सांख्यिकीय प्रक्रिया नियंत्रण: Difference between revisions
(Created page with "{{Short description|Method of quality control}} {{redirect|SQc|other uses|SQC (disambiguation)}} {{More citations needed section|date=March 2022}} सांख्यिकी...") |
No edit summary |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Method of quality control}} | {{Short description|Method of quality control}}'''सांख्यिकीय प्रक्रिया नियंत्रण''' (एसपीसी) या सांख्यिकीय गुणवत्ता नियंत्रण (एसक्यूसी) उत्पादन प्रक्रिया की गुणवत्ता की निगरानी और नियंत्रण करने के लिए आँकड़ों का अनुप्रयोग है। इससे सुनिश्चित होता है कि प्रक्रिया कारगर रूप से काम करती है, कम वेस्ट स्क्रैप के साथ अधिक विनिर्माण-अनुरूप उत्पादों का निर्माण करती है। एसपीसी को उस प्रक्रिया पर लागू किया जा सकता है जिसमें "अनुरूप उत्पाद" (विनिर्माण के मानकों को पूरा करने वाला उत्पाद) का उत्पादन मापा जा सकता है। एसपीसी में उपयोग की जाने वाली मुख्य उपकरणों में [[रन चार्ट]], [[नियंत्रण चार्ट]], निरंतर सुधार पर फोकस और प्रयोग का डिजाइन सम्मलित है। एसपीसी का एक उदाहरण उत्पादन लाइन हैं। | ||
एसपीसी को दो चरणों में अभ्यास किया जाना चाहिए: पहले चरण में प्रक्रिया के प्रारंभिक स्थापना को सम्मलित किया जाना चाहिए, और दूसरे चरण में प्रक्रिया के नियमित उत्पादन का उपयोग किया जाना चाहिए। दूसरे चरण में, 5M&E शर्तों (मनुष्य, मशीन, सामग्री, विधि, गति, वातावरण) और विनिर्माण प्रक्रिया में उपयोग किए जाने वाले भागों (मशीन भागों, जिग्स और फिक्सचर) के ध्वनि दर के बदलाव के आधार पर जांच की अवधि का फैसला लिया जाना चाहिए। | |||
एसपीसी का | अन्य गुणवत्ता नियंत्रण विधियों जैसे [[निरीक्षण|"निरीक्षण"]], के मुक़ाबले एसपीसी का एक फायदा यह है कि यह समस्याओं की शुरुआती खोज और रोकथाम पर जोर देता है, बल्कि समस्याओं को सुधारने के बाद कोरेक्शन पर जोर नहीं देता है। | ||
वेस्ट को कम करने के अतिरिक्त, एसपीसी उत्पाद को उत्पन्न करने के लिए आवश्यक समय को कम करने में भी सहायता कर सकता है। एसपीसी उस खत्मी उत्पाद को फिर से काम में लाने या फिर से बनाने की आवश्यकता को कम कर सकता है। | |||
== इतिहास == | == इतिहास == | ||
आरंभिक दशक में वाल्टर ए. शेवहार्ट ने [[बेल प्रयोगशालाओं]] में सांख्यिकीय प्रक्रिया नियंत्रण का आधार रखा था। शेवहार्ट ने 1924 में नियंत्रण चार्ट और सांख्यिक नियंत्रण की स्थिति की अवधारणा विकसित की थी। सांख्यिक नियंत्रण विनिमययोग्यता की अवधारणा के समकक्ष होता है<ref>Barlow & Irony (1992)</ref><ref>Bergman (2009)</ref>जिसे तर्कशास्त्री [[विलियम अर्नेस्ट जॉनसन]] ने भी 1924 में अपनी पुस्तक लॉजिक, भाग III: विज्ञान के तार्किक आधारों में विकसित किया था।<ref>Zabell (1992)</ref> एटी एंड टी में एक टीम के साथ जिसमें हेरोल्ड एफ. डॉज और हैरी रोमिग सम्मलित थे, उन्होंने तर्कसंगत सांख्यिकीय आधार पर [[नमूनाकरण (सांख्यिकी)]] निरीक्षण करने के लिए भी काम किया। शेवार्ट ने कर्नल लेस्ली ई. साइमन के साथ 1934 में सेना के [[ पिकाटिनी शस्त्रागार ]] में युद्ध सामग्री के निर्माण के लिए नियंत्रण चार्ट के अनुप्रयोग में परामर्श किया। यह सफल आवेदन आर्मी ऑर्डिनेंस को युद्ध के समय अपने विभागों और ठेकेदारों में सांख्यिकीय गुणवत्ता नियंत्रण के उपयोग पर परामर्श देने के लिए एटीएंडटी के जॉर्ज एडवर्ड्स को लगाने के लिए प्रेरित किया। | |||
डेमिंग ने शेवहार्ट को विभागीय कृषि के स्नातक विद्यालय में भाषण देने के लिए आमंत्रित किया और शेवहार्ट की पुस्तक "स्टैटिस्टिकल मेथड फ्रॉम द व्यूपॉइंट ऑफ क्वालिटी कंट्रोल" (1939) के संपादक भी बने, जो उस भाषण के परिणाम थी। डेमिंग के माध्यम से गुणवत्ता नियंत्रण के लघु पाठ्यक्रमों के महत्वपूर्ण वास्तुकार थे, जो द्वितीय विश्वयुद्ध के समय अमेरिकी उद्योग को नई तकनीकों में प्रशिक्षित किया। इन युद्ध समय के पाठ्यक्रमों के स्नातक इस युद्ध के बाद एक नए व्यावसायिक समाज का गठन करते हुए, 1945 में, अमेरिकी [[गुणवत्ता नियंत्रण के लिए अमेरिकन सोसायटी]],के संपादक भी बने, जो उस भाषण के परिणाम थी। डेमिंग के माध्यम से गुणवत्ता नियंत्रण के लघु पाठ्यक्रमों के महत्वपूर्ण वास्तुकार थे, जो द्वितीय विश्वयुद्ध के समय अमेरिकी उद्योग को नई तकनीकों में प्रशिक्षित किया। इन युद्ध समय के पाठ्यक्रमों के स्नातक इस युद्ध के बाद एक नए व्यावसायिक समाज का गठन करते हुए, 1945 में, अमेरिकी।<ref>Deming, W. Edwards, Lectures on statistical control of quality., Nippon Kagaku Gijutsu Remmei, 1950</ref><ref>Deming, W. Edwards and Dowd S. John (translator) Lecture to Japanese Management, Deming Electronic Network Web Site, 1950 (from a Japanese transcript of a lecture by Deming to "80% of Japanese top management" given at the Hotel de Yama at Mr. Hakone in August 1950)</ref> | |||
=== 'सामान्य' और 'विशेष' भिन्नता के स्रोत === | === 'सामान्य' और 'विशेष' भिन्नता के स्रोत === | ||
{{Main| | {{Main|सामान्य कारण और विशेष कारण (सांख्यिकी)}} | ||
