आघूर्णजनक फलन: Difference between revisions
No edit summary |
m (Abhishekkshukla moved page क्षण-उत्पन्न करने वाला कार्य to आघूर्णजनक फलन without leaving a redirect) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in probability theory and statistics}} | {{Short description|Concept in probability theory and statistics}} | ||
संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का | संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का '''आघूर्ण-जनक फलन''' इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व फलनों या संचयी वितरण फलनों के साथ सीधे काम करने की समानता में विश्लेषणात्मक परिणामों के वैकल्पिक मार्ग का आधार प्रदान करता है। यादृच्छिक चर के भारित रकम के माध्यम से परिभाषित वितरण के आघूर्ण -उत्पन्न फलनों के लिए विशेष रूप से सरल परिणाम हैं। चूँकि, सभी यादृच्छिक चरों में आघूर्ण -उत्पन्न करने वाले फलन नहीं होते हैं। | ||
जैसा कि इसके नाम से स्पष्ट होता है, | जैसा कि इसके नाम से स्पष्ट होता है, जनरेटिंग फलन का उपयोग डिस्ट्रीब्यूशन के आघूर्ण (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में ''n''th आघूर्ण को आघूर्ण-जनक फलन के ''n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0. | ||
वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के | वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के अतिरिक्त, आघूर्ण -उत्पन्न करने वाले फलनों को सदिश- या मैट्रिक्स-मूल्यवान यादृच्छिक चर के लिए परिभाषित किया जा सकता है, और यहां तक कि अधिक सामान्य स्थितियों में भी बढ़ाया जा सकता है। | ||
विशेषता | विशेषता फलन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का आघूर्ण -जनक फलन हमेशा सम्मिलित नहीं होता है। वितरण के आघूर्ण -सृजन फंक्शन के व्यवहार और वितरण के गुणों के बीच संबंध हैं, जैसे कि आघूर्ण ों का अस्तित्व। | ||
== परिभाषा == | == परिभाषा == | ||
संयुक्त त्रिविमीय वितरण <math> X </math> के लिए <math>F_X</math>हो। <math>X</math> (या <math>F_X</math>) का | संयुक्त त्रिविमीय वितरण <math> X </math> के लिए <math>F_X</math>हो। <math>X</math> (या <math>F_X</math>) का आघूर्ण -जनरेटिंग फलन <math>M_X(t)</math>, का आघूर्ण -जनरेटिंग फलन | ||
:<math> M_X(t) = \operatorname E \left[e^{tX}\right] </math> | :<math> M_X(t) = \operatorname E \left[e^{tX}\right] </math> | ||
बशर्ते यह [[अपेक्षित मूल्य]] | बशर्ते यह [[अपेक्षित मूल्य]] सम्मिलित हो <math>t</math> कुछ पड़ोस (गणित) में 0. अर्थात एक है <math>h>0</math> ऐसा कि सभी के लिए <math>t</math> में <math>-h<t<h</math>, <math>\operatorname E \left[e^{tX}\right] </math> सम्मिलित है। यदि अपेक्षा 0 के पड़ोस में सम्मिलित नहीं है, तो हम कहते हैं कि आघूर्ण जनक फलन सम्मिलित नहीं है।<ref>{{cite book |last1=Casella |first1=George|last2= Berger|first2= Roger L. |title=सांख्यिकीय निष्कर्ष|publisher=Wadsworth & Brooks/Cole|year=1990 |page=61 |isbn=0-534-11958-1 }}</ref> | ||
दूसरे शब्दों में, X का आघूर्ण -जनक फलन यादृच्छिक चर का अपेक्षित मान है <math> e^{tX}</math>. अधिक सामान्यतः, जब <math>\mathbf X = ( X_1, \ldots, X_n)^{\mathrm{T}}</math>, एक <math>n</math>-आयामी यादृच्छिक सदिश, और <math>\mathbf t</math> एक निश्चित सदिश है, एक उपयोग करता है तब <math>\mathbf t \cdot \mathbf X = \mathbf t^\mathrm T\mathbf X</math> के अतिरिक्त <math>tX</math>: | |||
दूसरे शब्दों में, X का | |||
:<math> M_{\mathbf X}(\mathbf t) := \operatorname E \left(e^{\mathbf t^\mathrm T\mathbf X}\right).</math> | :<math> M_{\mathbf X}(\mathbf t) := \operatorname E \left(e^{\mathbf t^\mathrm T\mathbf X}\right).</math> | ||
<math> M_X(0) </math> हमेशा | <math> M_X(0) </math> हमेशा सम्मिलित होता है और 1 के समान होता है। चूंकि, आघूर्ण -सृजन फलनों के साथ एक महत्वपूर्ण समस्या यह है कि आघूर्ण और आघूर्ण -सृजन फलन सम्मिलित नहीं हो सकते हैं, क्योंकि इंटीग्रल को पूरी प्रकार से अभिसरण करने की आवश्यकता नहीं है। इसके विपरीत, विशेषता फलन (संभाव्यता सिद्धांत) या फूरियर रूपांतरण हमेशा सम्मिलित होता है (क्योंकि यह परिमित माप (गणित) के स्थान पर एक बंधे हुए फलन का अभिन्न अंग है), और इसके अतिरिक्त कुछ उद्देश्यों के लिए इसका उपयोग किया जा सकता है। | ||
आघूर्ण -उत्पन्न करने वाले फलन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के आघूर्ण ों को खोजने के लिए किया जा सकता है।<ref>{{cite book |last=Bulmer |first=M. G. |title=सांख्यिकी के सिद्धांत|publisher=Dover |year=1979 |pages=75–79 |isbn=0-486-63760-3 }}</ref> श्रृंखला का विस्तार <math>e^{tX}</math> है | |||
: <math> | : <math> | ||
e^{t\,X} = 1 + t\,X + \frac{t^2\,X^2}{2!} + \frac{t^3\,X^3}{3!} + \cdots +\frac{t^n\,X^n}{n!} + \cdots. | e^{t\,X} = 1 + t\,X + \frac{t^2\,X^2}{2!} + \frac{t^3\,X^3}{3!} + \cdots +\frac{t^n\,X^n}{n!} + \cdots. | ||
