
[[Category:Wikipedia metatemplates|Interband Cascade Laser]] |
Latest revision as of 13:10, 20 October 2023
इंटरबैंड कैस्केड लेजर (आईसीएलएस) एक प्रकार का लेज़र डायोड है जो विद्युत चुम्बकीय स्पेक्ट्रम के मध्य-अवरक्त क्षेत्र के एक बड़े भाग पर सुसंगत विकिरण का उत्पादन कर सकता है। वे एपिटैक्स के रूप में रूप से विकसित अर्धचालक हेट्रोस्ट्रक्चर से निर्मित होते हैं, जो इमारत (आई एन ए एस), गैलियम एंटिमोनाइड (जीएएसबी), एल्यूमीनियम एंटिमोनाइड (एएलएसबी), और संबंधित मिश्र धातुओं की परतों से बने होते हैं। ये लेजर कई तरीकों से क्वांटम कैस्केड लेजर (क्यूसीएल) के समान हैं। क्यूसीएलएस की तरह, क्यूसीएल एक अनुकूलित लेजर डिज़ाइन प्राप्त करने के लिए बैंडस्ट्रक्चर इंजीनियरिंग की अवधारणा को नियोजित करते हैं और कई फोटॉन का उत्सर्जन करने के लिए इंजेक्ट किए गए इलेक्ट्रॉनों का पुन: उपयोग करते हैं। चूंकि, आईसीएल में, फोटॉन क्यूसीएल में उपयोग किए जाने वाले इंटरसबबैंड संक्रमणों के अतिरिक्त इंटरबैंड संक्रमण के साथ उत्पन्न होते हैं। परिणाम स्वरुप, जिस दर पर वाहक ऊपरी लेजर सबबैंड में इंजेक्ट किए गए थे, वे निचले सबबैंड के लिए थर्मल रूप से आराम करते हैं, इंटरबैंड बरमा, विकिरण, और शॉक्ले-रीड कैरियर वाहक पीढ़ी और पुनर्संयोजन द्वारा निर्धारित किया जाता है। ये प्रक्रियाएं सामान्यतः पर अनुदैर्ध्य ऑप्टिकल फोनन इंटरैक्शन की तुलना में बहुत धीमी समय के पैमाने पर होती हैं जो मध्य-आईआर क्यूसीएल में इंजेक्ट किए गए इलेक्ट्रॉनों के इंटरसबबैंड विश्राम की मध्यस्थता करती हैं। इंटरबैंड संक्रमणों का उपयोग आईसीएल में लेजर कार्रवाई को कम विद्युत इनपुट शक्तियों पर प्राप्त करने की अनुमति देता है, जो क्यूसीएल के साथ संभव है।
एक आईसीएल की मूल अवधारणा 1994 में रुई क्यू . यांग द्वारा प्रस्तावित की गई थी।[1] उनके पास महत्वपूर्ण अंतर्दृष्टि यह थी कि गुंजयमान-टनलिंग डायोड में उपयोग किए जाने वाले टाइप- II हेटरोस्ट्रक्चर का समावेश कैस्केड लेज़रों की संभावना को सुविधाजनक बनाएगा जो फोटॉन पीढ़ी के लिए इंटरबैंड संक्रमण का उपयोग करते हैं। प्रौद्योगिकी के डिजाइन और विकास में और सुधार यांग और उनके सहयोगियों द्वारा कई संस्थानों में, साथ ही साथ नौसेना अनुसंधान प्रयोगशाला और अन्य संस्थानों में समूहों द्वारा किया गया था। कमरे के तापमान पर निरंतर लहर ( CW) मोड में आईसीएलएस लेसिंग को पहली बार 2008 में प्रदर्शित किया गया था। इस लेजर में 3.75 माइक्रोन का उत्सर्जन तरंग दैर्ध्य था।[2] इसके बाद, कमरे के तापमान पर आईसीएल के CW ऑपरेशन को उत्सर्जन तरंग दैर्ध्य के साथ 2.9 माइक्रोन से 5.7 माइक्रोन तक का प्रदर्शन किया गया है।[3] कूलर तापमान पर आईसीएल को 2.7 माइक्रोन से 11.2 माइक्रोन के बीच उत्सर्जन तरंग दैर्ध्य के साथ प्रदर्शित किया गया है।[4] परिवेश के तापमान पर CW मोड में काम करने वाले आईसीएल मध्य-आईआर सेमीकंडक्टर लेजर प्रौद्योगिकियों की प्रतिस्पर्धा की तुलना में बहुत कम इनपुट शक्तियों पर लेसिंग प्राप्त करने में सक्षम हैं।[5]