शेवहार्ट ब्रिटेन से नई सांख्यिकी थियोरियों को पढ़ते थे, विशेष रूप से [[विलियम सीली गॉसेट]], [[कार्ल पियर्सन]] और [[रोनाल्ड फिशर]] का काम। चूंकि, उन्होंने समझा कि भौतिक प्रक्रियाओं से आया डेटा सामान्यतः एक [[सामान्य वितरण]] घटक (जैसे गौसीय वितरण या 'घंटी का घुमाव') नहीं प्रस्तुत करता है। उन्होंने खोजा कि विनिर्माण में चलाई गई भिन्नता के माप के डेटा हमेशा नैतिक प्रक्रियाओं की समानता में एक ही विधियां से व्यवहार नहीं करता है (जैसे कि कणों की [[एक प्रकार कि गति]])। शुहार्ट ने निष्कर्ष निकाला कि हर प्रक्रिया में भिन्नता होती है, कुछ प्रक्रियाएं उन्हें प्रक्रिया के प्राकृतिक हिस्सों से संबंधित ("सामान्य" भिन्नता के स्रोत) दिखाती हैं; यह प्रक्रियाएं (सांख्यिक) नियंत्रण में होती हैं। अन्य प्रक्रियाओं में अतिरिक्त भिन्नता भी दिखाई देती है जो प्रक्रिया की कारणशील प्रणाली में सब समय सम्मलित नहीं होती है ("विशेष" भिन्नता के स्रोत), जो शुहार्ट ने नियंत्रण में नहीं होते बताया।<ref>{{cite book |title=Why SPC? |agency=British Deming Association |publisher=SPC Press, Inc. |year=1992}}</ref> | |||
=== गैर-विनिर्माण प्रक्रियाओं के लिए आवेदन === | === गैर-विनिर्माण प्रक्रियाओं के लिए आवेदन === | ||
सांख्यिकीय प्रक्रिया नियंत्रण किसी भी | सांख्यिकीय प्रक्रिया नियंत्रण किसी भी दोहराई वाली प्रक्रिया का समर्थन करने के लिए उपयुक्त होता है, और यह कई स्थानों पर लागू किया गया है जहां उदाहरण के लिए [[आईएसओ 9000]] गुणवत्ता प्रबंधन प्रणालियों का उपयोग किया जाता है, जिसमें वित्तीय महसूल और लेखा परीक्षण, आईटी संचालन, स्वास्थ्य सेवा प्रक्रिया, लोन व्यवस्थापन और प्रशासन, ग्राहक बिलिंग आदि सम्मलित हैं। इसके विकास और डिज़ाइन में इसका उपयोग पर समालोचना होने के अतिरिक्त, यह ऊँची मात्रा के डेटा प्रोसेसिंग ऑपरेशनों के सेमी-ऑटोमेटेड डेटा गवर्नेंस को प्रबंधित करने के लिए अच्छी प्रकार से स्थापित है, उदाहरण के लिए एक एंटरप्राइज डेटा वेयरहाउस या एक एंटरप्राइज डेटा गुणवत्ता प्रबंधन प्रणाली में। <ref>Larry English Improving Data Warehouse and Business Information Quality : Methods for Reducing Costs and Increasing Profits 1999</ref> | ||
1988 में [[क्षमता परिपक्वता मॉडल]] (सीएमएम) में [[सॉफ्टवेयर इंजीनियरिंग संस्थान]] ने सुझाव दिया कि एसपीसी को सॉफ्टवेयर इंजीनियरिंग प्रक्रियाओं पर लागू किया जा सकता है। क्षमता परिपक्वता मॉडल एकीकरण ([[CMMI|सीएमएमआई]]) के स्तर 4 और स्तर 5 अभ्यास इस अवधारणा का उपयोग करते हैं। | |||
एसपीसी का अनुप्रयोग रिसर्च एवं डेवलपमेंट या सिस्टम इंजीनियरिंग जैसी नॉन-रेपेटिटिव, ज्ञान-आधारित प्रक्रियाओं में, संदेह और विवादों का सामना कर रहा है।<ref>Bob Raczynski and [[Dr Bill Curtis|Bill Curtis]] (2008) Software Data Violate SPC's Underlying Assumptions, IEEE Software, May/June 2008, Vol. 25, No. 3, pp. 49-51</ref><ref>Robert V. Binder (1997) Can a Manufacturing Quality Model Work for Software?, IEEE Software, September/October 1997, pp. 101-105</ref><ref>{{Cite web|last=Raczynski|first=Bob|date=February 20, 2009|title=Is Statistical Process Control Applicable to Software Development Processes?|url=https://www.stickyminds.com/article/statistical-process-control-applicable-software-development-processes|website=StickyMinds|language=en}}</ref> | |||
[[फ्रेड ब्रूक्स]] ने नो सिल्वर बुलेट में बताया है कि सॉफ्टवेयर की जटिलता, अनुरूपता की आवश्यकता, बदलावशीलता, और अदृश्यता<ref>{{Cite journal | last1 = Brooks | first1 = F. P., J.| doi = 10.1109/MC.1987.1663532 | title = No Silver Bullet—Essence and Accidents of Software Engineering | journal = Computer | volume = 20 | issue = 4 | pages = 10–19 | year = 1987 | url = http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf| citeseerx = 10.1.1.117.315}}</ref><ref name="Brooks, Proc. IFIP">Fred P. Brooks (1986) No Silver Bullet — Essence and Accident in Software Engineering, Proceedings of the IFIP Tenth World Computing Conference 1986, pp. 1069–1076</ref> ने नो सिल्वर बुलेट में बताया है कि सॉफ्टवेयर की जटिलता, अनुरूपता की आवश्यकता, बदलावशीलता, और अदृश्यता | |||
== निर्माण में भिन्नता == | == निर्माण में भिन्नता == | ||
[[विनिर्देश]] गुणवत्ता निर्धारित विनिर्माण के लिए अनुरूपता के रूप में परिभाषित की जाती है। चूंकि, कोई भी दो उत्पादों या विशेषताओं कभी-कभी एक जैसे नहीं होते हैं, क्योंकि कोई भी प्रक्रिया बहुत से विभिन्न स्रोतों से भिन्नता के साथ सम्पन्न होती है। बड़े पैमाने पर विनिर्माण में, एक लचीली बिन्दु मानव जाँच के के माध्यम से उत्पाद की गुणवत्ता को सुनिश्चित करता है। प्रत्येक वस्तु (या उत्पादन लॉट से कुछ नमूने) अपनी डिजाइन विशेषताओं को कितनी अच्छी प्रकार पूरा करता है, इसके आधार पर स्वीकार या अस्वीकार किया जा सकता है, एसपीसी विनिर्माण प्रक्रिया के प्रदर्शन का अवलोकन करने के लिए आँकड़ेबाजी उपकरणों का उपयोग करता है जिससे वे मानकों से नीचे या ऊपर की स्तर में उत्पादन करने वाले महत्वपूर्ण भिन्नताओं को पहले ही देख सकें। किसी भी प्रक्रिया में किसी भी समय का कोई भी भिन्नता दो वर्गों में से एक में आएगा। | |||
किसी प्रक्रिया में किसी भी समय | ;(1) सामान्य कारण: 'सामान्य' कारणों को कभी-कभी 'गैर-असाइन करने योग्य', या भिन्नता के 'सामान्य' स्रोत के रूप में संदर्भित किया जाता है। इससे किसी भी प्रक्रिया पर लगातार दिखने वाले विभिन्न स्रोतों को आवर्ती रूप से समझा जाता है, जिनमें सामान्यतः कई स्रोत होते हैं। यह प्रकार के कारण समय के साथ एक सांद्रत्यपूर्ण और दोहराने योग्य वितरण का उत्पादन करते हैं। | ||