</math> | </math> | ||
इस | इस प्रकार | ||
: <math> | : <math> | ||
Line 34: | Line 33: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>m_n</math>, <math>n</math> | जहाँ <math>m_n</math>, <math>n</math> आघूर्ण (गणित) है । भेदभाव <math>M_X(t)</math> <math>i</math> बार के संबंध में <math>t</math> और सेटिंग <math>t = 0</math>, हम प्राप्त करते हैं <math>i</math> वें आघूर्ण उत्पत्ति के बारे में, <math>m_i</math>; नीचे आघूर्ण ों की गणना देखें। | ||
यदि <math>X</math> एक सतत यादृच्छिक चर है, इसके आघूर्ण -उत्पन्न करने वाले फलन के बीच निम्नलिखित संबंध <math>M_X(t)</math> और इसके प्रायिकता घनत्व फलन का दो तरफा लाप्लास रूपांतरण <math>f_X(x)</math> धारण करता है: | |||
:<math> | :<math> | ||
Line 46: | Line 45: | ||
\mathcal{L}\{f_X\}(s) = \int_{-\infty}^\infty e^{-sx} f_X(x)\, dx, | \mathcal{L}\{f_X\}(s) = \int_{-\infty}^\infty e^{-sx} f_X(x)\, dx, | ||
</math> | </math> | ||
और | और आघूर्ण -उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम के माध्यम से) तक विस्तृत होती है | ||
: <math> | : <math> | ||
M_X(t) = \operatorname E \left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x)\, dx. | M_X(t) = \operatorname E \left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x)\, dx. | ||
</math> | </math> | ||
यह की विशेषता | यह की विशेषता फलन के अनुरूप है <math>X</math> का एक बाती का घूमना होना <math>M_X(t)</math> जब आघूर्ण जनक फलन सम्मिलित होता है, एक निरंतर यादृच्छिक चर के विशिष्ट फलन के रूप में <math>X</math> इसके प्रायिकता घनत्व फलन का [[फूरियर रूपांतरण]] है <math>f_X(x)</math>, और सामान्यतः जब कोई फलन <math>f(x)</math> घातीय क्रम का है, का फूरियर रूपांतरण <math>f</math> अभिसरण के क्षेत्र में इसके दो तरफा लाप्लास परिवर्तन का एक विक रोटेशन है। अधिक जानकारी के लिए फूरियर ट्रांसफॉर्म#लाप्लास ट्रांसफॉर्म देखें। | ||
== उदाहरण == | == उदाहरण == | ||
यहाँ | यहाँ आघूर्ण -सृजन फलन और समानता के लिए अभिलाआघूर्ण िक फलन के कुछ उदाहरण दिए गए हैं। यह देखा जा सकता है कि विशिष्ट फलन आघूर्ण -उत्पन्न करने वाले फलन का एक विक रोटेशन है <math>M_X(t)</math> जब बाद वाला सम्मिलित है। | ||
:{|class="wikitable" | :{|class="wikitable" | ||
|- | |- | ||
! | ! Distribution | ||
! | ! Moment-generating function <math>M_X(t)</math> | ||
! | ! Characteristic function <math>\varphi (t)</math> | ||
|- | |- | ||
|[[Degenerate distribution|Degenerate]] <math>\delta_a</math> | |[[Degenerate distribution|Degenerate]] <math>\delta_a</math> | ||
Line 64: | Line 63: | ||
|<math>e^{ita}</math> | |<math>e^{ita}</math> | ||
|- | |- | ||
| [[Bernoulli distribution| | | [[Bernoulli distribution|Bernoulli]] <math>P(X = 1) = p</math> | ||
| <math>1 - p + pe^t</math> | | <math>1 - p + pe^t</math> | ||
| <math>1 - p + pe^{it}</math> | | <math>1 - p + pe^{it}</math> | ||
|- | |- | ||
| [[Geometric distribution| | | [[Geometric distribution|Geometric]] <math>(1 - p)^{k-1}\,p</math> | ||
| <math>\frac{p}{1 - (1 - p) e^t} | | <math>\frac{p}{1 - (1 - p) e^t}, ~ t < -\ln(1 - p)</math> | ||
| <math>\frac{p e^{it}}{1 - (1 - p)\,e^{it}}</math> | | <math>\frac{p e^{it}}{1 - (1 - p)\,e^{it}}</math> | ||
|- | |- | ||
| [[Binomial distribution| | | [[Binomial distribution|Binomial]] <math>B(n, p)</math> | ||
| <math>\left(1 - p + pe^t\right)^n</math> | | <math>\left(1 - p + pe^t\right)^n</math> | ||
| <math>\left(1 - p + pe^{it}\right)^n</math> | | <math>\left(1 - p + pe^{it}\right)^n</math> | ||
|- | |- | ||
|[[Negative binomial distribution| | |[[Negative binomial distribution|Negative binomial]] <math>\operatorname{NB}(r, p)</math> | ||
|<math>\left(\frac{p}{1 - e^t + pe^t}\right)^r, t<-\ | |<math>\left(\frac{p}{1 - e^t + pe^t}\right)^r, ~ t<-\ln(1-p)</math> | ||
|<math>\left(\frac{p}{1 - e^{it} + pe^{it}}\right)^r</math> | |<math>\left(\frac{p}{1 - e^{it} + pe^{it}}\right)^r</math> | ||
|- | |- | ||
| [[Poisson distribution| | | [[Poisson distribution|Poisson]] <math>\operatorname{Pois}(\lambda)</math> | ||
| <math>e^{\lambda(e^t - 1)}</math> | | <math>e^{\lambda(e^t - 1)}</math> | ||
| <math>e^{\lambda(e^{it} - 1)}</math> | | <math>e^{\lambda(e^{it} - 1)}</math> | ||
|- | |- | ||
| [[Uniform distribution (continuous)| | | [[Uniform distribution (continuous)|Uniform (continuous)]] <math>\operatorname U(a, b)</math> | ||
| <math>\frac{e^{tb} - e^{ta}}{t(b - a)}</math> | | <math>\frac{e^{tb} - e^{ta}}{t(b - a)}</math> | ||