ऑपरेशन का सिद्धांत
एक मानक क्वांटम अच्छी तरह से लेजर में, फोटॉन उत्पन्न करने के लिए उपयोग किए जाने वाले सक्रिय क्वांटम कुओं को समानांतर में जोड़ा जाता है।परिणाम स्वरुप, एक बड़े विद्युत प्रवाह को इलेक्ट्रॉनों के साथ प्रत्येक सक्रिय अच्छी तरह से फिर से भरने के लिए आवश्यक है क्योंकि यह प्रकाश का उत्सर्जन करता है। एक कैस्केड लेजर में, कुओं को श्रृंखला में जुड़ा हुआ है, जिसका अर्थ है कि वोल्टेज अधिक है किन्तु वर्तमान कम है। यह ट्रेडऑफ़ फायदेमंद है क्योंकि इनपुट पावर डिवाइस की श्रृंखला प्रतिरोध, आर द्वारा विघटित हैs, मैं के बराबर है2 rs, जहां मैं डिवाइस के माध्यम से बहने वाला विद्युत प्रवाह है। इस प्रकार, एक कैस्केड लेजर में कम करंट डिवाइस की श्रृंखला प्रतिरोध से कम बिजली की हानि का परिणाम है। चूंकि, अधिक चरणों वाले उपकरणों में खराब थर्मल प्रदर्शन होता है, क्योंकि ताप सिंक से अधिक गर्मी के स्थानों में अधिक गर्मी उत्पन्न होती है। चरणों की इष्टतम संख्या तरंग दैर्ध्य, उपयोग की जाने वाली सामग्री और कई अन्य कारकों पर निर्भर करती है। इस संख्या का अनुकूलन सिमुलेशन द्वारा निर्देशित है, किन्तु अंततः प्रयोगात्मक लेजर प्रदर्शन का अध्ययन करके अनुभवजन्य रूप से निर्धारित किया गया है।
आईसीएल को आणविक बीम एपिटैक्सी (एमबीई) का उपयोग करके उगाए गए अर्धचालक हेटरोस्ट्रक्चर से गढ़ा जाता है। संरचना में उपयोग की जाने वाली सामग्री आई एन ए एस, जीएएसबी, एएलएसबी और संबंधित मिश्र धातु हैं।ये तीन बाइनरी सामग्री 6.1 Å के करीब जाली मापदंडों के साथ बहुत निकटता से मिलान होती है।इस प्रकार, इन सामग्रियों को एक महत्वपूर्ण मात्रा में विरूपण (यांत्रिकी) की एक महत्वपूर्ण मात्रा प्रस्तुत किए बिना एक ही हेट्रोस्ट्रक्चर में एक साथ सम्मलित किया जा सकता है आईएमबीई विकास सामान्यतः एक जीएएसबी या आई एन ए एस सब्सट्रेट पर किया जाता है।
संपूर्ण एपिटैक्सियल संरचना में कई कैस्केड चरण होते हैं जो दो अलग -अलग कारावास परतों (एससीएल) के बीच सैंडविच होते हैं, अन्य सामग्रियों के साथ जो ऑप्टिकल चंचल (फाइबर ऑप्टिक्स) प्रदान करने के लिए एससीएलएस को घेरते हैं।प्रकाश का उत्पादन करने के अतिरिक्त, स्तरित एपिटैक्सियल संरचना को एक ऑप्टिकल वेवगाइड के रूप में भी कार्य करना चाहिए जिससे कैस्केड चरण निर्देशित ऑप्टिकल मोड को बढ़ाएं।
कैस्केड स्टेज डिज़ाइन