;(1) सामान्य कारण: 'सामान्य' कारणों को कभी-कभी 'गैर-असाइन करने योग्य', या भिन्नता के 'सामान्य' स्रोत के रूप में संदर्भित किया जाता है। | '''(2) विशेष कारण:''' | ||
(2) विशेष कारण: ' | |||
<nowiki>''</nowiki>विशेष' कारण कभी-कभी 'असाइनेबल' या 'असाधारण' विभिन्नताओं के लिए उत्पादित कारणों के रूप में भी जाना जाता है। यह शब्द एकमात्र उत्पाद प्रकार के कुछ हिस्सों पर असर डालने वाले किसी भी कारक को दर्शाता है। ये अधिकांशतः आकस्मिक और अपूर्व होते हैं। | |||
अधिकतर प्रक्रियाओं में बहुत से परिवर्तन के स्रोत होते हैं; उनमें से अधिकतर छोटे होते हैं और उन्हें नज़रअंदाज़ किया जा सकता है। यदि प्रक्रिया के प्रमुख नियोज्य स्रोतों का पता लगाया जाए, तो उन्हें पहचाना और हटाया जा सकता है। जब वे हटाए जाते हैं, तो प्रक्रिया "स्थिर" कहलाती है। जब प्रक्रिया स्थिर होती है, तो इसका विस्तार एक जाने-माने सेट के सीमित हद तक होना चाहिए। अर्थात, कम से कम, जब दूसरा नियोज्य स्रोत प्रकट होता है, तब तक इसकी परिवर्तन की सीमा निश्चित होती है। | |||
उदाहरण के रूप में, एक नाश्ता सीरियल पैकेजिंग लाइन को इस प्रकार डिज़ाइन किया जाता है कि हर सीरियल बॉक्स में 500 ग्राम सीरियल भरा जाना होता है। कुछ बॉक्सों में 500 ग्राम से थोड़ा अधिक भरा होता है, और कुछ में थोड़ा कम। जब पैकेज का वज़न मापा जाता है, तो डेटा नेट वज़न का एक वितरण दर्शाएगा। | |||
एसपीसी | यदि उत्पादन प्रक्रिया, इसके इनपुट या उसका पर्यावरण (उदाहरण के लिए, लाइन पर मशीन) बदलते हैं, तो डेटा का वितरण बदल जाएगा। उदाहरण के लिए, मशीनरी के कैम और पुली पहनने के साथ-साथ, सीरियल भरने वाली मशीन निर्दिष्ट मात्रा से अधिक सीरियल प्रत्येक बॉक्स में भर सकती है। यदि यह ग्राहक के लिए फायदेमंद हो तो भी, निर्माता के दृष्टिकोण से यह अपव्ययी होता है और उत्पादन की लागत बढ़ाता है। यदि निर्माता समय पर परिवर्तन और उसकी जड़ को पहचानता है, तो परिवर्तन को ठीक किया जा सकता है (उदाहरण के लिए, कैम और पुली बदल दी जा सकती है)। | ||
एसपीसी के दृष्टिकोण से, यदि हर अनाज डिब्बे के वजन में यादृच्छिक रूप से भिन्नता होती है, कुछ उच्च और कुछ कम, हमेशा एक स्वीकार्य सीमा के भीतर, तो प्रक्रिया स्थिर मानी जाती है। यदि मशीनरी के कैम और पुली कमजोर होने लगते हैं, तो अनाज डिब्बे का वजन यादृच्छिक नहीं हो सकता है। कैम और पुली के कमजोर होने से डिब्बे के वजन में एक गैर-रैंडम रूप से बढ़ते हुए लीनियर पैटर्न की उत्पत्ति हो सकती है। हम इसे कॉमन कॉज वेरिएशन कहते हैं। यदि, चूंकि, सभी अनाज डिब्बे अचानक औसत से बहुत अधिक वजन करने लगते हैं क्योंकि कैम और पुली के अप्रत्याशित कमजोरी के कारण, तो यह खास कारण वेरिएशन के रूप में गिना जाएगा। | |||
== आवेदन == | == आवेदन == | ||
एसपीसी के | एसपीसी के लागू होने में तीन मुख्य चरण होते हैं: | ||
# प्रक्रिया और विनिर्देश सीमा को समझना। | # प्रक्रिया और विनिर्देश सीमा को समझना। | ||
# भिन्नता के नियत (विशेष) स्रोतों को समाप्त करना, | # भिन्नता के नियत (विशेष) स्रोतों को समाप्त करना, जिससे प्रक्रिया स्थिर रहे। | ||
# औसत या भिन्नता के महत्वपूर्ण परिवर्तनों का पता लगाने के लिए नियंत्रण चार्ट के उपयोग से सहायता प्राप्त चल रही उत्पादन प्रक्रिया की निगरानी | # औसत या भिन्नता के महत्वपूर्ण परिवर्तनों का पता लगाने के लिए नियंत्रण चार्ट के उपयोग से सहायता प्राप्त चल रही उत्पादन प्रक्रिया की निगरानी करना हैं। | ||
=== [[नियंत्रण चार्ट]] === | === [[नियंत्रण चार्ट]] === | ||
प्रक्रिया मानचित्र पर बिंदुओं पर भिन्नताओं के माप के डेटा का मॉनिटरिंग कंट्रोल चार्ट का उपयोग करके किया जाता है। कंट्रोल चार्ट, "विशेष योग्य" ("विशेष") भिन्नता स्रोतों को "सामान्य" स्रोतों से अलग करने का प्रयास करते हैं। "सामान्य" स्रोतों के कारण, वे प्रक्रिया का एक अपेक्षित भाग होते हैं और "विशेष योग्य" स्रोतों से बहुत कम चिंता का विषय होते हैं। कंट्रोल चार्ट का उपयोग एक निरंतर गतिविधि है, जो समय के साथ निरंतर जारी रहती है। | |||
==== स्थिर प्रक्रिया ==== | ==== स्थिर प्रक्रिया ==== | ||
जब प्रक्रिया | जब प्रक्रिया कोई भी नियंत्रण चार्ट "डिटेक्शन रूल्स" नहीं ट्रिगर करती है, तब उसे "स्थिर" कहा जाता है। एक स्थिर प्रक्रिया पर क्रमशः "निर्माण उत्पाद" उत्पन्न करने की क्षमता का पूर्वानुमान करने के लिए एक [[प्रक्रिया क्षमता]] विश्लेषण किया जा सकता है। | ||
एक स्थिर प्रक्रिया को एक प्रक्रिया हस्ताक्षर | एक स्थिर प्रक्रिया को एक प्रक्रिया हस्ताक्षर के माध्यम से प्रदर्शित किया जा सकता है जो क्षमता सूचकांक के बाहर प्रसरण से मुक्त है। एक प्रक्रिया हस्ताक्षर क्षमता सूचकांक की समानता में प्लॉट किए गए बिंदु हैं। | ||
====अत्यधिक विविधताएं ==== | ====अत्यधिक विविधताएं ==== | ||