| <math>\frac{e^{itb} - e^{ita}}{it(b - a)}</math> | | <math>\frac{e^{itb} - e^{ita}}{it(b - a)}</math> | ||
|- | |- | ||
| [[Discrete uniform distribution| | | [[Discrete uniform distribution|Uniform (discrete)]] <math>\operatorname{DU}(a, b)</math> | ||
| <math>\frac{e^{at} - e^{(b + 1)t}}{(b - a + 1)(1 - e^{t})}</math> | | <math>\frac{e^{at} - e^{(b + 1)t}}{(b - a + 1)(1 - e^{t})}</math> | ||
| <math>\frac{e^{ait} - e^{(b + 1)it}}{(b - a + 1)(1 - e^{it})}</math> | | <math>\frac{e^{ait} - e^{(b + 1)it}}{(b - a + 1)(1 - e^{it})}</math> | ||
|- | |- | ||
|[[Laplace distribution| | |[[Laplace distribution|Laplace]] <math>L(\mu, b)</math> | ||
|<math>\frac{e^{t\mu}}{1 - b^2t^2}, ~ |t| < 1/b</math> | |<math>\frac{e^{t\mu}}{1 - b^2t^2}, ~ |t| < 1/b</math> | ||
|<math>\frac{e^{it\mu}}{1 + b^2t^2}</math> | |<math>\frac{e^{it\mu}}{1 + b^2t^2}</math> | ||
|- | |- | ||
| [[Normal distribution| | | [[Normal distribution|Normal]] <math>N(\mu, \sigma^2)</math> | ||
| <math>e^{t\mu + \frac{1}{2}\sigma^2t^2}</math> | | <math>e^{t\mu + \frac{1}{2}\sigma^2t^2}</math> | ||
| <math>e^{it\mu - \frac{1}{2}\sigma^2t^2}</math> | | <math>e^{it\mu - \frac{1}{2}\sigma^2t^2}</math> | ||
|- | |- | ||
| [[Chi-squared distribution| | | [[Chi-squared distribution|Chi-squared]] <math>\chi^2_k</math> | ||
| <math>(1 - 2t)^{-\frac{k}{2}}</math> | | <math>(1 - 2t)^{-\frac{k}{2}}, ~ t < 1/2</math> | ||
| <math>(1 - 2it)^{-\frac{k}{2}}</math> | | <math>(1 - 2it)^{-\frac{k}{2}}</math> | ||
|- | |- | ||
|[[Noncentral chi-squared distribution| | |[[Noncentral chi-squared distribution|Noncentral chi-squared]] <math>\chi^2_k(\lambda)</math> | ||
| <math>e^{\lambda t/(1-2t)}(1 - 2t)^{-\frac{k}{2}}</math> | | <math>e^{\lambda t/(1-2t)}(1 - 2t)^{-\frac{k}{2}}</math> | ||
| <math>e^{i\lambda t/(1-2it)}(1 - 2it)^{-\frac{k}{2}}</math> | | <math>e^{i\lambda t/(1-2it)}(1 - 2it)^{-\frac{k}{2}}</math> | ||
|- | |- | ||
| [[Gamma distribution| | | [[Gamma distribution|Gamma]] <math>\Gamma(k, \theta)</math> | ||
|<math>(1 - t\theta)^{-k}, ~ | |<math>(1 - t\theta)^{-k}, ~ t < \tfrac{1}{\theta}</math> | ||
| <math>(1 - it\theta)^{-k}</math> | | <math>(1 - it\theta)^{-k}</math> | ||
|- | |- | ||
| [[Exponential distribution| | | [[Exponential distribution|Exponential]] <math>\operatorname{Exp}(\lambda)</math> | ||
| <math>\left(1 - t\lambda^{-1}\right)^{-1}, ~ t < \lambda</math> | | <math>\left(1 - t\lambda^{-1}\right)^{-1}, ~ t < \lambda</math> | ||
| <math>\left(1 - it\lambda^{-1}\right)^{-1}</math> | | <math>\left(1 - it\lambda^{-1}\right)^{-1}</math> | ||
|- | |- | ||
|[[Beta distribution| | |[[Beta distribution|Beta]] | ||
|<math>1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}</math> | |<math>1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}</math> | ||
|<math>{}_1F_1(\alpha; \alpha+\beta; i\,t)\! </math> (see [[ | |<math>{}_1F_1(\alpha; \alpha+\beta; i\,t)\! </math> (see [[Confluent hypergeometric function]]) | ||
|- | |- | ||
| [[Multivariate normal distribution| | | [[Multivariate normal distribution|Multivariate normal]] <math>N(\mathbf{\mu}, \mathbf{\Sigma})</math> | ||
|<math>e^{\mathbf{t}^\mathrm{T} \left(\boldsymbol{\mu} + \frac{1}{2} \mathbf{\Sigma t}\right)}</math> | |<math>e^{\mathbf{t}^\mathrm{T} \left(\boldsymbol{\mu} + \frac{1}{2} \mathbf{\Sigma t}\right)}</math> | ||
|<math>e^{\mathbf{t}^\mathrm{T} \left(i \boldsymbol{\mu} - \frac{1}{2} \boldsymbol{\Sigma} \mathbf{t}\right)}</math> | |<math>e^{\mathbf{t}^\mathrm{T} \left(i \boldsymbol{\mu} - \frac{1}{2} \boldsymbol{\Sigma} \mathbf{t}\right)}</math> | ||
|- | |- | ||
| [[Cauchy distribution| | | [[Cauchy distribution|Cauchy]] <math>\operatorname{Cauchy}(\mu, \theta)</math> | ||
|[[Indeterminate form| | |[[Indeterminate form|Does not exist]] | ||
| <math>e^{it\mu - \theta|t|}</ | | <math>e^{it\mu - \theta|t|}</math> | ||
|- | |- | ||
|[[ | |[[Multivariate Cauchy distribution|Multivariate Cauchy]] | ||
<math>\operatorname{MultiCauchy}(\mu, \Sigma)</math><ref>Kotz et al.{{full citation needed|date=December 2019}} p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution</ref> | |||
|Does not exist | |||
| | |||
|<math>\!\, e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol\mu - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma} \mathbf{t}}}</math> | |<math>\!\, e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol\mu - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma} \mathbf{t}}}</math> | ||
