सन्निकटन त्रुटि: Difference between revisions

From Vigyanwiki
m (10 revisions imported from alpha:अनुमान_त्रुटि)
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 29: Line 29:


=== सामान्यीकरण ===
=== सामान्यीकरण ===
इन परिभाषाओं को विशेष परिस्थितियों में बढ़ाया जा सकता है जब <math>v</math> और <math>v_{\text{approx}}</math> यूक्लिडियन सदिश हैं, n -विमीय सदिश , निरपेक्ष मान को एक मानदंड (गणित) एन-मानदंड के साथ बदलकर बढ़ाया जा सकता है।<ref name="GOLUB_MAT_COMP2.2.3">{{cite book|last=Golub|first=Gene|author-link=Gene_H._Golub|author2=Charles F. Van Loan|title=मैट्रिक्स संगणना - तीसरा संस्करण|publisher=The Johns Hopkins University Press|year=1996|location=Baltimore|pages=53|isbn=0-8018-5413-X}}
इन परिभाषाओं को विशेष परिस्थितियों में बढ़ाया जा सकता है जब <math>v</math> और <math>v_{\text{approx}}</math> यूक्लिडियन सदिश हैं, n -विमीय सदिश , निरपेक्ष मान को एक मानदंड (गणित) एन-मानदंड के साथ बदलकर बढ़ाया जा सकता है। <ref name="GOLUB_MAT_COMP2.2.3">{{cite book|last=Golub|first=Gene|author-link=Gene_H._Golub|author2=Charles F. Van Loan|title=मैट्रिक्स संगणना - तीसरा संस्करण|publisher=The Johns Hopkins University Press|year=1996|location=Baltimore|pages=53|isbn=0-8018-5413-X}}
</ref>
</ref>


Line 75: Line 75:
[[Category:Templates Vigyan Ready]]
[[Category:Templates Vigyan Ready]]
[[Category:संख्यात्मक विश्लेषण]]
[[Category:संख्यात्मक विश्लेषण]]
[[Category:Vigyan Ready]]

Latest revision as of 16:42, 25 October 2023

(नीला) का ग्राफ़ इसके रैखिक सन्निकटन के साथ (लाल) a = 0 पर सन्निकटन त्रुटि वक्रों के बीच का अंतर है, और यह x मानों के लिए 0 से आगे बढ़ जाता है।

डेटा मान में सन्निकटन त्रुटि एक सटीक मान और उसके कुछ सन्निकटन के बीच की विसंगति है। यह त्रुटि एक पूर्ण त्रुटि (विसंगति की संख्यात्मक राशि) या एक सापेक्ष त्रुटि (डेटा मान द्वारा विभाजित पूर्ण त्रुटि) के रूप में व्यक्त की जा सकती है।

संगणना मशीन की सटीकता या माप त्रुटि के कारण एक सन्निकटन त्रुटि हो सकती है अनुमानित त्रुटि लक्ष्य फलन और किसी दिए गए आर्किटेक्चर के निकटतम तंत्रिका नेटवर्क फलन के बीच की दूरी को संदर्भित करती है और अनुमान त्रुटि इस आदर्श नेटवर्क फलन और अनुमानित नेटवर्क फलन के बीच की दूरी को संदर्भित करती है।(उदाहरण के लिए कागज के एक टुकड़े की लंबाई 4.53 सेमी है लेकिन मापक आपको केवल निकटतम 0.1 सेमी तक अनुमान लगाने की अनुमति देता है, इसलिए आप इसे 4.5 सेमी के रूप में मापते हैं)।

संख्यात्मक विश्लेषण के गणित क्षेत्र में, कलन विधि की संख्यात्मक स्थिरता इंगित करती है कि एल्गोरिथ्म द्वारा त्रुटि कैसे प्रचारित की जाती है।

औपचारिक परिभाषा

सामान्यतः सापेक्ष त्रुटि और पूर्ण त्रुटि के बीच अंतर होता है।

कुछ मान v और इसका सन्निकटन vapprox दिया गया है, पूर्ण त्रुटि है

जहां लम्बवत बार निरपेक्ष मान को दर्शाते हैं।

अगर सापेक्ष त्रुटि है

और प्रतिशत त्रुटि (सापेक्ष त्रुटि की अभिव्यक्ति) है

शब्दों में, पूर्ण त्रुटि सटीक मान और सन्निकटन के बीच के अंतर का परिमाण (गणित) है। सापेक्ष त्रुटि सटीक मान के परिमाण से विभाजित पूर्ण त्रुटि है।