जब प्रक्रिया किसी भी नियंत्रण चार्ट | जब प्रक्रिया किसी भी नियंत्रण चार्ट "डिटेक्शन रूल" को ट्रिगर करती है, (या अलग-अलग अवसरों में प्रक्रिया क्षमता कम होती है), तो अतिरिक्त गतिविधियों की जांच की जा सकती है जिससे अतिशय विस्तार के स्रोत का पता लगाया जा सकता है। इन अतिरिक्त गतिविधियों में [[इशिकावा]] आरेख,डिज़ाइन एक्सपेरिमेंट्स और[[ परेटो कार्ड ]] जैसे उपकरण सम्मलित होते हैं। डिज़ाइन एक्सपेरिमेंट्स एक विकल्प होते हैं जो विस्तार के स्रोतों के निश्चित महत्व (शक्ति) को पुनर्प्राप्त का एक विषयमुक्त विधि होता है। एक अतिरिक्त स्रोत को हटाने के लिए कदमों में सम्मलित हो सकते हैं: मानकों के विकास, स्टाफ प्रशिक्षण, त्रुटि-सुधार, और प्रक्रिया या इसके इनपुटों में बदलाव होता है। | ||
इन अतिरिक्त गतिविधियों में | |||
==== प्रक्रिया स्थिरता मेट्रिक्स ==== | ==== प्रक्रिया स्थिरता मेट्रिक्स ==== | ||
नियंत्रण चार्ट के साथ | अधिकतर प्रक्रियाओं को नियंत्रण चार्ट के साथ मॉनिटर करने पर, कुछ समय इसकी स्थिरता के आंकड़े गणना करना उपयोगी होता है। फिर इन मैट्रिक्स का उपयोग करके उन प्रक्रियाओं को पहचाना / प्राथमिकता देना संभव होता है जिन्हें सुधार की आवश्यकता सबसे ज्यादा होती है। इन मैट्रिक्स को एक पारंगत प्रक्रिया की पूरक माना जा सकता है। कई मैट्रिक्स की प्रस्तावना की गई हैं, जैसा कि रामिरेज़ और रनर में वर्णित है।<ref name="Ramarez2006">{{cite journal | ||
| author1 = Ramirez, B. | | author1 = Ramirez, B. | ||
| author2 = Runger, G. | | author2 = Runger, G. | ||
Line 75: | Line 74: | ||
|at= pp. 53–68 | |at= pp. 53–68 | ||
|year=2006 | doi = 10.1080/08982110500403581 | |year=2006 | doi = 10.1080/08982110500403581 | ||
}}</ref> | }}</ref>वे हैं (1) एक स्थिरता अनुपात जो अल्पकालिक परिवर्तनशीलता की लंबी अवधि की परिवर्तनशीलता की समानता करता है, (2) एक एनोवा टेस्ट जो भीतर-उपसमूह भिन्नता की समानता उप-समूह भिन्नता से करता है, और (3) एक अस्थिरता अनुपात जो [[पश्चिमी इलेक्ट्रिक नियम|पश्चिमी इलेक्ट्रिक नियमों]] के एक या अधिक उल्लंघन वाले उपसमूहों की संख्या की समानता उपसमूहों की कुल संख्या से करता है। | ||
वे हैं (1) एक स्थिरता अनुपात जो अल्पकालिक परिवर्तनशीलता की लंबी अवधि की परिवर्तनशीलता की | |||
== नियंत्रण चार्ट का गणित == | == नियंत्रण चार्ट का गणित == | ||
डिजिटल नियंत्रण चार्ट | डिजिटल नियंत्रण चार्ट लॉजिक-आधारित नियम का उपयोग करते हैं जो सुधार की आवश्यकता की संकेत देते हैं "प्राप्त मूल्य" को निर्धारित करने के लिए। उदाहरण के लिए, | ||
: व्युत्पन्न मूल्य = अंतिम मूल्य + अंतिम | : व्युत्पन्न मूल्य = अंतिम मूल्य + अंतिम N संख्याओं के बीच औसत अधिकतम अंतर होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 106: | Line 104: | ||
*Grant, E. L. (1946) [https://catalog.hathitrust.org/Record/003053820?type%5B%5D=all&lookfor%5B%5D=Statistical%20quality%20control%201946&filter%5B%5D=authorStr%3AGrant%2C%20Eugene%20Lodewick%2C%20b.%201897&ft= Statistical quality control] {{ISBN|0071004475}} | *Grant, E. L. (1946) [https://catalog.hathitrust.org/Record/003053820?type%5B%5D=all&lookfor%5B%5D=Statistical%20quality%20control%201946&filter%5B%5D=authorStr%3AGrant%2C%20Eugene%20Lodewick%2C%20b.%201897&ft= Statistical quality control] {{ISBN|0071004475}} | ||
*Oakland, J (2002) ''Statistical Process Control'' {{ISBN|0-7506-5766-9}} | *Oakland, J (2002) ''Statistical Process Control'' {{ISBN|0-7506-5766-9}} | ||
*Salacinski, T (2015) '' | *Salacinski, T (2015) ''एसपीसी - Statistical Process Control''. The Warsaw University of Technology Publishing House. {{ISBN|978-83-7814-319-2}} | ||
*Shewhart, W A (1931) ''Economic Control of Quality of Manufactured Product'' {{ISBN|0-87389-076-0}} | *Shewhart, W A (1931) ''Economic Control of Quality of Manufactured Product'' {{ISBN|0-87389-076-0}} | ||
*— (1939) ''Statistical Method from the Viewpoint of Quality Control'' {{ISBN|0-486-65232-7}} | *— (1939) ''Statistical Method from the Viewpoint of Quality Control'' {{ISBN|0-486-65232-7}} | ||
Line 112: | Line 110: | ||
*Wheeler, D J (2000) ''Normality and the Process-Behaviour Chart'' {{ISBN|0-945320-56-6}} | *Wheeler, D J (2000) ''Normality and the Process-Behaviour Chart'' {{ISBN|0-945320-56-6}} | ||
*Wheeler, D J & Chambers, D S (1992) ''Understanding Statistical Process Control'' {{ISBN|0-945320-13-2}} | *Wheeler, D J & Chambers, D S (1992) ''Understanding Statistical Process Control'' {{ISBN|0-945320-13-2}} | ||
*Wheeler, Donald J. (1999). ''Understanding Variation: The Key to Managing Chaos - 2nd Edition''. | *Wheeler, Donald J. (1999). ''Understanding Variation: The Key to Managing Chaos - 2nd Edition''. एसपीसी Press, Inc. {{ISBN|0-945320-53-1}}. | ||
*Wise, Stephen A. & Fair, Douglas C (1998). ''Innovative Control Charting: Practical | *Wise, Stephen A. & Fair, Douglas C (1998). ''Innovative Control Charting: Practical एसपीसी Solutions for Today's Manufacturing Environment.'' ASQ Quality Press. {{ISBN|0-87389-385-9}} | ||
*{{ cite journal | author=Zabell, S. L. | title=Predicting the unpredictable | year=1992 | journal=Synthese | volume=90 | issue=2 | page=205 | doi=10.1007/bf00485351}} | *{{ cite journal | author=Zabell, S. L. | title=Predicting the unpredictable | year=1992 | journal=Synthese | volume=90 | issue=2 | page=205 | doi=10.1007/bf00485351}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