|- | |- | ||
|} | |} | ||
== गणना == | == गणना == | ||
आघूर्ण -जनक फलन यादृच्छिक चर के एक फलन की अपेक्षा है, इसे इस प्रकार लिखा जा सकता है: | |||
* असतत संभाव्यता द्रव्यमान फंक्शन के लिए, <math>M_X(t)=\sum_{i=0}^\infty e^{tx_i}\, p_i</math> | * असतत संभाव्यता द्रव्यमान फंक्शन के लिए, <math>M_X(t)=\sum_{i=0}^\infty e^{tx_i}\, p_i</math> | ||
* सतत प्रायिकता घनत्व फलन के लिए, <math> M_X(t) = \int_{-\infty}^\infty e^{tx} f(x)\,dx </math> | * सतत प्रायिकता घनत्व फलन के लिए, <math> M_X(t) = \int_{-\infty}^\infty e^{tx} f(x)\,dx </math> | ||
* सामान्य | * सामान्य स्थितियोंमें: <math>M_X(t) = \int_{-\infty}^\infty e^{tx}\,dF(x)</math>, रीमैन-स्टिएल्टजेस इंटीग्रल का उपयोग करके, और जहाँ <math>F</math> संचयी वितरण फंक्शन है। यह एकमात्र लाप्लास-स्टील्टजेस का रूपांतरण है <math>F</math>, किन्तु तर्क के संकेत के साथ उलट गया। | ||
ध्यान दें कि उस | ध्यान दें कि उस स्थितियोंके लिए जहां <math>X</math> एक सतत संभावना घनत्व फंक्शन है <math>f(x)</math>, <math>M_X(-t)</math> का दो तरफा लाप्लास रूपांतर है <math>f(x)</math>. | ||
: <math> | : <math> | ||
Line 152: | Line 149: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहाँ <math>m_n</math> है <math>n</math>वें आघूर्ण (गणित)। | |||
=== यादृच्छिक चर के रैखिक परिवर्तन === | === यादृच्छिक चर के रैखिक परिवर्तन === | ||
यदि यादृच्छिक चर <math>X</math> | यदि यादृच्छिक चर <math>X</math> आघूर्ण जनक फलन है <math>M_X(t)</math>, तब <math>\alpha X + \beta</math> आघूर्ण जनक फलन है <math>M_{\alpha X + \beta}(t) = e^{\beta t}M_X(\alpha t)</math> | ||
: <math> | : <math> | ||
M_{\alpha X + \beta}(t) = E[e^{(\alpha X + \beta)t}] = e^{\beta t}E[e^{\alpha Xt}] = e^{\beta t}M_X(\alpha t) | M_{\alpha X + \beta}(t) = E[e^{(\alpha X + \beta)t}] = e^{\beta t}E[e^{\alpha Xt}] = e^{\beta t}M_X(\alpha t) | ||
Line 162: | Line 159: | ||
=== स्वतंत्र यादृच्छिक चर का रैखिक संयोजन === | === स्वतंत्र यादृच्छिक चर का रैखिक संयोजन === | ||
यदि <math>S_n = \sum_{i=1}^{n} a_i X_i</math>, जहां एक्स<sub>''i''</sub> स्वतंत्र यादृच्छिक चर हैं और ए<sub>''i''</sub> स्थिरांक हैं, तो S के लिए प्रायिकता घनत्व फलन<sub>''n''</sub> एक्स में से प्रत्येक के प्रायिकता घनत्व फलनों का [[कनवल्शन]] है<sub>''i''</sub>, और एस के लिए आघूर्ण -जनक फलन<sub>''n''</sub> के माध्यम से दिया गया है | |||
: <math> | : <math> | ||
Line 170: | Line 167: | ||
=== | === सदिश-मूल्यवान यादृच्छिक चर === | ||
यादृच्छिक | सदिश-मूल्यवान यादृच्छिक चर के लिए | सदिश-मूल्यवान यादृच्छिक चर <math>\mathbf X</math> [[वास्तविक संख्या]] घटकों के साथ, आघूर्ण -जनक फलन किसके के माध्यम से दिया जाता है | ||
:<math> M_X(\mathbf t) = E\left(e^{\langle \mathbf t, \mathbf X \rangle}\right) </math> | :<math> M_X(\mathbf t) = E\left(e^{\langle \mathbf t, \mathbf X \rangle}\right) </math> | ||
जहाँ <math>\mathbf t</math> एक सदिश है और <math>\langle \cdot, \cdot \rangle</math> [[डॉट उत्पाद]] है। | |||
== महत्वपूर्ण गुण == | == महत्वपूर्ण गुण == | ||
आघूर्ण उत्पन्न करने वाले फलन सकारात्मक और [[लघुगणकीय रूप से उत्तल कार्य|लघुगणकीय रूप से उत्तल फलन]] होते हैं। लॉग-उत्तल, एम (0) = 1 के साथ। | |||
आघूर्ण -सृजन फंक्शन की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, यदि <math>X</math> और <math>Y</math> दो यादृच्छिक चर हैं और t के सभी मानों के लिए, | |||
:<math>M_X(t) = M_Y(t),\, </math> | :<math>M_X(t) = M_Y(t),\, </math> | ||
Line 186: | Line 183: | ||
:<math>F_X(x) = F_Y(x) \, </math> | :<math>F_X(x) = F_Y(x) \, </math> | ||
x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है यदि दो वितरणों | x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है "यदि दो वितरणों में समान आघूर्ण हैं, तो वे सभी बिंदुओं पर समान हैं।" ऐसा इसलिए है क्योंकि कुछ स्थितियों में, आघूर्ण सम्मिलित होते हैं और फिर भी आघूर्ण -जनक फलन नहीं होता है, क्योंकि सीमा | ||
:<math>\lim_{n \rightarrow \infty} \sum_{i=0}^n \frac{t^im_i}{i!}</math> | :<math>\lim_{n \rightarrow \infty} \sum_{i=0}^n \frac{t^im_i}{i!}</math> | ||
सम्मिलित नहीं हो सकता है। [[ लॉग-सामान्य वितरण ]] इसका एक उदाहरण है जब ऐसा होता है। | |||
=== | === आघूर्ण ों की गणना === | ||
आघूर्ण -जनक फलन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर सम्मिलित है, तो यह प्रायिकता वितरण के पल (गणित) का [[घातीय जनरेटिंग फ़ंक्शन|घातीय जनरेटिंग फलन]] है: | |||