एक विशिष्ट इंटरबैंड कैस्केड लेजर में एक ही चरण का अधिकार। कैस्केड चरण को एक सक्रिय लेजर माध्यम, इलेक्ट्रॉन इंजेक्टर और होल इंजेक्टर में विभाजित किया गया है। क्वांटम कुओं के समूह जो प्रत्येक क्षेत्र का गठन करते हैं, उन्हें इंगित किया जाता है। सबबैंड एक्सट्रैमा ऊर्जा और इसी वर्ग की तरंगों को उन सबबैंड्स के लिए प्लॉट किया जाता है जो डिवाइस ट्रांसपोर्ट और लेजर एक्शन के लिए सबसे अधिक प्रासंगिक हैं। प्रत्येक कैस्केड चरण में, पतली आईएनएएस परतें इलेक्ट्रॉन होल के लिए इलेक्ट्रॉनों और बाधाओं के लिए सीमित क्वांटम अच्छी तरह से (क्यू डब्ल्यू) परतों के रूप में कार्य करती हैं।जीएएसबी (या जीएआईएनएसबी) परतें इलेक्ट्रॉनों के लिए छेद और बाधाओं के लिए क्यूडब्ल्यूएस के रूप में कार्य करती हैं, चूँकि एएलएसबी परतें इलेक्ट्रॉनों और छेद दोनों के लिए बाधाओं के रूप में काम करती हैं।एक इंटरबैंड डायोड के भीतर कैस्केडिंग की प्राप्ति को सक्षम करने वाली प्रमुख विशेषता तथाकथित टाइप- II, या टूटी-फूटी-अंतराल, आई एन ए एस और जीएएसबी के बीच बैंड संरेखण है।जबकि टाइप- I क्यूडब्ल्यूएस के अधिक सामान्य वर्ग में दोनों इलेक्ट्रॉनों और छेद एक ही सामग्री परत के भीतर सीमित हैं, आई एन ए एस-जीएएसबी प्रणाली टाइप- II है क्योंकि आईएनए का चालन बैंड न्यूनतम आई एन ए एस संयोजी बंध अधिकतम की तुलना में कम ऊर्जा पर स्थित है। गैसब की।यह कम आम व्यवस्था सरल लोचदार बिखरने के माध्यम से अगले चरण के चालन बैंड में आईसीएल के एक चरण के वैलेंस बैंड से इलेक्ट्रॉनों को फिर से इंजेक्ट करना आसान बनाती है।
प्रत्येक कैस्केड चरण प्रभावी रूप से एक व्यक्तिगत फोटॉन जनरेटर के रूप में कार्य करता है। एक एकल चरण एक इलेक्ट्रॉन इंजेक्टर, एक छेद इंजेक्टर, और एक सक्रिय लाभ क्षेत्र से बना होता है जिसमें एक छेद क्यूडब्ल्यू और एक या दो इलेक्ट्रॉन क्यूडब्ल्यूएस होते हैं।[6] जब डिवाइस पक्षपाती होता है, तो अतिरिक्त इलेक्ट्रॉनों और छेद उत्पन्न होते हैं और सक्रिय लेजर माध्यम में प्रवाहित होते हैं, जहां वे पुन: संयोजन करते हैं और प्रकाश का उत्सर्जन करते हैं। इलेक्ट्रॉन और होल इंजेक्टरों के बीच की सीमा बनाने वाले सेमीमेटालिक इंटरफ़ेस में ऑप्टिकल हानि को कम करने के लिए, एएलएसबी की एक परत को इनस और गैसब परतों के बीच उत्पन्न फोटॉनों के इंटरबैंड पुनर्संयोजन को रोकने के लिए रखा जाता है।
एक विशिष्ट सक्रिय क्षेत्र तथाकथित डब्ल्यू क्वांटम वेल कॉन्फ़िगरेशन को नियोजित करता है। इस डिज़ाइन में, जीएआईएनएसबी होल क्यू डब्ल्यू को दो आई एन ए एस इलेक्ट्रॉन क्यू डब्ल्यूएस के बीच सैंडविच किया जाता है, जो दो एएलएसबी बैरियर परतों से घिरे होते हैं।यह व्यवस्था इलेक्ट्रॉन और होल वेवफंक्शन के बीच स्थानिक ओवरलैप को बढ़ाकर ऑप्टिकल लाभ को अधिकतम करती है जो नाममात्र की परतों में नाममात्र को अलग करती हैं। ग्राउंड स्टेट इलेक्ट्रॉन और होल एनर्जी लेवल के बीच बनाए गए बैंडगैप द्वारा निर्धारित लासिंग वेवलेंथ, केवल आई एन ए एस इलेक्ट्रॉन क्यू डब्ल्यू मोटाई को बदलकर विविध हो सकता है (जबकि यह छेद क्यू डब्ल्यू मोटाई के लिए बहुत कम संवेदनशील है)।