<!-- Note: Before adding your company's link, please read [[WP:Spam#External link spamming]] and [[WP:बाहरी संबंध#Links normally to be avoided]]. --> | <!-- Note: Before adding your company's link, please read [[WP:Spam#External link spamming]] and [[WP:बाहरी संबंध#Links normally to be avoided]]. --> | ||
*[http://ocw.mit.edu/courses/mechanical-engineering/2-830j-control-of-manufacturing-processes-sma-6303-spring-2008/ MIT Course - Control of Manufacturing Processes] | *[http://ocw.mit.edu/courses/mechanical-engineering/2-830j-control-of-manufacturing-processes-sma-6303-spring-2008/ MIT Course - Control of Manufacturing Processes] | ||
*[http://www.itl.nist.gov/div898/handbook/index2.htm NIST Engineering Statistics Handbook] | *[http://www.itl.nist.gov/div898/handbook/index2.htm NIST Engineering Statistics Handbook] | ||
<!-- ''It might be useful to refer to an [http://en.wikipedia.org/w/index.php?title=Statistical_process_control&oldid=26022080 older version] when expanding the article.'' --> | <!-- ''It might be useful to refer to an [http://en.wikipedia.org/w/index.php?title=Statistical_process_control&oldid=26022080 older version] when expanding the article.'' -->{{DEFAULTSORT:Statistical Process Control}} | ||
{{DEFAULTSORT:Statistical Process Control}} | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Statistical Process Control]] | ||
[[Category:Created On 23/03/2023]] | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Collapse templates|Statistical Process Control]] | |||
[[Category:Commons category link is locally defined|Statistical Process Control]] | |||
[[Category:Created On 23/03/2023|Statistical Process Control]] | |||
[[Category:Lua-based templates|Statistical Process Control]] | |||
[[Category:Machine Translated Page|Statistical Process Control]] | |||
[[Category:Missing redirects|Statistical Process Control]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Statistical Process Control]] | |||
[[Category:Pages with empty portal template|Statistical Process Control]] | |||
[[Category:Pages with script errors|Statistical Process Control]] | |||
[[Category:Portal-inline template with redlinked portals|Statistical Process Control]] | |||
[[Category:Sidebars with styles needing conversion|Statistical Process Control]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Statistical Process Control]] | |||
[[Category:Templates generating microformats|Statistical Process Control]] | |||
[[Category:Templates that add a tracking category|Statistical Process Control]] | |||
[[Category:Templates that are not mobile friendly|Statistical Process Control]] | |||
[[Category:Templates that generate short descriptions|Statistical Process Control]] | |||
[[Category:Templates using TemplateData|Statistical Process Control]] | |||
[[Category:Wikipedia metatemplates|Statistical Process Control]] | |||
[[Category:सांख्यिकीय प्रक्रिया नियंत्रण| सांख्यिकीय प्रक्रिया नियंत्रण ]] |
Latest revision as of 16:28, 20 October 2023
सांख्यिकीय प्रक्रिया नियंत्रण (एसपीसी) या सांख्यिकीय गुणवत्ता नियंत्रण (एसक्यूसी) उत्पादन प्रक्रिया की गुणवत्ता की निगरानी और नियंत्रण करने के लिए आँकड़ों का अनुप्रयोग है। इससे सुनिश्चित होता है कि प्रक्रिया कारगर रूप से काम करती है, कम वेस्ट स्क्रैप के साथ अधिक विनिर्माण-अनुरूप उत्पादों का निर्माण करती है। एसपीसी को उस प्रक्रिया पर लागू किया जा सकता है जिसमें "अनुरूप उत्पाद" (विनिर्माण के मानकों को पूरा करने वाला उत्पाद) का उत्पादन मापा जा सकता है। एसपीसी में उपयोग की जाने वाली मुख्य उपकरणों में रन चार्ट, नियंत्रण चार्ट, निरंतर सुधार पर फोकस और प्रयोग का डिजाइन सम्मलित है। एसपीसी का एक उदाहरण उत्पादन लाइन हैं।
एसपीसी को दो चरणों में अभ्यास किया जाना चाहिए: पहले चरण में प्रक्रिया के प्रारंभिक स्थापना को सम्मलित किया जाना चाहिए, और दूसरे चरण में प्रक्रिया के नियमित उत्पादन का उपयोग किया जाना चाहिए। दूसरे चरण में, 5M&E शर्तों (मनुष्य, मशीन, सामग्री, विधि, गति, वातावरण) और विनिर्माण प्रक्रिया में उपयोग किए जाने वाले भागों (मशीन भागों, जिग्स और फिक्सचर) के ध्वनि दर के बदलाव के आधार पर जांच की अवधि का फैसला लिया जाना चाहिए।
अन्य गुणवत्ता नियंत्रण विधियों जैसे "निरीक्षण", के मुक़ाबले एसपीसी का एक फायदा यह है कि यह समस्याओं की शुरुआती खोज और रोकथाम पर जोर देता है, बल्कि समस्याओं को सुधारने के बाद कोरेक्शन पर जोर नहीं देता है।
वेस्ट को कम करने के अतिरिक्त, एसपीसी उत्पाद को उत्पन्न करने के लिए आवश्यक समय को कम करने में भी सहायता कर सकता है। एसपीसी उस खत्मी उत्पाद को फिर से काम में लाने या फिर से बनाने की आवश्यकता को कम कर सकता है।
इतिहास