:<math>m_n = E \left( X^n \right) = M_X^{(n)}(0) = \left. \frac{d^n M_X}{dt^n}\right|_{t=0}.</math> | :<math>m_n = E \left( X^n \right) = M_X^{(n)}(0) = \left. \frac{d^n M_X}{dt^n}\right|_{t=0}.</math> | ||
अर्थात्, n एक गैर-ऋणात्मक पूर्णांक होने के साथ, 0 के बारे में nवाँ | अर्थात्, n एक गैर-ऋणात्मक पूर्णांक होने के साथ, 0 के बारे में nवाँ आघूर्ण आघूर्ण उत्पन्न करने वाले फलन का nवाँ व्युत्पन्न है, जिसका मूल्यांकन t = 0 पर किया जाता है। | ||
== अन्य गुण == | == अन्य गुण == | ||
जेन्सेन की असमानता | जेन्सेन की असमानता आघूर्ण -उत्पन्न करने वाले फलन पर एक साधारण निचली सीमा प्रदान करती है: | ||
:<math> M_X(t) \geq e^{\mu t}, </math> | :<math> M_X(t) \geq e^{\mu t}, </math> | ||
कहाँ <math>\mu</math> X का माध्य है। | कहाँ <math>\mu</math> X का माध्य है। | ||
एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ | एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ आघूर्ण -उत्पन्न करने वाले फलन का उपयोग किया जा सकता है। इस कथन को [[Chernoff बाध्य|चेरनॉफ़ बाध्य]] भी कहा जाता है। तब से <math>x\mapsto e^{xt}</math> के लिए नीरस रूप से बढ़ रहा है <math>t>0</math>, अपने पास | ||
: <math> P(X\ge a) = P(e^{tX}\ge e^{ta}) \le e^{-at}E[e^{tX}] = e^{-at}M_X(t)</math> | : <math> P(X\ge a) = P(e^{tX}\ge e^{ta}) \le e^{-at}E[e^{tX}] = e^{-at}M_X(t)</math> | ||
किसी के लिए <math>t>0</math> और कोई भी, प्रदान किया गया <math>M_X(t)</math> | किसी के लिए <math>t>0</math> और कोई भी, प्रदान किया गया <math>M_X(t)</math> सम्मिलित। उदाहरण के लिए, जब X एक मानक सामान्य वितरण है और <math>a>0</math>, हम चुन सकते हैं <math>t=a</math> और याद करो <math>M_X(t)=e^{t^2/2}</math>. यह देता है <math>P(X\ge a)\le e^{-a^2/2}</math>, जो त्रुटिहीन मान के 1+a के कारक के भीतर है। | ||
हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के | हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के स्थितियोंमें आघूर्ण -उत्पन्न करने वाले फलन पर सीमाएं प्रदान करते हैं। | ||
कब <math>X</math> गैर-ऋणात्मक है, | कब <math>X</math> गैर-ऋणात्मक है, आघूर्ण जनक फलन आघूर्ण ों पर एक सरल, उपयोगी सीमा देता है: | ||
:<math>E[X^m] \le \left(\frac{m}{te}\right)^m M_X(t),</math> | :<math>E[X^m] \le \left(\frac{m}{te}\right)^m M_X(t),</math> | ||
किसी के लिए <math>X,m\ge 0</math> और <math>t>0</math>. | किसी के लिए <math>X,m\ge 0</math> और <math>t>0</math>. | ||
यह असमानता से अनुसरण करता है <math>1+x\le e^x</math> जिसमें हम स्थानापन्न कर सकते हैं <math>x'=tx/m-1</math> तात्पर्य <math>tx/m\le e^{tx/m-1}</math> किसी के लिए <math>x,t,m\in\mathbb R</math>. | यह असमानता से अनुसरण करता है <math>1+x\le e^x</math> जिसमें हम स्थानापन्न कर सकते हैं <math>x'=tx/m-1</math> तात्पर्य <math>tx/m\le e^{tx/m-1}</math> किसी के लिए <math>x,t,m\in\mathbb R</math>. | ||
अब | अब यदि <math>t>0</math> और <math>x,m\ge 0</math>, इसे पुनर्व्यवस्थित किया जा सकता है <math>x^m \le (m/(te))^m e^{tx}</math>. | ||
अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है <math>E[X^m]</math> के अनुसार <math>E[e^{tX}]</math>. | अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है <math>E[X^m]</math> के अनुसार <math>E[e^{tX}]</math>. | ||
एक उदाहरण के रूप में विचार करें <math>X\sim\text{Chi-Squared}</math> साथ <math>k</math> स्वतंत्रता की कोटियां। फिर | एक उदाहरण के रूप में विचार करें <math>X\sim\text{Chi-Squared}</math> साथ <math>k</math> स्वतंत्रता की कोटियां। फिर आघूर्ण -जनक फंक्शन से # उदाहरण <math>M_X(t)=(1-2t)^{-k/2}</math>. | ||
उठा <math>t=m/(2m+k)</math> और बाध्य में प्रतिस्थापन: | उठा <math>t=m/(2m+k)</math> और बाध्य में प्रतिस्थापन: | ||
:<math>E[X^m] \le (1+2m/k)^{k/2} e^{-m} (k+2m)^m.</math> | :<math>E[X^m] \le (1+2m/k)^{k/2} e^{-m} (k+2m)^m.</math> | ||
हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय | हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय आघूर्ण सही सीमा है <math>E[X^m]\le 2^m \Gamma(m+k/2)/\Gamma(k/2)</math>. | ||
सीमाओं की | सीमाओं की समानता करने के लिए, हम बड़े पैमाने पर स्पर्शोन्मुखता पर विचार कर सकते हैं <math>k</math>. | ||
यहां | यहां आघूर्ण -जनक फलन बाध्य है <math>k^m(1+m^2/k + O(1/k^2))</math>, | ||
जहां वास्तविक सीमा है <math>k^m(1+(m^2-m)/k + O(1/k^2))</math>. | जहां वास्तविक सीमा है <math>k^m(1+(m^2-m)/k + O(1/k^2))</math>. | ||
इस प्रकार इस | इस प्रकार इस स्थितियोंमें आघूर्ण -जनक फलन बहुत मजबूत है। | ||
== अन्य | == अन्य फलनों से संबंध == | ||
आघूर्ण -सृजन फंक्शन से संबंधित कई अन्य [[अभिन्न परिवर्तन]] हैं जो संभाव्यता सिद्धांत में आम हैं: | |||
विशेषता | ===== विशेषता फलन (संभाव्यता सिद्धांत): ===== | ||
[[संचयी-जनन समारोह|संचयी-जनन फंक्शन]]: क्यूम्यलेंट- | विशेषता फलन (संभावना सिद्धांत) <math>\varphi_X(t)</math> के माध्यम से आघूर्ण -सृजन फंक्शन से संबंधित है <math>\varphi_X(t) = M_{iX}(t) = M_X(it):</math> चारित्रिक फलन iX का आघूर्ण -जनक फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फलन को संभाव्यता घनत्व फलन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण के माध्यम से इससे निकाला जा सकता है। | ||
प्रायिकता- | |||
===== [[संचयी-जनन समारोह|संचयी-जनन फंक्शन]]: ===== | |||
क्यूम्यलेंट-जनक फलन को [[संभाव्यता पैदा करने वाला कार्य|संभाव्यता जनक फलन]] के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके अतिरिक्त क्यूम्यलेंट-जनरेटिंग फलन को विशेषता फलन (संभाव्यता सिद्धांत) के लघुगणक के रूप में परिभाषित करते हैं, चूँकि अन्य इसे बाद वाले को दूसरा क्यूम्यलेंट-जनक फलन कहते हैं। | |||
===== प्रायिकता-जनक फलन: ===== | |||
संभाव्यता-उत्पन्न करने वाले फलन को इस रूप में परिभाषित किया गया है <math>G(z) = E\left[z^X\right].\,</math> इसका तुरंत तात्पर्य है <math>G(e^t) = E\left[e^{tX}\right] = M_X(t).\,</math> | |||
== यह भी देखें == | == यह भी देखें == | ||
* विशेषता | * विशेषता फलन (संभावना सिद्धांत) | ||
* [[जोखिम में एंट्रोपिक मूल्य]] | * [[जोखिम में एंट्रोपिक मूल्य]] | ||
* [[फैक्टोरियल पल जनरेटिंग फ़ंक्शन]] | * [[फैक्टोरियल पल जनरेटिंग फ़ंक्शन|फैक्टोरियल पल जनरेटिंग फलन]] | ||
* [[दर समारोह|दर फंक्शन]] | * [[दर समारोह|दर फंक्शन]] | ||
* [[हैम्बर्गर पल समस्या]] | * [[हैम्बर्गर पल समस्या]] | ||
==संदर्भ== | ==संदर्भ== | ||
===उद्धरण=== | ===उद्धरण=== | ||
{{Reflist}} | {{Reflist}} | ||
=== स्रोत === | === स्रोत === | ||
{{Refbegin}} | {{Refbegin}} | ||
* {{cite book |last1=Casella |first1=George |last2=Berger |first2=Roger |title=सांख्यिकीय निष्कर्ष|year=2002 |edition=2nd |isbn = 978-0-534-24312-8 |pages=59–68 }} | * {{cite book |last1=Casella |first1=George |last2=Berger |first2=Roger |title=सांख्यिकीय निष्कर्ष|year=2002 |edition=2nd |isbn = 978-0-534-24312-8 |pages=59–68 }} | ||
{{Refend}} | {{Refend}}{{Authority control}} | ||
{{Authority control}} | |||
{{DEFAULTSORT:Moment-Generating Function}} | {{DEFAULTSORT:Moment-Generating Function}} | ||
[[Category: | [[Category:All articles with incomplete citations|Moment-Generating Function]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Articles with incomplete citations from December 2019|Moment-Generating Function]] | ||
[[Category:Articles with invalid date parameter in template|Moment-Generating Function]] | |||
[[Category:Collapse templates|Moment-Generating Function]] | |||
[[Category:Created On 21/03/2023|Moment-Generating Function]] | |||
[[Category:Lua-based templates|Moment-Generating Function]] | |||
[[Category:Machine Translated Page|Moment-Generating Function]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Moment-Generating Function]] | |||
[[Category:Pages with math errors|Moment-Generating Function]] | |||
[[Category:Pages with math render errors|Moment-Generating Function]] | |||
[[Category:Pages with script errors|Moment-Generating Function]] | |||
[[Category:Sidebars with styles needing conversion|Moment-Generating Function]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Moment-Generating Function]] | |||
[[Category:Templates generating microformats|Moment-Generating Function]] | |||
[[Category:Templates that add a tracking category|Moment-Generating Function]] | |||
[[Category:Templates that are not mobile friendly|Moment-Generating Function]] | |||
[[Category:Templates that generate short descriptions|Moment-Generating Function]] | |||
[[Category:Templates using TemplateData|Moment-Generating Function]] | |||
[[Category:Wikipedia metatemplates|Moment-Generating Function]] |
Latest revision as of 16:34, 20 October 2023
संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का आघूर्ण-जनक फलन इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व फलनों या संचयी वितरण फलनों के साथ सीधे काम करने की समानता में विश्लेषणात्मक परिणामों के वैकल्पिक मार्ग का आधार प्रदान करता है। यादृच्छिक चर के भारित रकम के माध्यम से परिभाषित वितरण के आघूर्ण -उत्पन्न फलनों के लिए विशेष रूप से सरल परिणाम हैं। चूँकि, सभी यादृच्छिक चरों में आघूर्ण -उत्पन्न करने वाले फलन नहीं होते हैं।
जैसा कि इसके नाम से स्पष्ट होता है, जनरेटिंग फलन का उपयोग डिस्ट्रीब्यूशन के आघूर्ण (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में nth आघूर्ण को आघूर्ण-जनक फलन के n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0.
वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के अतिरिक्त, आघूर्ण -उत्पन्न करने वाले फलनों को सदिश- या मैट्रिक्स-मूल्यवान यादृच्छिक चर के लिए परिभाषित किया जा सकता है, और यहां तक कि अधिक सामान्य स्थितियों में भी बढ़ाया जा सकता है।
विशेषता फलन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का आघूर्ण -जनक फलन हमेशा सम्मिलित नहीं होता है। वितरण के आघूर्ण -सृजन फंक्शन के व्यवहार और वितरण के गुणों के बीच संबंध हैं, जैसे कि आघूर्ण ों का अस्तित्व।
परिभाषा
संयुक्त त्रिविमीय वितरण के लिए हो। (या ) का आघूर्ण -जनरेटिंग फलन , का आघूर्ण -जनरेटिंग फलन
बशर्ते यह अपेक्षित मूल्य सम्मिलित हो कुछ पड़ोस (गणित) में 0. अर्थात एक है ऐसा कि सभी के लिए में , सम्मिलित है। यदि अपेक्षा 0 के पड़ोस में सम्मिलित नहीं है, तो हम कहते हैं कि आघूर्ण जनक फलन सम्मिलित नहीं है।[1]
दूसरे शब्दों में, X का आघूर्ण -जनक फलन यादृच्छिक चर का अपेक्षित मान है . अधिक सामान्यतः, जब , एक -आयामी यादृच्छिक सदिश, और एक निश्चित सदिश है, एक उपयोग करता है तब के अतिरिक्त :
हमेशा सम्मिलित होता है और 1 के समान होता है। चूंकि, आघूर्ण -सृजन फलनों के साथ एक महत्वपूर्ण समस्या यह है कि आघूर्ण और आघूर्ण -सृजन फलन सम्मिलित नहीं हो सकते हैं, क्योंकि इंटीग्रल को पूरी प्रकार से अभिसरण करने की आवश्यकता नहीं है। इसके विपरीत, विशेषता फलन (संभाव्यता सिद्धांत) या फूरियर रूपांतरण हमेशा सम्मिलित होता है (क्योंकि यह परिमित माप (गणित) के स्थान पर एक बंधे हुए फलन का अभिन्न अंग है), और इसके अतिरिक्त कुछ उद्देश्यों के लिए इसका उपयोग किया जा सकता है।
आघूर्ण -उत्पन्न करने वाले फलन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के आघूर्ण ों को खोजने के लिए किया जा सकता है।[2] श्रृंखला का विस्तार है
इस प्रकार
जहाँ , आघूर्ण (गणित) है । भेदभाव बार के संबंध में और सेटिंग , हम प्राप्त करते हैं वें आघूर्ण उत्पत्ति के बारे में, ; नीचे आघूर्ण ों की गणना देखें।
यदि एक सतत यादृच्छिक चर है, इसके आघूर्ण -उत्पन्न करने वाले फलन के बीच निम्नलिखित संबंध और इसके प्रायिकता घनत्व फलन का दो तरफा लाप्लास रूपांतरण धारण करता है:
चूँकि PDF का दो तरफा लाप्लास परिवर्तन इस रूप में दिया गया है
और आघूर्ण -उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम के माध्यम से) तक विस्तृत होती है
यह की विशेषता फलन के अनुरूप है का एक बाती का घूमना होना जब आघूर्ण जनक फलन सम्मिलित होता है, एक निरंतर यादृच्छिक चर के विशिष्ट फलन के रूप में इसके प्रायिकता घनत्व फलन का फूरियर रूपांतरण है , और सामान्यतः जब कोई फलन घातीय क्रम का है, का फूरियर रूपांतरण अभिसरण के क्षेत्र में इसके दो तरफा लाप्लास परिवर्तन का एक विक रोटेशन है। अधिक जानकारी के लिए फूरियर ट्रांसफॉर्म#लाप्लास ट्रांसफॉर्म देखें।
उदाहरण
यहाँ आघूर्ण -सृजन फलन और समानता के लिए अभिलाआघूर्ण िक फलन के कुछ उदाहरण दिए गए हैं। यह देखा जा सकता है कि विशिष्ट फलन आघूर्ण -उत्पन्न करने वाले फलन का एक विक रोटेशन है जब बाद वाला सम्मिलित है।
Distribution Moment-generating function Characteristic function Degenerate Bernoulli Geometric Binomial Negative binomial Poisson Uniform (continuous) Uniform (discrete) Laplace Normal Chi-squared Noncentral chi-squared Gamma Exponential Beta (see Confluent hypergeometric function) Multivariate normal Cauchy Does not exist Multivariate Cauchy Does not exist
गणना
आघूर्ण -जनक फलन यादृच्छिक चर के एक फलन की अपेक्षा है, इसे इस प्रकार लिखा जा सकता है:
- असतत संभाव्यता द्रव्यमान फंक्शन के लिए,
- सतत प्रायिकता घनत्व फलन के लिए,
- सामान्य स्थितियोंमें: , रीमैन-स्टिएल्टजेस इंटीग्रल का उपयोग करके, और जहाँ संचयी वितरण फंक्शन है। यह एकमात्र लाप्लास-स्टील्टजेस का रूपांतरण है , किन्तु तर्क के संकेत के साथ उलट गया।
ध्यान दें कि उस स्थितियोंके लिए जहां एक सतत संभावना घनत्व फंक्शन है , का दो तरफा लाप्लास रूपांतर है .