दो इंजेक्टर क्षेत्र प्रत्येक को अपने नाम वाहक (इलेक्ट्रॉनों या छेद) को सेमीमेटालिक इंटरफ़ेस से सक्रिय क्षेत्र में कुशलतापूर्वक स्थानांतरित करने के लिए डिज़ाइन किए गए हैं। अंतर-चरण रिसाव धाराओं को रोकने के लिए वाहक के विपरीत प्रकार के लिए बाधाओं को सुधारने के रूप में उन्हें भी दोगुना होना चाहिए। कुल इंजेक्टर (इलेक्ट्रॉन इंजेक्टर प्लस होल इंजेक्टर) भी पर्याप्त रूप से मोटी होनी चाहिए जिससे पूर्वाग्रह के अनुसार बिजली के क्षेत्रों को रोकने के लिए पर्याप्त रूप से मोटा होना चाहिए जिससे सामग्री के ढांकता हुआ टूटने को प्रेरित किया जा सके। इलेक्ट्रॉन इंजेक्टर सामान्यतः छेद की तुलना में इलेक्ट्रॉनों के अपेक्षाकृत तेजी से अंतर-अच्छी तरह से बिखरने की दर के कारण लंबे समय तक बनाया जाता है। यह कुल इंजेक्टर परिवहन से एक छोटी श्रृंखला प्रतिरोध योगदान सुनिश्चित करता है। होल इंजेक्टर जीएएसबी/एएलएसबी क्वांटम कुओं से बना है।यह केवल मोटी (सामान्यतः सिर्फ एक या दो कुओं के साथ) को पर्याप्त रूप से बनाया जाता है जिससे सक्रिय क्षेत्र से अगले चरण के इलेक्ट्रॉन इंजेक्टर तक इलेक्ट्रॉन क्वांटम टनलिंग के प्रभावी दमन को सुनिश्चित किया जा सके। इलेक्ट्रॉन इंजेक्टर में सामान्यतः आई एन ए एस/एएलएसबी क्वांटम कुओं की एक लंबी श्रृंखला होती है। आई एन ए एस एस/एएलएसबी सुपरलैटिस मिनीबैंड की चौड़ाई को अधिकतम करने के लिए, आई एन ए एस परत की मोटाई इंजेक्टर के पार भिन्न होती है जिससे डिवाइस के पक्षपाती होने पर उनकी जमीन राज्य ऊर्जा लगभग संरेखित हो जाए। इंजेक्टर में क्वांटम अच्छी तरह से ऊर्जा अंतराल सक्रिय क्वांटम कुओं द्वारा उत्पन्न फोटॉनों के पुनर्संयोजन को रोकने के लिए पर्याप्त बड़ा होना चाहिए।
एक अतिरिक्त विशेषता जो अन्य सभी लेजर डायोड से आईसीएल को अलग करती है, पी-एन जंक्शन के बिना विद्युत-पंप किए गए ऑपरेशन के लिए इसका प्रावधान है। यह संभव है क्योंकि इंजेक्टर बाधाओं को सुधारने के रूप में कार्य करते हैं जो वर्तमान को एक ही दिशा में प्रवाहित करते हैं।फिर भी, यह डोपिंग (अर्धचालक) के लिए प्रत्येक कैस्केड चरण में कुछ परतों के लिए सक्रिय इलेक्ट्रॉन और छेद घनत्व को नियंत्रित करने के साधन के रूप में अत्यधिक फायदेमंद है, एक डिजाइन तकनीक के माध्यम से वाहक रिबालेंसिंग नामक।[5] जबकि इलेक्ट्रॉन और छेद आबादी का सबसे अनुकूल संयोजन विभिन्न मुक्त वाहक अवशोषण और बरमा पुनर्संयोजन प्रक्रियाओं की सापेक्ष ताकत पर निर्भर करता है, इस प्रकार किए गए अध्ययन इस प्रकार संकेत देते हैं कि आईसीएल प्रदर्शन इष्टतम है जब सीमा पर दो सांद्रता लगभग बराबर होती है।[5] चूंकि छेद की आबादी पूर्ववत या मध्यम-डोप किए गए आईसीएल में इलेक्ट्रॉन की आबादी से अधिक अधिक है, इसलिए वाहक रीबैलेंसिंग को इलेक्ट्रॉन इंजेक्टर (सामान्यतः, सिलिकॉन के साथ) को भारी एन-डोपिंग द्वारा प्राप्त किया जाता है जिससे सक्रिय क्यू डब्ल्यूएस में इलेक्ट्रॉनों को जोड़ दिया जा सके।