आरंभिक दशक में वाल्टर ए. शेवहार्ट ने बेल प्रयोगशालाओं में सांख्यिकीय प्रक्रिया नियंत्रण का आधार रखा था। शेवहार्ट ने 1924 में नियंत्रण चार्ट और सांख्यिक नियंत्रण की स्थिति की अवधारणा विकसित की थी। सांख्यिक नियंत्रण विनिमययोग्यता की अवधारणा के समकक्ष होता है[1][2]जिसे तर्कशास्त्री विलियम अर्नेस्ट जॉनसन ने भी 1924 में अपनी पुस्तक लॉजिक, भाग III: विज्ञान के तार्किक आधारों में विकसित किया था।[3] एटी एंड टी में एक टीम के साथ जिसमें हेरोल्ड एफ. डॉज और हैरी रोमिग सम्मलित थे, उन्होंने तर्कसंगत सांख्यिकीय आधार पर नमूनाकरण (सांख्यिकी) निरीक्षण करने के लिए भी काम किया। शेवार्ट ने कर्नल लेस्ली ई. साइमन के साथ 1934 में सेना के पिकाटिनी शस्त्रागार में युद्ध सामग्री के निर्माण के लिए नियंत्रण चार्ट के अनुप्रयोग में परामर्श किया। यह सफल आवेदन आर्मी ऑर्डिनेंस को युद्ध के समय अपने विभागों और ठेकेदारों में सांख्यिकीय गुणवत्ता नियंत्रण के उपयोग पर परामर्श देने के लिए एटीएंडटी के जॉर्ज एडवर्ड्स को लगाने के लिए प्रेरित किया।
डेमिंग ने शेवहार्ट को विभागीय कृषि के स्नातक विद्यालय में भाषण देने के लिए आमंत्रित किया और शेवहार्ट की पुस्तक "स्टैटिस्टिकल मेथड फ्रॉम द व्यूपॉइंट ऑफ क्वालिटी कंट्रोल" (1939) के संपादक भी बने, जो उस भाषण के परिणाम थी। डेमिंग के माध्यम से गुणवत्ता नियंत्रण के लघु पाठ्यक्रमों के महत्वपूर्ण वास्तुकार थे, जो द्वितीय विश्वयुद्ध के समय अमेरिकी उद्योग को नई तकनीकों में प्रशिक्षित किया। इन युद्ध समय के पाठ्यक्रमों के स्नातक इस युद्ध के बाद एक नए व्यावसायिक समाज का गठन करते हुए, 1945 में, अमेरिकी गुणवत्ता नियंत्रण के लिए अमेरिकन सोसायटी,के संपादक भी बने, जो उस भाषण के परिणाम थी। डेमिंग के माध्यम से गुणवत्ता नियंत्रण के लघु पाठ्यक्रमों के महत्वपूर्ण वास्तुकार थे, जो द्वितीय विश्वयुद्ध के समय अमेरिकी उद्योग को नई तकनीकों में प्रशिक्षित किया। इन युद्ध समय के पाठ्यक्रमों के स्नातक इस युद्ध के बाद एक नए व्यावसायिक समाज का गठन करते हुए, 1945 में, अमेरिकी।[4][5]
'सामान्य' और 'विशेष' भिन्नता के स्रोत
शेवहार्ट ब्रिटेन से नई सांख्यिकी थियोरियों को पढ़ते थे, विशेष रूप से विलियम सीली गॉसेट, कार्ल पियर्सन और रोनाल्ड फिशर का काम। चूंकि, उन्होंने समझा कि भौतिक प्रक्रियाओं से आया डेटा सामान्यतः एक सामान्य वितरण घटक (जैसे गौसीय वितरण या 'घंटी का घुमाव') नहीं प्रस्तुत करता है। उन्होंने खोजा कि विनिर्माण में चलाई गई भिन्नता के माप के डेटा हमेशा नैतिक प्रक्रियाओं की समानता में एक ही विधियां से व्यवहार नहीं करता है (जैसे कि कणों की एक प्रकार कि गति)। शुहार्ट ने निष्कर्ष निकाला कि हर प्रक्रिया में भिन्नता होती है, कुछ प्रक्रियाएं उन्हें प्रक्रिया के प्राकृतिक हिस्सों से संबंधित ("सामान्य" भिन्नता के स्रोत) दिखाती हैं; यह प्रक्रियाएं (सांख्यिक) नियंत्रण में होती हैं। अन्य प्रक्रियाओं में अतिरिक्त भिन्नता भी दिखाई देती है जो प्रक्रिया की कारणशील प्रणाली में सब समय सम्मलित नहीं होती है ("विशेष" भिन्नता के स्रोत), जो शुहार्ट ने नियंत्रण में नहीं होते बताया।[6]
गैर-विनिर्माण प्रक्रियाओं के लिए आवेदन
सांख्यिकीय प्रक्रिया नियंत्रण किसी भी दोहराई वाली प्रक्रिया का समर्थन करने के लिए उपयुक्त होता है, और यह कई स्थानों पर लागू किया गया है जहां उदाहरण के लिए आईएसओ 9000 गुणवत्ता प्रबंधन प्रणालियों का उपयोग किया जाता है, जिसमें वित्तीय महसूल और लेखा परीक्षण, आईटी संचालन, स्वास्थ्य सेवा प्रक्रिया, लोन व्यवस्थापन और प्रशासन, ग्राहक बिलिंग आदि सम्मलित हैं। इसके विकास और डिज़ाइन में इसका उपयोग पर समालोचना होने के अतिरिक्त, यह ऊँची मात्रा के डेटा प्रोसेसिंग ऑपरेशनों के सेमी-ऑटोमेटेड डेटा गवर्नेंस को प्रबंधित करने के लिए अच्छी प्रकार से स्थापित है, उदाहरण के लिए एक एंटरप्राइज डेटा वेयरहाउस या एक एंटरप्राइज डेटा गुणवत्ता प्रबंधन प्रणाली में। [7]
1988 में क्षमता परिपक्वता मॉडल (सीएमएम) में सॉफ्टवेयर इंजीनियरिंग संस्थान ने सुझाव दिया कि एसपीसी को सॉफ्टवेयर इंजीनियरिंग प्रक्रियाओं पर लागू किया जा सकता है। क्षमता परिपक्वता मॉडल एकीकरण (सीएमएमआई) के स्तर 4 और स्तर 5 अभ्यास इस अवधारणा का उपयोग करते हैं।
एसपीसी का अनुप्रयोग रिसर्च एवं डेवलपमेंट या सिस्टम इंजीनियरिंग जैसी नॉन-रेपेटिटिव, ज्ञान-आधारित प्रक्रियाओं में, संदेह और विवादों का सामना कर रहा है।[8][9][10]
फ्रेड ब्रूक्स ने नो सिल्वर बुलेट में बताया है कि सॉफ्टवेयर की जटिलता, अनुरूपता की आवश्यकता, बदलावशीलता, और अदृश्यता[11][12] ने नो सिल्वर बुलेट में बताया है कि सॉफ्टवेयर की जटिलता, अनुरूपता की आवश्यकता, बदलावशीलता, और अदृश्यता
निर्माण में भिन्नता
विनिर्देश गुणवत्ता निर्धारित विनिर्माण के लिए अनुरूपता के रूप में परिभाषित की जाती है। चूंकि, कोई भी दो उत्पादों या विशेषताओं कभी-कभी एक जैसे नहीं होते हैं, क्योंकि कोई भी प्रक्रिया बहुत से विभिन्न स्रोतों से भिन्नता के साथ सम्पन्न होती है। बड़े पैमाने पर विनिर्माण में, एक लचीली बिन्दु मानव जाँच के के माध्यम से उत्पाद की गुणवत्ता को सुनिश्चित करता है। प्रत्येक वस्तु (या उत्पादन लॉट से कुछ नमूने) अपनी डिजाइन विशेषताओं को कितनी अच्छी प्रकार पूरा करता है, इसके आधार पर स्वीकार या अस्वीकार किया जा सकता है, एसपीसी विनिर्माण प्रक्रिया के प्रदर्शन का अवलोकन करने के लिए आँकड़ेबाजी उपकरणों का उपयोग करता है जिससे वे मानकों से नीचे या ऊपर की स्तर में उत्पादन करने वाले महत्वपूर्ण भिन्नताओं को पहले ही देख सकें। किसी भी प्रक्रिया में किसी भी समय का कोई भी भिन्नता दो वर्गों में से एक में आएगा।
- (1) सामान्य कारण
- 'सामान्य' कारणों को कभी-कभी 'गैर-असाइन करने योग्य', या भिन्नता के 'सामान्य' स्रोत के रूप में संदर्भित किया जाता है। इससे किसी भी प्रक्रिया पर लगातार दिखने वाले विभिन्न स्रोतों को आवर्ती रूप से समझा जाता है, जिनमें सामान्यतः कई स्रोत होते हैं। यह प्रकार के कारण समय के साथ एक सांद्रत्यपूर्ण और दोहराने योग्य वितरण का उत्पादन करते हैं।
(2) विशेष कारण:
''विशेष' कारण कभी-कभी 'असाइनेबल' या 'असाधारण' विभिन्नताओं के लिए उत्पादित कारणों के रूप में भी जाना जाता है। यह शब्द एकमात्र उत्पाद प्रकार के कुछ हिस्सों पर असर डालने वाले किसी भी कारक को दर्शाता है। ये अधिकांशतः आकस्मिक और अपूर्व होते हैं।
अधिकतर प्रक्रियाओं में बहुत से परिवर्तन के स्रोत होते हैं; उनमें से अधिकतर छोटे होते हैं और उन्हें नज़रअंदाज़ किया जा सकता है। यदि प्रक्रिया के प्रमुख नियोज्य स्रोतों का पता लगाया जाए, तो उन्हें पहचाना और हटाया जा सकता है। जब वे हटाए जाते हैं, तो प्रक्रिया "स्थिर" कहलाती है। जब प्रक्रिया स्थिर होती है, तो इसका विस्तार एक जाने-माने सेट के सीमित हद तक होना चाहिए। अर्थात, कम से कम, जब दूसरा नियोज्य स्रोत प्रकट होता है, तब तक इसकी परिवर्तन की सीमा निश्चित होती है।
उदाहरण के रूप में, एक नाश्ता सीरियल पैकेजिंग लाइन को इस प्रकार डिज़ाइन किया जाता है कि हर सीरियल बॉक्स में 500 ग्राम सीरियल भरा जाना होता है। कुछ बॉक्सों में 500 ग्राम से थोड़ा अधिक भरा होता है, और कुछ में थोड़ा कम। जब पैकेज का वज़न मापा जाता है, तो डेटा नेट वज़न का एक वितरण दर्शाएगा।
यदि उत्पादन प्रक्रिया, इसके इनपुट या उसका पर्यावरण (उदाहरण के लिए, लाइन पर मशीन) बदलते हैं, तो डेटा का वितरण बदल जाएगा। उदाहरण के लिए, मशीनरी के कैम और पुली पहनने के साथ-साथ, सीरियल भरने वाली मशीन निर्दिष्ट मात्रा से अधिक सीरियल प्रत्येक बॉक्स में भर सकती है। यदि यह ग्राहक के लिए फायदेमंद हो तो भी, निर्माता के दृष्टिकोण से यह अपव्ययी होता है और उत्पादन की लागत बढ़ाता है। यदि निर्माता समय पर परिवर्तन और उसकी जड़ को पहचानता है, तो परिवर्तन को ठीक किया जा सकता है (उदाहरण के लिए, कैम और पुली बदल दी जा सकती है)।
एसपीसी के दृष्टिकोण से, यदि हर अनाज डिब्बे के वजन में यादृच्छिक रूप से भिन्नता होती है, कुछ उच्च और कुछ कम, हमेशा एक स्वीकार्य सीमा के भीतर, तो प्रक्रिया स्थिर मानी जाती है। यदि मशीनरी के कैम और पुली कमजोर होने लगते हैं, तो अनाज डिब्बे का वजन यादृच्छिक नहीं हो सकता है। कैम और पुली के कमजोर होने से डिब्बे के वजन में एक गैर-रैंडम रूप से बढ़ते हुए लीनियर पैटर्न की उत्पत्ति हो सकती है। हम इसे कॉमन कॉज वेरिएशन कहते हैं। यदि, चूंकि, सभी अनाज डिब्बे अचानक औसत से बहुत अधिक वजन करने लगते हैं क्योंकि कैम और पुली के अप्रत्याशित कमजोरी के कारण, तो यह खास कारण वेरिएशन के रूप में गिना जाएगा।
आवेदन
एसपीसी के लागू होने में तीन मुख्य चरण होते हैं:
- प्रक्रिया और विनिर्देश सीमा को समझना।
- भिन्नता के नियत (विशेष) स्रोतों को समाप्त करना, जिससे प्रक्रिया स्थिर रहे।
- औसत या भिन्नता के महत्वपूर्ण परिवर्तनों का पता लगाने के लिए नियंत्रण चार्ट के उपयोग से सहायता प्राप्त चल रही उत्पादन प्रक्रिया की निगरानी करना हैं।
नियंत्रण चार्ट
प्रक्रिया मानचित्र पर बिंदुओं पर भिन्नताओं के माप के डेटा का मॉनिटरिंग कंट्रोल चार्ट का उपयोग करके किया जाता है। कंट्रोल चार्ट, "विशेष योग्य" ("विशेष") भिन्नता स्रोतों को "सामान्य" स्रोतों से अलग करने का प्रयास करते हैं। "सामान्य" स्रोतों के कारण, वे प्रक्रिया का एक अपेक्षित भाग होते हैं और "विशेष योग्य" स्रोतों से बहुत कम चिंता का विषय होते हैं। कंट्रोल चार्ट का उपयोग एक निरंतर गतिविधि है, जो समय के साथ निरंतर जारी रहती है।
स्थिर प्रक्रिया
जब प्रक्रिया कोई भी नियंत्रण चार्ट "डिटेक्शन रूल्स" नहीं ट्रिगर करती है, तब उसे "स्थिर" कहा जाता है। एक स्थिर प्रक्रिया पर क्रमशः "निर्माण उत्पाद" उत्पन्न करने की क्षमता का पूर्वानुमान करने के लिए एक प्रक्रिया क्षमता विश्लेषण किया जा सकता है।
एक स्थिर प्रक्रिया को एक प्रक्रिया हस्ताक्षर के माध्यम से प्रदर्शित किया जा सकता है जो क्षमता सूचकांक के बाहर प्रसरण से मुक्त है। एक प्रक्रिया हस्ताक्षर क्षमता सूचकांक की समानता में प्लॉट किए गए बिंदु हैं।
अत्यधिक विविधताएं
जब प्रक्रिया किसी भी नियंत्रण चार्ट "डिटेक्शन रूल" को ट्रिगर करती है, (या अलग-अलग अवसरों में प्रक्रिया क्षमता कम होती है), तो अतिरिक्त गतिविधियों की जांच की जा सकती है जिससे अतिशय विस्तार के स्रोत का पता लगाया जा सकता है। इन अतिरिक्त गतिविधियों में इशिकावा आरेख,डिज़ाइन एक्सपेरिमेंट्स औरपरेटो कार्ड जैसे उपकरण सम्मलित होते हैं। डिज़ाइन एक्सपेरिमेंट्स एक विकल्प होते हैं जो विस्तार के स्रोतों के निश्चित महत्व (शक्ति) को पुनर्प्राप्त का एक विषयमुक्त विधि होता है। एक अतिरिक्त स्रोत को हटाने के लिए कदमों में सम्मलित हो सकते हैं: मानकों के विकास, स्टाफ प्रशिक्षण, त्रुटि-सुधार, और प्रक्रिया या इसके इनपुटों में बदलाव होता है।
प्रक्रिया स्थिरता मेट्रिक्स
अधिकतर प्रक्रियाओं को नियंत्रण चार्ट के साथ मॉनिटर करने पर, कुछ समय इसकी स्थिरता के आंकड़े गणना करना उपयोगी होता है। फिर इन मैट्रिक्स का उपयोग करके उन प्रक्रियाओं को पहचाना / प्राथमिकता देना संभव होता है जिन्हें सुधार की आवश्यकता सबसे ज्यादा होती है। इन मैट्रिक्स को एक पारंगत प्रक्रिया की पूरक माना जा सकता है। कई मैट्रिक्स की प्रस्तावना की गई हैं, जैसा कि रामिरेज़ और रनर में वर्णित है।[13]वे हैं (1) एक स्थिरता अनुपात जो अल्पकालिक परिवर्तनशीलता की लंबी अवधि की परिवर्तनशीलता की समानता करता है, (2) एक एनोवा टेस्ट जो भीतर-उपसमूह भिन्नता की समानता उप-समूह भिन्नता से करता है, और (3) एक अस्थिरता अनुपात जो पश्चिमी इलेक्ट्रिक नियमों के एक या अधिक उल्लंघन वाले उपसमूहों की संख्या की समानता उपसमूहों की कुल संख्या से करता है।
नियंत्रण चार्ट का गणित
डिजिटल नियंत्रण चार्ट लॉजिक-आधारित नियम का उपयोग करते हैं जो सुधार की आवश्यकता की संकेत देते हैं "प्राप्त मूल्य" को निर्धारित करने के लिए। उदाहरण के लिए,
- व्युत्पन्न मूल्य = अंतिम मूल्य + अंतिम N संख्याओं के बीच औसत अधिकतम अंतर होता है।
यह भी देखें
- एनोवा गेज आर एंड आर
- वितरण-मुक्त नियंत्रण चार्ट
- इलेक्ट्रॉनिक डिजाइन स्वचालन
- औद्योगिक इंजीनियरिंग
- प्रक्रिया विंडो सूचकांक
- प्रक्रिया क्षमता सूचकांक
- गुणवत्ता आश्वासन
- स्थिरता अभियांत्रिकी
- सिक्स सिग्मा
- स्टोकेस्टिक नियंत्रण
- कुल गुणवत्ता प्रबंधन
संदर्भ
- ↑ Barlow & Irony (1992)
- ↑ Bergman (2009)
- ↑ Zabell (1992)
- ↑ Deming, W. Edwards, Lectures on statistical control of quality., Nippon Kagaku Gijutsu Remmei, 1950
- ↑ Deming, W. Edwards and Dowd S. John (translator) Lecture to Japanese Management, Deming Electronic Network Web Site, 1950 (from a Japanese transcript of a lecture by Deming to "80% of Japanese top management" given at the Hotel de Yama at Mr. Hakone in August 1950)
- ↑ Why SPC?. SPC Press, Inc. British Deming Association. 1992.
- ↑ Larry English Improving Data Warehouse and Business Information Quality : Methods for Reducing Costs and Increasing Profits 1999
- ↑ Bob Raczynski and Bill Curtis (2008) Software Data Violate SPC's Underlying Assumptions, IEEE Software, May/June 2008, Vol. 25, No. 3, pp. 49-51
- ↑ Robert V. Binder (1997) Can a Manufacturing Quality Model Work for Software?, IEEE Software, September/October 1997, pp. 101-105
- ↑ Raczynski, Bob (February 20, 2009). "Is Statistical Process Control Applicable to Software Development Processes?". StickyMinds (in English).
- ↑ Brooks, F. P., J. (1987). "No Silver Bullet—Essence and Accidents of Software Engineering" (PDF). Computer. 20 (4): 10–19. CiteSeerX 10.1.1.117.315. doi:10.1109/MC.1987.1663532.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Fred P. Brooks (1986) No Silver Bullet — Essence and Accident in Software Engineering, Proceedings of the IFIP Tenth World Computing Conference 1986, pp. 1069–1076
- ↑ Ramirez, B.; Runger, G. (2006). "Quantitative Techniques to Evaluate Process Stability". Quality Engineering. 18 (1). pp. 53–68. doi:10.1080/08982110500403581.
ग्रन्थसूची
- Barlow, R. E. & Irony, T. Z. (1992) "Foundations of statistical quality control" in Ghosh, M. & Pathak, P.K. (eds.) Current Issues in Statistical Inference: Essays in Honor of D. Basu, Hayward, CA: Institute of Mathematical Statistics, 99–112.
- Bergman, B. (2009) "Conceptualistic Pragmatism: A framework for Bayesian analysis?", IIE Transactions, 41, 86–93
- Deming, W E (1975) "On probability as a basis for action", The American Statistician, 29(4), 146–152
- — (1982) Out of the Crisis: Quality, Productivity and Competitive Position ISBN 0-521-30553-5
- Grant, E. L. (1946) Statistical quality control ISBN 0071004475
- Oakland, J (2002) Statistical Process Control ISBN 0-7506-5766-9
- Salacinski, T (2015) एसपीसी - Statistical Process Control. The Warsaw University of Technology Publishing House. ISBN 978-83-7814-319-2
- Shewhart, W A (1931) Economic Control of Quality of Manufactured Product ISBN 0-87389-076-0
- — (1939) Statistical Method from the Viewpoint of Quality Control ISBN 0-486-65232-7
- Statistical Process Control (SPC) Reference Manual (2 ed.). Automotive Industry Action Group (AIAG). 2005.
- Wheeler, D J (2000) Normality and the Process-Behaviour Chart ISBN 0-945320-56-6
- Wheeler, D J & Chambers, D S (1992) Understanding Statistical Process Control ISBN 0-945320-13-2
- Wheeler, Donald J. (1999). Understanding Variation: The Key to Managing Chaos - 2nd Edition. एसपीसी Press, Inc. ISBN 0-945320-53-1.
- Wise, Stephen A. & Fair, Douglas C (1998). Innovative Control Charting: Practical एसपीसी Solutions for Today's Manufacturing Environment. ASQ Quality Press. ISBN 0-87389-385-9
- Zabell, S. L. (1992). "Predicting the unpredictable". Synthese. 90 (2): 205. doi:10.1007/bf00485351.