बर्नूली प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by the same user not shown)
Line 277: Line 277:
[[पहली तरह की स्टर्लिंग संख्या]] को दर्शाता है।
[[पहली तरह की स्टर्लिंग संख्या]] को दर्शाता है।


== [[गुणन प्रमेय]] ==
== गुणन प्रमेय ==
1851 में [[जोसेफ लुडविग राबे]] द्वारा गुणन प्रमेय दिए गए थे:
1851 में [[जोसेफ लुडविग राबे]] द्वारा गुणन प्रमेय दिए गए थे:



Latest revision as of 16:22, 25 October 2023

गणित में, बरनौली बहुपद, याकूब बरनौली के नाम पर, बरनौली संख्या और द्विपद गुणांक का सम्मिश्रण है। उनका उपयोग फलन (गणित) के श्रृंखला विस्तार के लिए और यूलर-मैकलॉरिन सूत्र के साथ किया जाता है।

ये बहुपद कई विशेष कार्यों के अध्ययन में पाए जाते हैं और विशेष रूप से, रीमैन जीटा फलन और हर्विट्ज़ जीटा फलन वे एक अपील अनुक्रम हैं (अर्थात साधारण व्युत्पन्न ऑपरेटर के लिए एक शेफ़र अनुक्रम)। बरनौली बहुपदों के लिए, इकाई अंतराल में एक्स-अक्ष के क्रॉसिंग की संख्या डिग्री के साथ नहीं बढ़ती है। बड़ी डिग्री की सीमा में, वे संपर्क करते हैं, जब उचित रूप से बढ़ाया जाता है, साइन और कोसाइन कार्य करता है।

बरनौली बहुपद

जनरेटिंग फलन के आधार पर बहुपदों का एक समान समुच्चय, यूलर बहुपदों का परिवार है।

प्रतिनिधित्व

बरनौली बहुपद Bn जनरेटिंग फलन द्वारा परिभाषित किया जा सकता है। वे विभिन्न प्रकार के व्युत्पन्न अभ्यावेदन भी स्वीकार करते हैं।

फलनों का निर्माण

बरनौली बहुपदों के लिए जनक फलन है

यूलर बहुपदों के लिए जनक फलन है


स्पष्ट सूत्र

n ≥ 0 के लिए, जहाँ Bk बरनौली संख्या हैं, और Ek यूलर संख्या हैं।

एक अंतर ऑपरेटर द्वारा प्रतिनिधित्व

बरनौली बहुपद भी द्वारा दिया जाता है

जहां डी = डी/डीएक्स एक्स के संबंध में भेदभाव है और अंश औपचारिक शक्ति श्रृंखला के रूप में विस्तारित है। यह इस प्रकार है कि

सी एफ #इंटीग्रल्स। उसी टोकन से, यूलर बहुपदों द्वारा दिया जाता है


एक अभिन्न ऑपरेटर द्वारा प्रतिनिधित्व

बरनौली बहुपद भी द्वारा निर्धारित अद्वितीय बहुपद हैं

अभिन्न परिवर्तन

बहुपद च पर, बस के बराबर है

इसका उपयोग उलटा उत्पन्न करने के लिए किया जा सकता है।

एक और स्पष्ट सूत्र

बरनौली बहुपदों के लिए एक स्पष्ट सूत्र द्वारा दिया गया है

यह जटिल विमान में हर्विट्ज़ जीटा फलन के लिए श्रृंखला अभिव्यक्ति के समान है। दरअसल, रिश्ता है

जहां ζ(s, q) हर्विट्ज़ जीटा फलन है। उत्तरार्द्ध बरनौली बहुपदों को सामान्यीकृत करता है, जो एन के गैर-पूर्णांक मानों की अनुमति देता है। दूसरे प्रकार के ψn(x) के बर्नौली बहुपद, जिसे फोंटाना-बेसेल बहुपद के रूप में भी जाना जाता है, निम्नलिखित जनरेटिंग फलन द्वारा परिभाषित बहुपद हैं: पहले पांच बहुपद हैं: और उनके लिए एक अलग संकेतन का भी उपयोग कर सकते हैं (सबसे अधिक उपयोग किया जाता है) वैकल्पिक संकेतन बीएन (एक्स)) है। बरनौली बहुपदों के लिए फूरियर श्रृंखला का उपयोग एक से अधिक पूर्णांक तर्कों के लिए Riemann zeta फ़ंक्शन के मानों के बारे में जानकारी प्राप्त करने के लिए किया जाता है। यदि तर्क समान है तो हम सुप्रसिद्ध सटीक मानों को पुनः प्राप्त करते हैं, यदि तर्क विषम है तो हम अभिन्न निरूपण और तेजी से अभिसरण श्रृंखला पाते हैं

आंतरिक योग को x का nवाँ आगे का अंतर समझा जा सकता हैमी; वह है,

जहां Δ आगे अंतर ऑपरेटर है। इस प्रकार, कोई लिख सकता है

यह सूत्र ऊपर दिखाई देने वाली पहचान से निम्नानुसार प्राप्त किया जा सकता है। चूंकि आगे अंतर ऑपरेटर Δ बराबर है

जहां डी एक्स के संबंध में भेदभाव है, हमारे पास मर्केटर श्रृंखला से है,

जब तक यह xm जैसे mth-डिग्री बहुपद पर संचालित होता है, कोई n को 0 से केवल m तक जाने दे सकता है।

बरनौली बहुपदों के लिए एक अभिन्न प्रतिनिधित्व नोरलंड-राइस इंटीग्रल द्वारा दिया गया है, जो एक परिमित अंतर के रूप में अभिव्यक्ति से आता है।

यूलर बहुपदों के लिए एक स्पष्ट सूत्र द्वारा दिया गया है

उपर्युक्त इस तथ्य का उपयोग करते हुए समान रूप से अनुसरण करता है


पीटीएच शक्तियों का योग

ऊपर दिए गए अभ्यावेदन में से किसी एक का इंटीग्रल ऑपरेटर द्वारा उपयोग करना या अंतर और डेरिवेटिव , अपने पास

(माना 00 = 1).

बरनौली और यूलर संख्या

बरनौली संख्याएँ किसके द्वारा दी जाती हैं

यह परिभाषा देता है के लिए .

एक वैकल्पिक फलन बरनौली संख्या को इस प्रकार परिभाषित करती है

दो सम्मेलन केवल के लिए भिन्न होते हैं तब से .

यूलर संख्या किसके द्वारा दिए जाते हैं


कम डिग्री के लिए स्पष्ट अभिव्यक्तियाँ

पहले कुछ बरनौली बहुपद हैं:

पहले कुछ यूलर बहुपद हैं:


अधिकतम और न्यूनतम

उच्च n पर, B में भिन्नता की मात्राn(x) x = 0 और x = 1 के बीच बड़ा हो जाता है। उदाहरण के लिए,

जो दर्शाता है कि x = 0 (और x = 1) पर मान -3617/510 ≈ −7.09 है, जबकि x = 1/2 पर, मान 118518239/3342336 ≈ +7.09 है। डीएच लेहमर[1] दिखाया गया है कि बी का अधिकतम मूल्यn(x) 0 और 1 के बीच पालन करता है

जब तक n 2 मॉड्यूल 4 नहीं है, किस प्रकरण में

(जहाँ रीमैन ज़ेटा फलन है), जबकि न्यूनतम पालन करता है

जब तक कि n 0 मॉड्यूल 4 न हो, किस प्रकरण में

ये सीमाएँ वास्तविक अधिकतम और न्यूनतम के काफी करीब हैं, और लेह्मर अधिक सटीक सीमाएँ भी देता है।

अंतर और डेरिवेटिव्स

बरनौली और यूलर बहुपद अम्ब्रल कैलकुलस से कई संबंधों का पालन करते हैं:

(Δ आगे अंतर ऑपरेटर है)। भी,

ये बहुपद अनुक्रम अपील अनुक्रम हैं:


अनुवाद

ये सर्वसमिकाएँ यह कहने के भी समतुल्य हैं कि ये बहुपद अनुक्रम अपेल क्रम हैं। (हर्माइट बहुपद एक अन्य उदाहरण हैं।)

समरूपता

[2]निम्नलिखित आश्चर्यजनक समरूपता संबंध स्थापित किया: यदि r + s + t = n और x + y + z = 1, तब

जहाँ


फूरियर श्रृंखला

बर्नोली बहुपदों की फूरियर श्रृंखला भी एक डिरिचलेट श्रृंखला है, जो विस्तार द्वारा दी गई है

उपयुक्त रूप से स्केल किए गए त्रिकोणमितीय कार्यों के लिए साधारण बड़ी n सीमा पर ध्यान दें।

यह हर्विट्ज़ जेटा फलन के अनुरूप रूप का एक विशेष प्रकरण है

यह विस्तार केवल 0 ≤ x ≤ 1 जब n ≥ 2 के लिए मान्य होता है और 0 < x < 1 जब n = 1 के लिए मान्य होता है।

यूलर बहुपदों की फूरियर श्रृंखला की भी गणना की जा सकती है। कार्यों को परिभाषित करना

और

के लिए , यूलर बहुपद में फूरियर श्रृंखला है

और

ध्यान दें कि और क्रमशः विषम और सम हैं:

और

वे लीजेंड्रे ची फलन से संबंधित हैं जैसा

और


उलटा

बहुपदों के संदर्भ में एकपद को व्यक्त करने के लिए बरनौली और यूलर बहुपदों को व्युत्क्रम किया जा सकता है।

विशेष रूप से, उपरोक्त खंड से स्पष्ट रूप से प्रतिनिधित्व पर एक अभिन्न ऑपरेटर द्वारा, यह इस प्रकार है

और


गिरते फैक्टोरियल से संबंध

बरनौली बहुपदों को गिरते क्रमगुणों के संदर्भ में विस्तारित किया जा सकता है जैसा

जहाँ और

दूसरी तरह की स्टर्लिंग संख्या को दर्शाता है। बरनौली बहुपदों के संदर्भ में गिरते क्रमगुणों को व्यक्त करने के लिए उपरोक्त को व्युत्क्रम किया जा सकता है:

जहाँ

पहली तरह की स्टर्लिंग संख्या को दर्शाता है।

गुणन प्रमेय

1851 में जोसेफ लुडविग राबे द्वारा गुणन प्रमेय दिए गए थे:

एक प्राकृतिक संख्या के लिए m≥1,


इंटीग्रल्स

बरनौली और यूलर बहुपदों को बरनौली और यूलर संख्याओं से संबंधित दो निश्चित समाकल हैं:[3]

एक अन्य अभिन्न सूत्र बताता है[4]

के लिए विशेष प्रकरण के साथ


आवधिक बरनौली बहुपद

एक आवधिक बरनौली बहुपद Pn(x) एक बरनौली बहुपद है जिसका मूल्यांकन तर्क के भिन्नात्मक भाग पर किया जाता है x. इन कार्यों का उपयोग यूलर-मैकलॉरिन सूत्र में शेष शब्द प्रदान करने के लिए किया जाता है, जो योगों को समाकलित करता है। पहला बहुपद एक साउथूथ तरंग है।

सख्ती से ये कार्य बहुपद नहीं हैं और अधिक उचित रूप से आवधिक बरनौली कार्यों को कहा जाना चाहिए, और P0(x) एक कार्य भी नहीं है, एक सॉटूथ और एक डायराक कॉम्ब के व्युत्पन्न होने के नाते इसका प्रयोग किया जाता है।

निम्नलिखित गुण रुचि के हैं, सभी के लिए मान्य हैं :


यह भी देखें

संदर्भ

  1. D.H. Lehmer, "On the Maxima and Minima of Bernoulli Polynomials", American Mathematical Monthly, volume 47, pages 533–538 (1940)
  2. Zhi-Wei Sun; Hao Pan (2006). "Bernoulli और Euler बहुपदों से संबंधित सर्वसमिकाएँ". Acta Arithmetica. 125 (1): 21–39. arXiv:math/0409035. Bibcode:2006AcAri.125...21S. doi:10.4064/aa125-1-3. S2CID 10841415.
  3. Takashi Agoh & Karl Dilcher (2011). "बरनौली बहुपदों के गुणनफलों का समाकलन". Journal of Mathematical Analysis and Applications. 381: 10–16. doi:10.1016/j.jmaa.2011.03.061.
  4. Elaissaoui, Lahoucine & Guennoun, Zine El Abidine (2017). "Evaluation of log-tangent integrals by series involving ζ(2n+1)". Integral Transforms and Special Functions (in English). 28 (6): 460–475. arXiv:1611.01274. doi:10.1080/10652469.2017.1312366. S2CID 119132354.


बाहरी संबंध