ऑप्टिकल वेवगाइड
लेज़िंग थ्रेशोल्ड तक पहुंचने के लिए आवश्यक एक दिए गए वेवगाइड के भीतर लाभ समीकरण द्वारा दिया गया है:
जहां αwg वेवगाइड हानि है, αmirr दर्पण हानि है, और γ ऑप्टिकल कारावास कारक है। दर्पण का हानि ऑप्टिकल गुंजयमानों के दर्पण के माध्यम से फोटॉनों से बचने के कारण होता है। वेवगाइड हानि सक्रिय, अलग -अलग कारावास, ऑप्टिकल क्लैडिंग सामग्री, और धातु संपर्कों (यदि क्लैडिंग पर्याप्त मोटी नहीं हैं) में अवशोषण के कारण हो सकते हैं, या रिज साइडवॉल पर बिखरने के परिणामस्वरूप।कारावास का कारक यह है कि कैस्केड चरणों में केंद्रित ऑप्टिकल ऊर्जा का प्रतिशत।अन्य अर्धचालक लेजर के साथ, आईसीएल में वेवगाइड और γ में ऑप्टिकल हानि के बीच एक व्यापार होता है। वेवगाइड डिजाइन का समग्र लक्ष्य उचित संरचना को खोजना है जो दहलीज लाभ को कम करता है।
वेवगाइड सामग्री का विकल्प उपयोग किए गए सब्सट्रेट पर निर्भर करता है।जीएएसबी पर उगाए जाने वाले आईसीएल के लिए, अलग-अलग कारावास की परतें सामान्यतः कम-डोप किए गए जीएएसबी होती हैं, जबकि ऑप्टिकल क्लैडिंग परतें आई एन ए एस/एएलएसबी सुपरलैटिस लेटिस-मैच किए गए हैं जो जीएएसबी सब्सट्रेट को मिलाती हैं।सब्सट्रेट में निर्देशित मोड के रिसाव को रोकने के लिए निचला क्लैडिंग अधिक मोटी होनी चाहिए, क्योंकि जीएएसबी का अपवर्तक सूचकांक (लगभग 3.8) लेसिंग मोड (सामान्यतः 3.4-3.6) के प्रभावी सूचकांक से बड़ा है।
एक वैकल्पिक वेवगाइड कॉन्फ़िगरेशन जो आई एन ए एस सब्सट्रेट पर वृद्धि के लिए उपयुक्त है, ऑप्टिकल क्लैडिंग के लिए अत्यधिक एन-डॉप्ड आई एन ए एस का उपयोग करता है।[7] इस परत में उच्च इलेक्ट्रॉन घनत्व ड्रूड मॉडल के अनुसार अपवर्तक सूचकांक को कम करता है। इस दृष्टिकोण में, एपिटैक्सियल संरचना एक एन-प्रकार आई एन ए एस सब्सट्रेट पर उगाई जाती है और यह अलग-अलग कारावास परतों के लिए आई एन ए एस का उपयोग भी करता है। लंबी-तरंग दैर्ध्य संचालन के लिए, फायदे में एक छोटी अवधि आई एन ए एस/ एएलएसबी सुपरलैटिस की तुलना में बल्क आई एन ए एस की बहुत अधिक तापीय चालकता सम्मलित है, साथ ही सक्रिय क्षेत्र के साथ इसके बड़े सूचकांक के कारण एक बहुत पतली क्लैडिंग परत भी सम्मलित है। यह एमबीई विकास समय को छोटा करता है, और थर्मल अपव्यय में भी सुधार करता है। चूंकि, भारी-भरकम-डोप की गई परतों में अत्यधिक मुक्त वाहक अवशोषण हानि से बचने के लिए वेवगाइड को सावधानी से डिज़ाइन किया जाना चाहिए।
आईसीएल प्रदर्शन की वर्तमान स्थिति