एक त्रुटि सीमा सन्निकटन त्रुटि के सापेक्ष या पूर्ण आकार पर एक ऊपरी सीमा है।

सामान्यीकरण

इन परिभाषाओं को विशेष परिस्थितियों में बढ़ाया जा सकता है जब और यूक्लिडियन सदिश हैं, n -विमीय सदिश , निरपेक्ष मान को एक मानदंड (गणित) एन-मानदंड के साथ बदलकर बढ़ाया जा सकता है। [1]

उदाहरण

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

एक उदाहरण के रूप में, यदि सटीक मान 50 है और सन्निकटन 49.9 है, तो पूर्ण त्रुटि 0.1 है और सापेक्ष त्रुटि 0.1/50 = 0.002 = 0.2% है। एक और उदाहरण होगा, यदि 6 एमएल बीकर को मापने में, मान 5 ml था। सही रीडिंग 6 एमएल है, इसका मतलब है कि उस विशेष स्थिति में प्रतिशत त्रुटि, गोल, 16.7% है।

व्यापक रूप से भिन्न आकार की संख्याओं के अनुमानों की तुलना करने के लिए प्रायः सापेक्ष त्रुटि का उपयोग किया जाता है; उदाहरण के लिए, 3 की पूर्ण त्रुटि के साथ संख्या 1,000 का अनुमान लगाना, अधिकांश अनुप्रयोगों में, 3 की पूर्ण त्रुटि के साथ संख्या 1,000,000 का अनुमान लगाने से कहीं अधिक बुरा है; पहले मामले में सापेक्ष त्रुटि 0.003 है और दूसरे में यह केवल 0.000003 है।

सापेक्ष त्रुटि की दो विशेषताएं हैं जिन्हें ध्यान में रखा जाना चाहिए। सबसे पहले, सापेक्ष त्रुटि अपरिभाषित होती है जब वास्तविक मान शून्य होता है जैसा कि यह भाजक में प्रकट होता है (नीचे देखें)। दूसरे, सापेक्ष त्रुटि केवल तब समझ में आती है जब एक माप का स्तर प्रतिशत मापांक पर मापा जाता है, (अर्थात एक ऐसा पैमाना जिसमें एक वास्तविक सार्थक शून्य हो), अन्यथा यह माप इकाइयों के प्रति संवेदनशील होगा। उदाहरण के लिए, जब सेल्सियस पैमाने में दिए गए तापमान माप में एक पूर्ण त्रुटि 1 डिग्री सेल्सियस है, और वास्तविक मान 2 डिग्री सेल्सियस है, सापेक्ष त्रुटि 0.5 है, और प्रतिशत त्रुटि 50% है। इसी मामले के लिए, जब तापमान केल्विन पैमाने में दिया जाता है, तो वही 1 K निरपेक्ष त्रुटि 275.15 K के समान वास्तविक मान के साथ 3.63 की सापेक्ष त्रुटि ×10−3 देता है और केवल 0.363% की प्रतिशत त्रुटि का मापन किया जाता है। सेल्सियस तापमान को मापन के स्तर प्रतिशत मापांक पर मापा जाता है, जबकि केल्विन पैमाने में एक वास्तविक शून्य होता है और ऐसा ही एक अनुपात पैमाना है। इस प्रकार सापेक्ष त्रुटि बहुत सार्थक नहीं है।

उपकरण

अधिकांश संकेतक उपकरणों में, पूर्ण पैमाने पर पढ़ने के एक निश्चित प्रतिशत की सटीकता की गारंटी है। निर्दिष्ट मूल्यों से इन विचलनों की सीमा को सीमित त्रुटियों या गारंटी त्रुटियों के रूप में जाना जाता है।[2]


यह भी देखें

संदर्भ

  1. Golub, Gene; Charles F. Van Loan (1996). मैट्रिक्स संगणना - तीसरा संस्करण. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  2. Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4


बाहरी संबंध