जहाँ है वें आघूर्ण (गणित)।
यादृच्छिक चर के रैखिक परिवर्तन
यदि यादृच्छिक चर आघूर्ण जनक फलन है , तब आघूर्ण जनक फलन है
स्वतंत्र यादृच्छिक चर का रैखिक संयोजन
यदि , जहां एक्सi स्वतंत्र यादृच्छिक चर हैं और एi स्थिरांक हैं, तो S के लिए प्रायिकता घनत्व फलनn एक्स में से प्रत्येक के प्रायिकता घनत्व फलनों का कनवल्शन हैi, और एस के लिए आघूर्ण -जनक फलनn के माध्यम से दिया गया है
सदिश-मूल्यवान यादृच्छिक चर
सदिश-मूल्यवान यादृच्छिक चर के लिए | सदिश-मूल्यवान यादृच्छिक चर वास्तविक संख्या घटकों के साथ, आघूर्ण -जनक फलन किसके के माध्यम से दिया जाता है
जहाँ एक सदिश है और डॉट उत्पाद है।
महत्वपूर्ण गुण
आघूर्ण उत्पन्न करने वाले फलन सकारात्मक और लघुगणकीय रूप से उत्तल फलन होते हैं। लॉग-उत्तल, एम (0) = 1 के साथ।
आघूर्ण -सृजन फंक्शन की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, यदि और दो यादृच्छिक चर हैं और t के सभी मानों के लिए,
तब
x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है "यदि दो वितरणों में समान आघूर्ण हैं, तो वे सभी बिंदुओं पर समान हैं।" ऐसा इसलिए है क्योंकि कुछ स्थितियों में, आघूर्ण सम्मिलित होते हैं और फिर भी आघूर्ण -जनक फलन नहीं होता है, क्योंकि सीमा
सम्मिलित नहीं हो सकता है। लॉग-सामान्य वितरण इसका एक उदाहरण है जब ऐसा होता है।
आघूर्ण ों की गणना
आघूर्ण -जनक फलन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर सम्मिलित है, तो यह प्रायिकता वितरण के पल (गणित) का घातीय जनरेटिंग फलन है:
अर्थात्, n एक गैर-ऋणात्मक पूर्णांक होने के साथ, 0 के बारे में nवाँ आघूर्ण आघूर्ण उत्पन्न करने वाले फलन का nवाँ व्युत्पन्न है, जिसका मूल्यांकन t = 0 पर किया जाता है।
अन्य गुण
जेन्सेन की असमानता आघूर्ण -उत्पन्न करने वाले फलन पर एक साधारण निचली सीमा प्रदान करती है:
कहाँ X का माध्य है।
एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ आघूर्ण -उत्पन्न करने वाले फलन का उपयोग किया जा सकता है। इस कथन को चेरनॉफ़ बाध्य भी कहा जाता है। तब से के लिए नीरस रूप से बढ़ रहा है , अपने पास
किसी के लिए और कोई भी, प्रदान किया गया सम्मिलित। उदाहरण के लिए, जब X एक मानक सामान्य वितरण है और , हम चुन सकते हैं और याद करो . यह देता है , जो त्रुटिहीन मान के 1+a के कारक के भीतर है।
हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के स्थितियोंमें आघूर्ण -उत्पन्न करने वाले फलन पर सीमाएं प्रदान करते हैं।
कब गैर-ऋणात्मक है, आघूर्ण जनक फलन आघूर्ण ों पर एक सरल, उपयोगी सीमा देता है:
किसी के लिए और .
यह असमानता से अनुसरण करता है जिसमें हम स्थानापन्न कर सकते हैं तात्पर्य किसी के लिए . अब यदि और , इसे पुनर्व्यवस्थित किया जा सकता है . अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है के अनुसार .
एक उदाहरण के रूप में विचार करें साथ स्वतंत्रता की कोटियां। फिर आघूर्ण -जनक फंक्शन से # उदाहरण . उठा और बाध्य में प्रतिस्थापन:
हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय आघूर्ण सही सीमा है . सीमाओं की समानता करने के लिए, हम बड़े पैमाने पर स्पर्शोन्मुखता पर विचार कर सकते हैं . यहां आघूर्ण -जनक फलन बाध्य है , जहां वास्तविक सीमा है . इस प्रकार इस स्थितियोंमें आघूर्ण -जनक फलन बहुत मजबूत है।
अन्य फलनों से संबंध
आघूर्ण -सृजन फंक्शन से संबंधित कई अन्य अभिन्न परिवर्तन हैं जो संभाव्यता सिद्धांत में आम हैं:
विशेषता फलन (संभाव्यता सिद्धांत):
विशेषता फलन (संभावना सिद्धांत) के माध्यम से आघूर्ण -सृजन फंक्शन से संबंधित है चारित्रिक फलन iX का आघूर्ण -जनक फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फलन को संभाव्यता घनत्व फलन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण के माध्यम से इससे निकाला जा सकता है।
संचयी-जनन फंक्शन:
क्यूम्यलेंट-जनक फलन को संभाव्यता जनक फलन के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके अतिरिक्त क्यूम्यलेंट-जनरेटिंग फलन को विशेषता फलन (संभाव्यता सिद्धांत) के लघुगणक के रूप में परिभाषित करते हैं, चूँकि अन्य इसे बाद वाले को दूसरा क्यूम्यलेंट-जनक फलन कहते हैं।
प्रायिकता-जनक फलन:
संभाव्यता-उत्पन्न करने वाले फलन को इस रूप में परिभाषित किया गया है इसका तुरंत तात्पर्य है
यह भी देखें
- विशेषता फलन (संभावना सिद्धांत)
- जोखिम में एंट्रोपिक मूल्य
- फैक्टोरियल पल जनरेटिंग फलन
- दर फंक्शन
- हैम्बर्गर पल समस्या
संदर्भ
उद्धरण
- ↑ Casella, George; Berger, Roger L. (1990). सांख्यिकीय निष्कर्ष. Wadsworth & Brooks/Cole. p. 61. ISBN 0-534-11958-1.
- ↑ Bulmer, M. G. (1979). सांख्यिकी के सिद्धांत. Dover. pp. 75–79. ISBN 0-486-63760-3.
- ↑ Kotz et al.[full citation needed] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution
स्रोत
- Casella, George; Berger, Roger (2002). सांख्यिकीय निष्कर्ष (2nd ed.). pp. 59–68. ISBN 978-0-534-24312-8.