3.7 पर उत्सर्जित करने वाले आईसीएल; यूएम ने CW मोड में 118° C के अधिकतम तापमान तक संचालित किया है।[8][9] लगभग 0.5 डब्ल्यू की अधिकतम CW आउटपुट पावर को कमरे के तापमान पर प्रदर्शित किया गया है, जिसमें 200-300 एक विवर्तन सीमा में mw। लगभग-डिफ्रेक्शन-सीमित बीम।लगभग 15% की अधिकतम कमरे-तापमान CW दीवार-प्लग दक्षता भी प्राप्त की गई है।जबकि क्यूसीएल को सामान्यतः कमरे के तापमान पर संचालित करने के लिए लगभग 1 डब्ल्यू और उच्चतर के इनपुट विद्युत शक्तियों की आवश्यकता होती है, आईसीएल 29 और एनबीएसपी के रूप में कम इनपुट शक्तियों के लिए लेस करने में सक्षम होते हैं; बहुत लंबे समय तक इंटरबैंड वाहक जीवनकाल के कारण।[5]कम विघटित शक्तियों के साथ कमरे-तापमान CW ऑपरेशन को लगभग 3.0 um और 5.6 um के बीच तरंग दैर्ध्य के लिए प्राप्त किया जा सकता है।[3]
दाईं ओर का आंकड़ा CW मोड में काम करने वाले कमरे के तापमान पर संकीर्ण रिज-वेवगाइड इंटरबैंड कैस्केड लेजर की प्रदर्शन विशेषताओं को दर्शाता है।[8] विशेष रूप से, यह आंकड़ा एक दिए गए इंजेक्शन करंट के लिए विभिन्न रिज चौड़ाई के साथ लेज़रों द्वारा उत्सर्जित शक्ति की मात्रा के भूखंडों को दर्शाता है। इनमें से प्रत्येक लेजर में पांच कैस्केड चरण और गुहा की लंबाई 4 & ; मिमी थी।इन लेज़रों को इसलिए लगाया गया था जिससे एपिटैक्सियल संरचना के शीर्ष (सब्सट्रेट के अतिरिक्त) इष्टतम गर्मी के डिसिपेशन को प्राप्त करने के लिए ताँबा हीट सिंक (सामान्यतः एपिटैक्सियल साइड डाउन कॉन्फ़िगरेशन के रूप में संदर्भित) के संपर्क में थे।इसके अतिरिक्त, वे नालीदार फुटपाथों के साथ गढ़े गए थे।कम फोटॉनों को उच्च-ऑर्डर ऑप्टिकल मोड में उत्पन्न करने के लिए साइडवॉल गलियारा ऑप्टिकल हानि को कम करता है जो ऑप्टिकल बिखरने के हानि के लिए अधिक अतिसंवेदनशील होते हैं।
अनुप्रयोग
स्पेक्ट्रोस्कोपी सेंसिंग अनुप्रयोगों के लिए मध्य-अवरक्त लेजर महत्वपूर्ण उपकरण हैं। प्रदूषण और ग्रीन हाउस गैसों में कई अणुओं में स्पेक्ट्रम के मध्य-अवरक्त क्षेत्र में मजबूत घूर्णी और कंपन प्रतिध्वनि होती है।अधिकांश सेंसिंग अनुप्रयोगों के लिए, लेजर तरंग दैर्ध्य भी सिग्नल क्षीणन से बचने के लिए अवरक्त खिड़की में से एक के भीतर होना चाहिए।
इस प्रकार के आवेदन के लिए एक महत्वपूर्ण आवश्यकता यह है कि एकल-मोड उत्सर्जन प्राप्त होता है। आईसीएल के साथ, यह वितरित प्रतिक्रिया लेजर बनाकर किया जा सकता है।[10] मीथेन गैस के उत्तेजना के लिए वितरित-फीडबैक आईसीएल डिज़ाइन किया गया और नासा जेट प्रोपल्शन लेबोरेटरी प्रयोगशाला में विकसित किया गया था और इसमें क्यूरियोसिटी रोवर पर ट्यून करने योग्य लेजर स्पेक्ट्रोमीटर पर एक उपकरण के रूप में सम्मलित किया गया था जिसे मंगल के वातावरण का पता लगाने के लिए भेजा गया था। अभी जल्दी में वितरित प्रतिक्रिया आईसीएल 40 डिग्री सेल्सियस पर संचालित होने पर 3.79 माइक्रोन पर एकल वर्णक्रमीय मोड में 27 मेगावाट तक और 80 डिग्री सेल्सियस पर संचालन के लिए 1 मेगावाट तक उत्सर्जित होता है।[11]
संदर्भ
- ↑ Yang, R. Q. (1995). "Infrared Laser based on Intersubband Transitions in Quantum Wells". Superlattices and Microstructures. 17 (1): 77–83. Bibcode:1995SuMi...17...77Y. doi:10.1006/spmi.1995.1017.
- ↑ Kim, M.; C.L. Canedy; W.W. Bewley; C.S. Kim; J.R. Lindle; J. Abell; I. Vurgaftman; J.R. Meyer (2008). "Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature". Applied Physics Letters. 92 (19): 191110. Bibcode:2008ApPhL..92s1110K. doi:10.1063/1.2930685.
- ↑ 3.0 3.1 Bewley, W.W.; C.L. Canedy; C.S. Kim; M. Kim; C.D. Merritt; J. Abell; I. Vurgaftman; J.R. Meyer (2012). "Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm". Optics Express. 20 (3): 3235–3240. Bibcode:2012OExpr..20.3235B. doi:10.1364/OE.20.003235. PMID 22330561.
- ↑ Li, L.; H. Ye; Y. Jiang; R.Q. Yang; J. C. Keay; T.D. Mishima; M.B. Santos; M.B. Johnson (2015). "MBE-grown long-wavelength interband cascade lasers on InAs substrates". J. Cryst. Growth. 426: 369–372. Bibcode:2015JCrGr.425..369L. doi:10.1016/j.jcrysgro.2015.02.016.
- ↑ 5.0 5.1 5.2 5.3 Vurgaftman, I.; W.W. Bewley; C.L. Canedy; C.S. Kim; M. Kim; C.D. Merritt; J. Abell; J.R. Lindle; J.R. Meyer (2011). "Rebalancing of internally generated carriers for mid-infrared cascade lasers with very low power consumption". Nature Communications. 2: 585. Bibcode:2011NatCo...2..585V. doi:10.1038/ncomms1595. PMID 22158440.
- ↑ Vurgaftman, I.; W.W. Bewley; C.L. Canedy; C.S. Kim; M. Kim; J.R. Lindle; C.D. Merritt; J. Abell; J.R. Meyer (2011). "Mid-IR Type-II Interband Cascade Lasers". IEEE Journal of Selected Topics in Quantum Electronics. 17 (5): 1435–1444. Bibcode:2011IJSTQ..17.1435V. doi:10.1109/JSTQE.2011.2114331. S2CID 12632562.
- ↑ Tian, Z.; R.Q. Yang; T.D. Mishima; M.B. Santos; R.T. Hinkey; M.E. Curtis; M.B. Johnson (2008). "InAs-based interband cascade lasers near 6 μm". Electronics Letters. 45: 48–49. doi:10.1049/el:20092779.
- ↑ 8.0 8.1 Bewley, W.W.; C.L. Canedy; C.S. Kim; M. Kim; C.D. Merritt; J. Abell; I. Vurgaftman; J.R. Meyer (2012). "High-power room-temperature continuous-wave mid-infrared interband cascade lasers". Optics Express. 20 (19): 20894–20901. Bibcode:2012OExpr..2020894B. doi:10.1364/OE.20.020894. PMID 23037213.
- ↑ Vurgaftman, I.; R. Weih; M. Kamp; J.R. Meyer; C.L. Canedy; M. Kim; W.W. Bewley; C.D. Merritt; J. Abell; S. Hoefling (2015). "Topical Review - Interband cascade lasers". Journal of Physics D: Applied Physics. 48 (12): 123001–123017. Bibcode:2015JPhD...48l3001V. doi:10.1088/0022-3727/48/12/123001. S2CID 221719163.
- ↑ Yang, R.Q.; C.J..Hill; K. Mansour; Y. Qiu; A. Soibel; R.E. Muller; P.M. Echternach (2007). "Distributed Feedback Mid-IR Interband Cascade Lasers at Thermoelectric Cooler Temperatures". IEEE Journal of Selected Topics in Quantum Electronics. 13 (5): 1074–1078. Bibcode:2007IJSTQ..13.1074Y. doi:10.1109/JSTQE.2007.903014. S2CID 31177718.
- ↑ Kim, C.S.; M. Kim; J. Abell; W.W. Bewley; C.D. Merritt; C.L. Canedy; I.Vurgaftman; J.R. Meyer (2012). "Mid-IR Distributed-Feedback Interband Cascade Lasers with Continuous-Wave Single-Mode Emission to 80 °C". Applied Physics Letters. 101 (6): 061104. Bibcode:2012ApPhL.101f1104K. doi:10.1063/1.4744445.
बाहरी कड़ियाँ
यह भी देखें
- लेजर
- लेज़र डायोड
- क्वांटम कैस्केड लेजर
- ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी