संभाव्यता वितरण के बीच संबंध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Topic in probability theory and statistics}}
{{Short description|Topic in probability theory and statistics}}
[[File:Relationships among some of univariate probability distributions.jpg|thumb|कुछ अविभाज्य संभाव्यता वितरणों के बीच संबंधों को जुड़ी हुई रेखाओं के साथ चित्रित किया गया है। धराशायी रेखाओं का अर्थ है अनुमानित संबंध। और जानकारी:<ref>{{cite journal|last=LEEMIS|first=Lawrence M.|author2=Jacquelyn T. MCQUESTON |title=यूनीवेरिएट वितरण संबंध|journal=American Statistician|date=February 2008|volume=62|issue=1|pages=45–53|url=http://www.math.wm.edu/~leemis/2008amstat.pdf|doi=10.1198/000313008x270448|s2cid=9367367 }}</ref>]]
[[File:Relationships among some of univariate probability distributions.jpg|thumb|कुछ अविभाज्य संभाव्यता वितरणों के बीच संबंधों को जुड़ी हुई रेखाओं के साथ चित्रित किया गया है। धराशायी रेखाओं का अर्थ है अनुमानित संबंध। और जानकारी:<ref>{{cite journal|last=LEEMIS|first=Lawrence M.|author2=Jacquelyn T. MCQUESTON |title=यूनीवेरिएट वितरण संबंध|journal=American Statistician|date=February 2008|volume=62|issue=1|pages=45–53|url=http://www.math.wm.edu/~leemis/2008amstat.pdf|doi=10.1198/000313008x270448|s2cid=9367367 }}</ref>]]
[[File:ProbOnto2.5.jpg|thumb|300px|[[ProbOnto]] में अविभाज्य संभाव्यता वितरण के बीच संबंध।<ref>{{cite journal|pmid=27153608 | doi=10.1093/bioinformatics/btw170 | pmc=5013898  | volume=32 | issue=17 | pages=2719–21 | title=ProbOnto: ontology and knowledge base of probability distributions | year=2016 | journal=Bioinformatics | last1 = Swat | first1 = MJ | last2 = Grenon | first2 = P | last3 = Wimalaratne | first3 = S}}</ref>]]संभाव्यता सिद्धांत और सांख्यिकी में, [[संभाव्यता वितरण]] के बीच कई संबंध हैं। इन संबंधों को निम्नलिखित समूहों में वर्गीकृत किया जा सकता है:
[[File:ProbOnto2.5.jpg|thumb|300px|[[ProbOnto]] में अविभाज्य संभाव्यता वितरण के बीच संबंध।<ref>{{cite journal|pmid=27153608 | doi=10.1093/bioinformatics/btw170 | pmc=5013898  | volume=32 | issue=17 | pages=2719–21 | title=ProbOnto: ontology and knowledge base of probability distributions | year=2016 | journal=Bioinformatics | last1 = Swat | first1 = MJ | last2 = Grenon | first2 = P | last3 = Wimalaratne | first3 = S}}</ref>]]संभाव्यता सिद्धांत और सांख्यिकी में, '''संभाव्यता वितरण के बीच कई संबंध''' होते हैं। ये संबंध निम्नलिखित समूहों में वर्गीकृत किए जा सकते हैं:
*एक वितरण एक व्यापक पैरामीटर स्थान के साथ दूसरे का एक विशेष मामला है
*एक वितरण एक व्यापक पैरामीटर स्थान के साथ दूसरे का एक विशेष स्थिति है
* रूपांतरण (एक यादृच्छिक चर का कार्य);
* रूपांतरण (एक यादृच्छिक चर का कार्य);
* संयोजन (कई चर का कार्य);
* संयोजन (कई चरों का कार्य);
* सन्निकटन (सीमा) संबंध;
* सन्निकटन (सीमा) संबंध;
*यौगिक संबंध (बायेसियन अनुमान के लिए उपयोगी);
*यौगिक संबंध (बायेसियन अनुमान के लिए उपयोगी);
Line 12: Line 12:
== वितरण पैरामीट्रिजेशन का विशेष मामला ==
== वितरण पैरामीट्रिजेशन का विशेष मामला ==


* प्राचलों n = 1 और p के साथ एक द्विपद बंटन, प्राचल p के साथ एक बरनौली बंटन है।
* एक पैरामीटर n = 1 और p के साथ एक द्विपद बंटन, पैरामीटर  p के साथ एक बर्नौली वितरण होता है।
* प्राचलों n = 1 और p के साथ एक ऋणात्मक द्विपद बंटन, प्राचल p के साथ एक ज्यामितीय बंटन है।
* पैरामीटर n = 1 और p के साथ एक ऋणात्मक द्विपद बंटन, पैरामीटर p के साथ एक ज्यामितीय वितरण होता  है।
* आकार पैरामीटर α = 1 और दर पैरामीटर β के साथ एक [[गामा वितरण]] दर पैरामीटर β के साथ एक घातीय वितरण है।
* आकार पैरामीटर α = 1 और दर पैरामीटर β के साथ एक [[गामा वितरण]] दर पैरामीटर β के साथ एक घातीय वितरण होता है।
* आकार पैरामीटर α = v/2 और दर पैरामीटर β = 1/2 के साथ एक गामा वितरण स्वतंत्रता की ν डिग्री (सांख्यिकी) के साथ एक [[ची-वर्ग वितरण]] है।
* आकार पैरामीटर α = v/2 और दर पैरामीटर β = 1/2 के साथ एक गामा वितरण स्वतंत्रता की ν डिग्री (सांख्यिकी) के साथ एक [[ची-वर्ग वितरण]] होता है।
* स्वतंत्रता की 2 डिग्री (k = 2) के साथ एक ची-वर्ग वितरण 2 के माध्य मान (दर λ = 1/2) के साथ एक घातीय वितरण है।
* स्वतंत्रता की 2 डिग्री (k = 2) के साथ एक ची-वर्ग वितरण 2 के माध्य मान (दर λ = 1/2) के साथ एक घातीय वितरण होता है।
* आकार पैरामीटर k = 1 और दर पैरामीटर β के साथ एक वेइबुल वितरण दर पैरामीटर β के साथ एक घातीय वितरण है।
* आकार पैरामीटर k = 1 और दर पैरामीटर β के साथ एक वेइबुल वितरण दर पैरामीटर β के साथ एक घातीय वितरण है।
* आकृति पैरामीटर α = β = 1 के साथ एक [[बीटा वितरण]] वास्तविक संख्या 0 से 1 पर [[निरंतर समान वितरण]] है।
* आकृति पैरामीटर α = β = 1 के साथ एक [[बीटा वितरण]] वास्तविक संख्या 0 से 1 पर [[निरंतर समान वितरण]] होता है।
* पैरामीटर n और आकार पैरामीटर α = β = 1 के साथ एक [[बीटा-[[द्विपद वितरण]]]] पूर्णांक 0 से n पर एक [[असतत समान वितरण]] है।
* पैरामीटर n और आकार पैरामीटर α = β = 1 के साथ एक [[बीटा-[[द्विपद वितरण]]]] पूर्णांक 0 से n पर एक [[असतत समान वितरण]] होता है।
* स्वतंत्रता की एक डिग्री (v = 1) के साथ एक छात्र का टी-वितरण स्थान पैरामीटर x = 0 और स्केल पैरामीटर γ = 1 के साथ एक [[कॉची वितरण]] है।
* स्वतंत्रता की एक डिग्री (v = 1) के साथ एक छात्र का टी-वितरण स्थान पैरामीटर x = 0 और स्केल पैरामीटर γ = 1 के साथ एक [[कॉची वितरण]] होता है।
* मापदंडों c = 1 और k (और स्केल λ) के साथ एक Burr वितरण आकार k (और स्केल λ) के साथ एक [[लोमैक्स वितरण]] है।
* मापदंडों c = 1 और k (और स्केल λ) के साथ एक Burr वितरण आकार k (और स्केल λ) के साथ एक [[लोमैक्स वितरण]] होता है।


== एक चर का रूपांतरण ==
== एक चर का रूपांतरण ==
Line 27: Line 27:
=== एक यादृच्छिक चर का गुणक ===
=== एक यादृच्छिक चर का गुणक ===


चर को किसी भी सकारात्मक वास्तविक स्थिरांक से गुणा करने पर मूल वितरण का एक स्केलिंग प्राप्त होता है।
किसी भी सकारात्मक वास्तविक निर्धारित संख्या से चर को गुणा करने से मूल वितरण का स्केलिंग होता है। कुछ स्व-उत्पादक होते हैं, जिसका अर्थ होता है कि स्केलिंग उन्हीं वितरणों के परिवार को उत्पन्न करता है, के होने पर भी पैरामीटर अलग हों:[[सामान्य वितरण]], गामा वितरण, कॉची वितरण, घातीय वितरण, [[एरलांग वितरण]], वीबुल वितरण, [[रसद वितरण]], [[त्रुटि वितरण]], शक्ति-कानून वितरण, [[रेले वितरण]]।
कुछ स्व-प्रतिकृति हैं, जिसका अर्थ है कि स्केलिंग वितरण के समान परिवार का उत्पादन करती है, हालांकि एक अलग पैरामीटर के साथ:
[[सामान्य वितरण]], गामा वितरण, कॉची वितरण, घातीय वितरण, [[एरलांग वितरण]], वीबुल वितरण, [[रसद वितरण]], [[त्रुटि वितरण]], Power_law#Power-law_probability_distributions|पावर-लॉ वितरण, [[रेले वितरण]]।


उदाहरण:
उदाहरण:
* अगर ''X'' आकार और दर मापदंडों (''α'', ''β'') के साथ एक गामा यादृच्छिक चर है, तो ''Y'' = ''aX'' मापदंडों के साथ एक गामा यादृच्छिक चर है (''α'',''β''/''a'')
* यदि ''X'' एक गामा यादृच्छिक चर है जिसके आकार और दर पैरामीटर(''α'', ''β'') हैं, तो ''Y'' = ''aX'' एक गामा यादृचिक चर होगा जिसके पैरामीटर (''α'',''β''/''a'') होंगे।


* अगर ''X'' शेप और स्केल पैरामीटर्स (''k'', ''θ'') के साथ गामा रैंडम वेरिएबल है, तो ''Y'' = ''aX'' पैरामीटर्स वाला गामा रैंडम वेरिएबल है (''के'',''एθ'')
* यदि ''X'' एक गामा यादृचिक चर है जिसके आकार और पैमाने के पैरामीटर (''k'', ''θ'') हैं, तो ''Y'' = ''aX'' एक गामा यादृचिक चर होगा जिसके पैरामीटर (''के'',''एθ'') होंगे।


=== एक यादृच्छिक चर का रैखिक कार्य ===
=== एक यादृच्छिक चर का रैखिक कार्य ===


एफ़िन ट्रांसफ़ॉर्म ax + b से मूल वितरण का 'रिलोकेशन और स्केलिंग' प्राप्त होता है। निम्नलिखित स्व-प्रतिकृति हैं:
एफ़िन ट्रांसफ़ॉर्म ax + b मूल वितरण के स्थानांतरण और माप का परिवर्तन देता है। निम्नलिखित आत्म-उत्पादक हैं: नॉर्मल वितरण, कॉशी वितरण, लॉजिस्टिक वितरण, त्रुटि वितरण, पावर वितरण, रेले वितरण।
सामान्य वितरण, कॉची वितरण, लॉजिस्टिक वितरण, त्रुटि वितरण, Power_law#Power-law_probability_distributions, Rayleigh वितरण।


'उदाहरण: '
उदाहरण:  
* यदि Z पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = m, σ<sup>2</sup> = एस<sup>2</sup>), तो X = aZ + b पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = am + b, σ<sup>2</sup> = ए<sup>2</sup>एस<sup>2</sup>).
* यदि Z पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = m, σ<sup>2</sup> = एस<sup>2</sup>), तो X = aZ + b पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = am + b, σ<sup>2</sup> = ए<sup>2</sup>एस<sup>2</sup>).


=== एक यादृच्छिक चर का व्युत्क्रम ===
=== एक यादृच्छिक चर का व्युत्क्रम ===


यादृच्छिक चर X का व्युत्क्रम 1/X, निम्नलिखित मामलों में X के वितरण के समान परिवार का सदस्य है:
एक यादृच्छिक चर X के रिकिप्रोकल 1/X, निम्नलिखित स्थितियों में एक ही वितरण परिवार का सदस्य होता है:कौशी वितरण, [[एफ वितरण|F वितरण]], [[लॉग रसद वितरण]]।
कौशी वितरण, [[एफ वितरण]], [[लॉग रसद वितरण]]।


'उदाहरण: '
उदाहरण:  
* यदि X एक कौशी (μ, σ) यादृच्छिक चर है, तो 1/X एक कौशी (μ/C, σ/C) यादृच्छिक चर है जहाँ C = μ<sup>2</sup> + पृ<sup>2</उप>।
* यदि X एक कौशी (μ, σ) यादृच्छिक चर है, तो 1/X एक कौशी (μ/C, σ/C) यादृच्छिक चर है जहाँ C = μ<sup>2</sup> + पृ<sup>2</उप>।
* यदि एक्स एक एफ है (ν<sub>1</sub>, एन<sub>2</sub>) यादृच्छिक चर तब 1/X एक F(ν) है<sub>2</sub>, एन<sub>1</sub>) अनियमित परिवर्तनशील वस्तु।
* यदि X एक एफ है (ν<sub>1</sub>, N <sub>2</sub>) यादृच्छिक चर तब 1/X एक F(ν) है<sub>2</sub>, N <sub>1</sub>) अनियमित परिवर्तनशील वस्तु।


=== अन्य मामले ===
=== अन्य मामले ===
कुछ वितरण एक विशिष्ट परिवर्तन के तहत अपरिवर्तनीय हैं।
कुछ वितरण एक विशिष्ट परिवर्तन के अनुसार  अपरिवर्तनीय हैं।


उदाहरण:
उदाहरण:
* अगर ''X'' एक बीटा (''α'', ''β'') यादृच्छिक चर है तो (1 - ''X'') एक बीटा (''β'', ''α'') है ) अनियमित परिवर्तनशील वस्तु।
* यदि ''X'' एक बीटा (''α'', ''β'') यादृच्छिक चर है तो (1 - ''X'') एक बीटा (''β'', ''α'') है ) यादृचिक चर होता है।
* यदि ''X'' एक द्विपद (''n'', ''p'') यादृच्छिक चर है तो (''n'' - ''X'') एक द्विपद (''n'', 1 - ''p'') यादृच्छिक चर।
* यदि ''X'' एक द्विपद (''n'', ''p'') यादृच्छिक चर है तो (''n'' - ''X'') एक द्विपद (''n'', 1 - ''p'') यादृच्छिक चर होता है।
* यदि ''X'' का संचयी वितरण फलन ''F'' है<sub>''X''</sub>, फिर संचयी बंटन F का व्युत्क्रम{{su|b=''X''|''p'' = −1}}(X) एक मानक 'वर्दी' (0,1) यादृच्छिक चर है
* यदि ''X'' का संचयी वितरण फलन ''F''<sub>''X''</sub>,है, तो कुल संचयी बंटन का व्युत्क्रम F{{su|b=''X''|''p'' = −1}}(X) एक मानक वर्गमूल (0,1) यादृचिक चर है।
* यदि X एक 'सामान्य' है (μ, σ<sup>2</sup>) यादृच्छिक चर फिर ई<sup>X</sup> एक 'लॉगनॉर्मल' है (μ, p<sup>2</sup>) यादृच्छिक चर।
* यदि X एक 'सामान्य' (μ, σ<sup>2</sup>) है  यादृच्छिक चर है तो e<sup>X</sup> एक 'लॉगनॉर्मल'(μ, p<sup>2</sup>) यादृचिक चर होता है।
: इसके विपरीत, यदि X एक असामान्य (μ, σ<sup>2</sup>) यादृच्छिक चर तो लॉग एक्स एक सामान्य है (μ, p<sup>2</sup>) यादृच्छिक चर।
*इसके विपरीत, यदि X एक असामान्य (μ, σ<sup>2</sup>) यादृच्छिक चर तो लॉग x एक सामान्य (μ, p<sup>2</sup>) यादृचिक चर होता है।
* यदि X माध्य β के साथ एक 'चरघातांकी' यादृच्छिक चर है, तो X<sup>1/γ</sup> एक 'वीबुल' (γ, β) यादृच्छिक चर है।
 
* एक 'मानक सामान्य' यादृच्छिक चर के वर्ग में स्वतंत्रता की एक डिग्री के साथ 'ची-वर्ग' वितरण होता है।
* यदि X माध्य β के साथ एक 'चरघातांकी' यादृच्छिक चर है, तो X<sup>1/γ</sup> एक 'वीबुल' (γ, β) यादृच्छिक चर होता है।
* यदि X एक 'विद्यार्थी का t-बंटन|छात्र का t' स्वतंत्रता की ν डिग्री वाला यादृच्छिक चर है, तो X<sup>2</sup> एक ''F'' (1,''ν'') यादृच्छिक चर है।
* एक मानक सामान्य विस्तार वाली चारणी संख्यात्मक चारणी का वर्ग एक डिग्री की मुफ्त क्षैतिज विस्तार वाली चारणी का होता है।
* यदि ''X'' मीन 0 और स्केल ''λ'' के साथ एक डबल एक्सपोनेंशियल रैंडम वेरिएबल है, तो |''X''| माध्य ''λ'' वाला एक चरघातांकी यादृच्छिक चर है।
* यदि X एक t-विस्तारीय सामान्य चारणी है जो ν डिग्री की है, तो X<sup>2</sup> एक F(1,ν) विस्तारीय संख्यात्मक चारणी है।
* यदि X एक दोहरी विस्तारीय चारणी है जिसका औसत 0 है और यांत्रिक माप λ है, तो |X| औसत λ वाली एक विस्तारीय चारणी होती है।
* एक ज्यामितीय यादृच्छिक चर एक घातीय यादृच्छिक चर का तल और छत कार्य है।
* एक ज्यामितीय यादृच्छिक चर एक घातीय यादृच्छिक चर का तल और छत कार्य है।
* एक [[आयताकार वितरण]] यादृच्छिक चर एक समान यादृच्छिक चर का तल है।
* एक [[आयताकार वितरण]] यादृच्छिक चर एक समान यादृच्छिक चर का तल है।
Line 76: Line 73:


<math display="block">Z = \sum_{i = 1}^{n} {X_i}.</math>
<math display="block">Z = \sum_{i = 1}^{n} {X_i}.</math>
यदि इसका वितरण के समान परिवार से मूल चर के रूप में वितरण होता है, तो वितरण के उस परिवार को कनवल्शन के तहत बंद कहा जाता है।
यदि इसका वितरण के समान परिवार से मूल चर के रूप में वितरण होता है, तो वितरण के उस परिवार को कनवल्शन के अनुसार  बंद कहा जाता है।


इस तरह के अविभाजित वितरण के उदाहरण हैं: सामान्य वितरण, [[पॉसों वितरण]], द्विपद वितरण (सामान्य सफलता की संभावना के साथ), नकारात्मक द्विपद वितरण (सामान्य सफलता की संभावना के साथ), गामा वितरण (सामान्य [[दर पैरामीटर]] के साथ), ची-स्क्वेर्ड वितरण | ची-स्क्वेर्ड वितरण , कॉची वितरण, [[हाइपरएक्सपोनेंशियल वितरण]]।
इस प्रकार के अविभाजित वितरण के उदाहरण हैं: सामान सफलता संभावना वाली बाइनोमियल वितरण, [[पॉसों वितरण]], नेगेटिव बाइनोमियल वितरण (सामान सफलता संभावना वाले), गामा वितरण (सामान्य [[दर पैरामीटर]] के साथ), चाइ-स्क्वेयर वितरण, कॉशी वितरण, [[हाइपरएक्सपोनेंशियल वितरण]]।


'उदाहरण:<ref>{{cite web|last=Cook|first=John D.|title=वितरण संबंधों का आरेख|url=http://www.johndcook.com/distribution_chart.html}}</ref><ref>{{cite journal|last1=Dinov|first1=Ivo D.|last2=Siegrist|first2= Kyle |last3=Pearl|first3=Dennis |last4=Kalinin|first4=Alex|last5=Christou|first5=Nicolas| title=Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions| journal=Computational Statistics|volume=594|issue=2|doi=10.1007/s00180-015-0594-6|pmid=27158191|pmc=4856044|date=2015|pages= 249–271}}</ref>
'उदाहरण:<ref>{{cite web|last=Cook|first=John D.|title=वितरण संबंधों का आरेख|url=http://www.johndcook.com/distribution_chart.html}}</ref><ref>{{cite journal|last1=Dinov|first1=Ivo D.|last2=Siegrist|first2= Kyle |last3=Pearl|first3=Dennis |last4=Kalinin|first4=Alex|last5=Christou|first5=Nicolas| title=Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions| journal=Computational Statistics|volume=594|issue=2|doi=10.1007/s00180-015-0594-6|pmid=27158191|pmc=4856044|date=2015|pages= 249–271}}</ref>
**यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> पोइसन रैंडम वेरिएबल हैं जिसका मतलब ''μ'' है<sub>1</sub> और μ<sub>2</sub> क्रमशः, फिर X<sub>1</sub> + एक्स<sub>2</sub> मतलब ''μ'' के साथ एक प्वासों यादृच्छिक चर है<sub>1</sub> + <sub>2</sub>.
**यदि X <sub>1</sub> और X <sub>2</sub> ''μ''<sub>1</sub> और μ<sub>2</sub>अनुकूलताओं के साथ पॉइसन यादृच्छिक चर विचारी हैं, तो X<sub>1</sub> + X <sub>2</sub> का मान ''μ<sub>1</sub>'' + ''μ''<sub>2</sub> वाले पॉइसन यादृचिक चर होता है। .
** गामा का योग (''α''<sub>''i''</sub>, b) यादृच्छिक चर में एक 'गामा' (Sa<sub>''i''</sub>, बी) वितरण।
** गामा का योग (''α''<sub>''i''</sub>, b) यादृच्छिक चर में एक 'गामा' (Sa<sub>''i''</sub>, बी) वितरण होता है।
**यदि एक्स<sub>1</sub> कॉची है (''μ''<sub>1</sub>, पी<sub>1</sub>) यादृच्छिक चर और X<sub>2</sub> एक कॉची है (μ<sub>2</sub>, पी<sub>2</sub>), फिर एक्स<sub>1</sub> + एक्स<sub>2</sub> कॉची है (''μ''<sub>1</sub> + <sub>2</sub>, पी<sub>1</sub> + पी<sub>2</sub>) अनियमित परिवर्तनशील वस्तु।
**यदि X<sub>1</sub> कॉची (''μ''<sub>1</sub>, σ<sub>1</sub>) यादृच्छिक चर है और X<sub>2</sub> एक कॉची है (μ<sub>2</sub>, σ<sub>2</sub>) है , फिर X<sub>1</sub> + X<sub>2</sub> कॉची है (''μ''<sub>1</sub> + ''μ''<sub>2</sub>, σ<sub>1</sub> + σ<sub>2</sub>) यादृचिक चर होता है।
**यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> ν के साथ ची-वर्ग यादृच्छिक चर हैं<sub>1</sub> और n<sub>2</sub> क्रमशः स्वतंत्रता की डिग्री, फिर X<sub>1</sub> + एक्स<sub>2</sub> ν के साथ एक ची-वर्ग यादृच्छिक चर है<sub>1</sub> + एन<sub>2</sub> स्वतंत्रता की कोटियां।
**यदि X<sub>1</sub> और X<sub>2</sub> ν<sub>1</sub> और ν<sub>2</sub>डिग्री के साथ चाइ-वर्ग यादृचिक चर होते हैं तो    X<sub>1</sub> + X<sub>2</sub> विसंगति ν<sub>1</sub> + ν<sub>2</sub> डिग्री के साथ एक चाइ-वर्ग यादृचिक चर होता है।
**यदि एक्स<sub>1</sub> सामान्य है (''μ''<sub>1</sub>, पी{{su|b=1|p=2}}) यादृच्छिक चर और X<sub>2</sub> सामान्य है (एम<sub>2</sub>, पी{{su|b=2|p=2}}) यादृच्छिक चर, फिर X<sub>1</sub> + एक्स<sub>2</sub> सामान्य है (''μ''<sub>1</sub> + <sub>2</sub>, पी{{su|b=1|p=2}} + {{su|b=2|p=2}}) अनियमित परिवर्तनशील वस्तु।
**यदि X<sub>1</sub> सामान्य है (''μ''<sub>1</sub>, σ{{su|b=1|p=2}}) यादृच्छिक चर है और X<sub>2</sub> सामान्य (''μ''<sub>2</sub>, σ{{su|b=2|p=2}}) यादृच्छिक चर है फिर X<sub>1</sub> + X <sub>2</sub> सामान्य (''μ''<sub>1</sub> + ''μ''<sub>2</sub>, σ{{su|b=1|p=2}} + σ{{su|b=2|p=2}}) यादृचिक चर होता है।
** एन ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग एन डिग्री ऑफ फ्रीडम के साथ ची-स्क्वायर वितरण है।
** N ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग N डिग्री स्वतंत्रता वाले चाइ-वर्ग वितरण होता है।


कनवल्शन के तहत अन्य वितरण बंद नहीं हैं, लेकिन उनके योग का एक ज्ञात वितरण है:
अन्य वितरण अविनाशी वितरण के अनुसार संयोजन के लिए बंद नहीं होते हैं, किन्तु उनकी योग संयोजन के अनुसार एक ज्ञात वितरण होता है:
* एन 'बर्नौली' (पी) यादृच्छिक चर का योग एक 'द्विपद' (एन, पी) यादृच्छिक चर है।
* N 'बर्नौली' (p) यादृच्छिक चर का योग एक 'द्विपद' (N , p) यादृच्छिक चर होता है।
* n 'ज्यामितीय' यादृच्छिक चर का योग सफलता p की संभावना के साथ पैरामीटर n और p के साथ एक 'ऋणात्मक द्विपद' यादृच्छिक चर है।
* n ज्यामितीय यादृच्छिक चर जिनमें सफलता की संभावना p होती है, का योग पूरक बिनोमियल यादृच्छिक चर होता है जिसके पैरामीटर n और p होते हैं।
* n 'घातीय' (β) यादृच्छिक चर का योग एक 'गामा' (n, β) यादृच्छिक चर है। चूँकि n एक पूर्णांक है, गामा बंटन भी एक 'Erlang बंटन' है।
* n घनात्मक (β) यादृच्छिक चरों का योग एक गामा (n, β) यादृच्छिक चर होता है। क्योंकि n एक पूर्णांक होता है, इसलिए गामा वितरण एक अर्लेंग वितरण भी होता है।
*एन 'मानक सामान्य' यादृच्छिक चर के वर्गों के योग में स्वतंत्रता की एन डिग्री के साथ 'ची-वर्ग' वितरण होता है।
*N मानक नियमित यादृच्छिक चरों के वर्गों का योग N अंकितों के साथ एक चि-वर्ग वितरण होता है।


=== चर का उत्पाद ===
=== चर का उत्पाद ===
Line 99: Line 96:


'उदाहरण: '
'उदाहरण: '
*यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> पैरामीटर के साथ स्वतंत्र लॉग-सामान्य यादृच्छिक चर हैं (''μ''<sub>1</sub>, पी{{su|b=1|p=2}}) और (μ<sub>2</sub>, पी{{su|b=2|p=2}}) क्रमशः, फिर X<sub>1</sub> X<sub>2</sub> मापदंडों के साथ एक लॉग-सामान्य यादृच्छिक चर है (''μ''<sub>1</sub> + म<sub>2</sub>, पी{{su|b=1|p=2}} + प{{su|b=2|p=2}}).
*यदि X<sub>1</sub> और X<sub>2</sub> पैरामीटर के साथ स्वतंत्र लॉग-सामान्य यादृच्छिक चर हैं (''μ''<sub>1</sub>, p{{su|b=1|p=2}}) और (μ<sub>2</sub>, p{{su|b=2|p=2}}) क्रमशः, फिर X<sub>1</sub> X<sub>2</sub> मापदंडों के साथ एक लॉग-सामान्य यादृच्छिक चर है (''μ''<sub>1</sub> + म<sub>2</sub>, p{{su|b=1|p=2}} + प{{su|b=2|p=2}}).
{{Crossreference|(See also [[Product distribution]].)}}
{{Crossreference|(See also [[उत्पाद वितरण]].)}}


=== न्यूनतम और अधिकतम स्वतंत्र यादृच्छिक चर ===
=== न्यूनतम और अधिकतम स्वतंत्र यादृच्छिक चर ===


कुछ वितरणों के लिए, कई स्वतंत्र यादृच्छिक चर का न्यूनतम मान एक ही परिवार का सदस्य है, विभिन्न मापदंडों के साथ:
कुछ वितरणों के लिए, कुछ स्वतंत्र यादृच्छिक चर वितरणों का न्यूनतम मान भी उनके समान परिवार का सदस्य होता है, किन्तु अलग-अलग मानों के साथ: बर्नौली वितरण, ज्यामितीय वितरण, [[चरम मूल्य वितरण]], [[परेटो वितरण]], रेले वितरण, वीबुल वितरण।
बरनौली वितरण, ज्यामितीय वितरण, घातीय वितरण, [[चरम मूल्य वितरण]], [[परेटो वितरण]], रेले वितरण, वीबुल वितरण।


उदाहरण:
उदाहरण:
* अगर ''एक्स''<sub>1</sub> और एक्स<sub>2</sub> सफलता की संभावना ''पी'' के साथ स्वतंत्र ज्यामितीय यादृच्छिक चर हैं<sub>1</sub> और पी<sub>2</sub> क्रमशः, फिर न्यूनतम (एक्स<sub>1</sub>, एक्स<sub>2</sub>) सफलता p = p की प्रायिकता वाला एक ज्यामितीय यादृच्छिक चर है<sub>1</sub> + पी<sub>2</sub> - पी<sub>1</sub> p<sub>2</sub>. विफलता की संभावना के रूप में व्यक्त किए जाने पर संबंध सरल होता है: q = q<sub>1</sub> q<sub>2</sub>.
* यदि  ''X''<sub>1</sub> और X<sub>2</sub> स्वतंत्र रूप से व्यक्तिगत ज्यामितीय यादृच्छिक चर वे हों, जिनकी सफलता की संभावना p<sub>1</sub> और p<sub>2</sub> हैं, तो न्यूनतम ( X<sub>1</sub>,X<sub>2</sub>) एक ज्यामितीय यादृच्छिक चर होता है जिसकी सफलता की संभावना p = p<sub>1</sub> + p<sub>2</sub> - p<sub>1</sub> p<sub>2</sub> होती है। यदि पताने की संभावना के अभाव में व्यक्त किए गए हों, तो इस संबंध को सरल बनाया जा सकता है: q = q<sub>1</sub> q<sub>2</sub>.
*यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> दर ''μ'' के साथ स्वतंत्र चरघातांकी यादृच्छिक चर हैं<sub>1</sub> और μ<sub>2</sub> क्रमशः, फिर न्यूनतम (एक्स<sub>1</sub>, एक्स<sub>2</sub>) दर μ = μ के साथ एक घातीय यादृच्छिक चर है<sub>1</sub> + <sub>2</sub>.
*यदि X <sub>1</sub> और X <sub>2</sub> स्वतंत्र रूप से व्यक्तिगत अप्रत्यक्ष यादृच्छिक चर हों जिनकी दर ''μ<sub>1</sub> और μ<sub>2</sub>'' हों तो न्यूनतम ( X<sub>1</sub>, X<sub>2</sub>) एक एक्सपोनेंशियल यादृच्छिक चर होता है जिसकी दर μ = μ<sub>1</sub> + μ<sub>2</sub> होती है।.


इसी प्रकार, वितरण जिसके लिए वितरण के एक ही परिवार के सदस्य कई स्वतंत्र यादृच्छिक चर का अधिकतम मूल्य सम्मलित है:
इसी प्रकार, ज्यामितीय यादृच्छिक चर जैसे कुछ वितरण हैं जिनके लिए कुछ स्वतंत्र यादृच्छिक चरों के सबसे अधिक मूल्य भी उसी फैमिली के होते हैं। उनमें से कुछ हैं बर्नुली वितरण, [[बिजली कानून|पावर लॉ]] वितरण।
Bernoulli वितरण, [[बिजली कानून]] वितरण।


=== अन्य ===
=== अन्य ===


* यदि X और Y स्वतंत्र 'मानक सामान्य' यादृच्छिक चर हैं, तो X/Y एक 'कॉची' (0,1) यादृच्छिक चर है।
* यदि X और Y स्वतंत्र 'मानक सामान्य' यादृच्छिक चर हैं, तो X/Y एक 'कॉची' (0,1) यादृच्छिक चर है।
*यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> ''ν'' के साथ स्वतंत्र ची-स्क्वायर यादृच्छिक चर हैं<sub>1</sub> और n<sub>2</sub> क्रमशः स्वतंत्रता की डिग्री, फिर (एक्स<sub>1</sub>/एन<sub>1</sub>)/(एक्स<sub>2</sub>/एन<sub>2</sub>) एक ''F''(''ν'' है<sub>1</sub>, एन<sub>2</sub>) अनियमित परिवर्तनशील वस्तु।
*यदि X<sub>1</sub> और X<sub>2</sub> स्वतंत्र रूप से ची-स्क्वायर स्वतंत्र रूप से v<sub>1</sub> और v<sub>2</sub> हैं, तो ( X<sub>1</sub>/v<sub>1</sub>)/( X<sub>2</sub>/v<sub>2</sub>) एक ''F''(''ν''<sub>1</sub>, v<sub>2</sub>) वित्तीय चरण है।
* यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो <math>\frac{X}{\sqrt{(U/\nu)}} </math> विद्यार्थी का ''t''(''ν'') यादृच्छिक चर है।
* यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो <math>\frac{X}{\sqrt{(U/\nu)}} </math> विद्यार्थी का ''t''(''ν'') यादृच्छिक चर है।
* अगर ''एक्स''<sub>1</sub> एक गामा है (''α''<sub>1</sub>, 1) यादृच्छिक चर और X<sub>2</sub> एक स्वतंत्र गामा है (α<sub>2</sub>, 1) यादृच्छिक चर फिर X<sub>1</sub>/(एक्स<sub>1</sub> + एक्स<sub>2</sub>) एक बीटा है<sub>1</sub>, <sub>2</sub>) अनियमित परिवर्तनशील वस्तु। अधिक सामान्यतः, यदि X<sub>1</sub> एक गामा है (α<sub>1</sub>, बी<sub>1</sub>) यादृच्छिक चर और X<sub>2</sub> एक स्वतंत्र गामा है (α<sub>2</sub>, बी<sub>2</sub>) यादृच्छिक चर फिर β<sub>2</sub> X<sub>1</sub>/(बी<sub>2</sub> X<sub>1</sub> + <sub>1</sub> X<sub>2</sub>) एक बीटा है (<sub>1</sub>, <sub>2</sub>) अनियमित परिवर्तनशील वस्तु।
* यदि  ''X''<sub>1</sub> एक गामा (''α''<sub>1</sub>, 1) यादृच्छिक मान वाली चर धारा है और X<sub>2</sub> एक स्वतंत्र गामा (α<sub>2</sub>, 1) मान वाली चर धारा है, तो X<sub>1</sub>/( X <sub>1</sub> + X <sub>2</sub>) बीटा <sub>1</sub>, α<sub>2</sub>) यादृच्छिक मान वाली चर धारा होती है। अधिक सामान्यतः, यदि X<sub>1</sub> एक गामा (α<sub>1</sub>, α<sub>1</sub>)यादृच्छिक मान वाली चर धारा है और X<sub>2</sub> एक स्वतंत्र गामा (α<sub>2</sub>, β<sub>2</sub>) यादृच्छिक मान वाली चर धारा है, तो β<sub>2</sub> X<sub>1</sub>/(β<sub>2</sub> X<sub>1</sub> + β<sub>1</sub> X<sub>2</sub>) बीटा (α<sub>1</sub>, α<sub>2</sub>) यादृच्छिक मान वाली चर धारा होती है।
* यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक '[[लाप्लास वितरण]]' यादृच्छिक चर है।
* यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक '[[लाप्लास वितरण]]' यादृच्छिक चर है।
*अगर एक्स<sub>i</sub> स्वतंत्र बर्नौली यादृच्छिक चर हैं तो उनका [[समता समारोह]] (एक्सओआर) [[पाइलिंग-अप लेम्मा]] द्वारा वर्णित बर्नौली वैरिएबल है।
*यदि  X <sub>i</sub> स्वतंत्र बर्नौली यादृच्छिक चर हैं तो उनका [[समता समारोह]] ( XOR) [[पाइलिंग-अप लेम्मा]] के माध्यम से वर्णित बर्नौली वैरिएबल है।
{{Crossreference|(See also [[ratio distribution]].)}}
{{Crossreference|(यह भी देखें [[अनुपात वितरण]])}}


== अनुमानित (सीमा) संबंध ==
== अनुमानित (सीमा) संबंध ==


अनुमानित या सीमा संबंध का अर्थ है
अनुमानित या सीमा संबंध का अर्थ है
*या तो iid रैंडम वेरिएबल्स की अनंत संख्या का संयोजन कुछ वितरण की ओर प्रवृत्त होता है,
*या तो एक असीमित संख्या के iid यादृच्छिक चर वितरण की कुछ वितरण के लिए आस पास होता है,
*या वह सीमा जब कोई पैरामीटर किसी मान की ओर प्रवृत्त होता है तो भिन्न वितरण की ओर अग्रसर होता है।
*या यह कि जब कोई पैरामीटर कुछ मान के लिए आस पास होता है तो अलग वितरण तक पहुंच जाता है।


'आईआईडी यादृच्छिक चर का संयोजन:'
'iid यादृच्छिक चर वितरणों का संयोजन:


* कुछ शर्तों को देखते हुए, पर्याप्त संख्या में iid यादृच्छिक चर का योग (इसलिए औसत), प्रत्येक परिमित माध्य और विचरण के साथ, लगभग सामान्य रूप से वितरित किया जाएगा। यह [[केंद्रीय सीमा प्रमेय]] (CLT) है।
* निश्चित शर्तों के अंतर्गत, एक पर्याप्त बड़ी संख्या के iid यादृच्छिक चर वितरणों के योग (अर्थात औसत) में पर्याप्त अंतर्निहितता होगी, जो अधिकतर सामान्य वितरण होता है। यह [[केंद्रीय सीमा प्रमेय]] (CLT) होता है।।


'वितरण पैरामीट्रिजेशन का विशेष मामला:'
'वितरण के विशेष पैरामीट्रिकरण का विशेष मामला:'


* एक्स एक 'हाइपरज्यामितीय' (एम, एन, एन) यादृच्छिक चर है। यदि n और m N की तुलना में बड़े हैं, और p = m/N 0 या 1 के करीब नहीं है, तो X का लगभग एक 'द्विपद' (n, p) वितरण है।
* X एक 'हाइपरज्यामितीय' (m, N , n) यादृच्छिक चर है। यदि n और m N की समानता में बड़े हैं, और p = m/N 0 या 1 के निकट नहीं है, तो X का अधिकतर एक 'द्विपद' (n, p) वितरण होता  है।
* X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो पी = α/(α + β) और मान लीजिए α + β बड़ा है, तो एक्स लगभग एक 'द्विपद' (एन, पी) वितरण है।
* X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो p = α/(α + β) और मान लीजिए α + β बड़ा है, तो X अधिकतर एक 'द्विपद' (n, p) वितरण होता  है।
* यदि एक्स एक 'द्विपद' (एन, पी) यादृच्छिक चर है और यदि एन बड़ा है और एनपी छोटा है तो एक्स में लगभग 'पॉइसन' (एनपी) वितरण होता है।
* यदि X 'द्विपद' (n, p) यादृच्छिक चर है और यदि n बड़ा है और np छोटा है तो X में अधिकतर 'पॉइसन' (np) वितरण होता है।
* यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P 1 के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ लगभग 'पॉइसन' वितरण है।
* यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ अधिकतर 'पॉइसन' वितरण होता  है।


सीएलटी के परिणाम:
केंद्रीय सीमा प्रमेय (सीएलटी) के परिणाम:
* यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) लगभग P(j − 1/2 ≤ Y ≤ k + 1/2) के बराबर है जहाँ Y X के समान माध्य और विचरण वाला एक 'सामान्य' वितरण है।
* यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/2 ≤ Y ≤ k + 1/2) के समान है जहाँ Y नॉर्मल वितरण है जिसका मान और चार गुणा विस्तार X के विस्तार के समान हैं।
* यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) लगभग P(j − 1/) के बराबर है। 2 ≤ Y ≤ k + 1/2) जहां Y एक 'सामान्य' यादृच्छिक चर है जिसका समान माध्य और एक्स के समान प्रसरण है, अर्थात np और np(1 − p)।
* यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/) के समान है। 2 ≤ Y ≤ k + 1/2) जहां Y एक 'सामान्य' यादृच्छिक चर है जिसका समान माध्य और X के समान प्रसरण है, अर्थात np और np(1 − p)।
* यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β बराबर और बड़ा है, तो X का लगभग समान माध्य और भिन्नता वाला 'सामान्य' वितरण है, i। इ। माध्य α/(α + β) और विचरण αβ/((α + β)<sup>2</sup>(α + β + 1))।
* यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β समान और बड़ा है, तो X का अधिकतर समान माध्य और भिन्नता वाला 'सामान्य' वितरण है, i। इ। माध्य α/(α + β) और विचरण αβ/((α + β)<sup>2</sup>(α + β + 1))।
* यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में लगभग समान माध्य और विचरण वाला 'सामान्य' यादृच्छिक चर होता है।
* यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में अधिकतर समान माध्य और विचरण वाला 'सामान्य' यादृच्छिक चर होता है।
* यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का लगभग 'मानक सामान्य' वितरण है।
* यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का अधिकतर 'मानक सामान्य' वितरण है।
* यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है।
* यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है।


== यौगिक (या बायेसियन) संबंध ==
== यौगिक (या बायेसियन) संबंध ==


जब वितरण के एक या एक से अधिक पैरामीटर यादृच्छिक चर होते हैं, तो [[यौगिक संभाव्यता वितरण]] वितरण चर का सीमांत वितरण होता है।
जब किसी वितरण के एक या एक से अधिक पैरामीटर एक से अधिक रैंडम चर की प्रकार होते हैं, तो [[यौगिक संभाव्यता वितरण]] वितरण चर के मार्जिनल वितरण होता है।


उदाहरण:
उदाहरण:


* अगर ''एक्स'' | ''एन'' एक द्विपद (''एन'',''पी'') यादृच्छिक चर है, जहां पैरामीटर ''एन'' नकारात्मक-द्विपद (''एम'', ''आर') के साथ एक यादृच्छिक चर है ') वितरण, तो ''X'' एक ऋणात्मक द्विपद (''m'', ''r''/(''p'' + ''qr'')) के रूप में वितरित किया जाता है।
* यदि X | N एक द्विपद (''N'' ,''p'') यादृच्छिक चर है, जहां पैरामीटर N नकारात्मक-द्विपद (m, ''r') के साथ एक यादृच्छिक चर है ') वितरण, तो ''X'' एक ऋणात्मक द्विपद (''m'', ''r''/(''p'' + ''qr'')) के रूप में वितरित किया जाता है।
* अगर ''एक्स'' | ''एन'' एक द्विपद (''एन'',''पी'') यादृच्छिक चर है, जहां पैरामीटर ''एन'' प्वासों(''μ'') वितरण के साथ एक यादृच्छिक चर है, फिर ''एक्स '' को पोइसन (''μp'') के रूप में वितरित किया जाता है।
* यदि X | N एक द्विपद (''N'' ,''p'') यादृच्छिक चर है, जहां पैरामीटर N प्वासों(''μ'') वितरण के साथ एक यादृच्छिक चर है, फिर को पोइसन (''μp'') के रूप में वितरित किया जाता है।
* अगर ''एक्स'' | ''μ'' एक प्वासों(''μ'') यादृच्छिक चर है और पैरामीटर ''μ'' गामा(''m'', ''θ'') वितरण के साथ यादृच्छिक चर है (जहाँ ''θ'' पैमाना पैरामीटर है), तो ''X'' को ऋणात्मक-द्विपद (''m'', ''θ''/(1 + ''θ'')) के रूप में वितरित किया जाता है, जिसे कभी-कभी [[गामा-पोइसन वितरण]] कहा जाता है।
* यदि X | ''μ'' एक प्वासों(''μ'') यादृच्छिक चर है और पैरामीटर ''μ'' गामा(''m'', ''θ'') वितरण के साथ यादृच्छिक चर है (जहाँ ''θ'' पैमाना पैरामीटर है), तो ''X'' को ऋणात्मक-द्विपद (''m'', ''θ''/(1 + ''θ'')) के रूप में वितरित किया जाता है, जिसे कभी-कभी [[गामा-पोइसन वितरण]] कहा जाता है।


कुछ वितरणों को विशेष रूप से यौगिक नाम दिया गया है:
कुछ वितरणों को विशेष रूप से समष्टि वितरणों के रूप में नाम दिया गया है: बीटा-द्विपद वितरण, [[बीटा नकारात्मक द्विपद वितरण]], [[गामा-सामान्य वितरण]] होता  है।
बीटा-द्विपद वितरण, [[बीटा नकारात्मक द्विपद वितरण]], [[गामा-सामान्य वितरण]]


उदाहरण:
उदाहरण:
Line 183: Line 177:
* [[ProbOnto]] - Ontology and knowledge base of probability distributions: [http://probonto.org ProbOnto ]
* [[ProbOnto]] - Ontology and knowledge base of probability distributions: [http://probonto.org ProbOnto ]
* [http://distributome.org Probability Distributome project includes calculators, simulators, experiments, and navigators for inter-distributional refashions and distribution meta-data].
* [http://distributome.org Probability Distributome project includes calculators, simulators, experiments, and navigators for inter-distributional refashions and distribution meta-data].
[[Category: संभाव्यता वितरण का सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing clarification from April 2020]]
[[Category:संभाव्यता वितरण का सिद्धांत]]

Latest revision as of 12:27, 26 October 2023

कुछ अविभाज्य संभाव्यता वितरणों के बीच संबंधों को जुड़ी हुई रेखाओं के साथ चित्रित किया गया है। धराशायी रेखाओं का अर्थ है अनुमानित संबंध। और जानकारी:[1]
ProbOnto में अविभाज्य संभाव्यता वितरण के बीच संबंध।[2]

संभाव्यता सिद्धांत और सांख्यिकी में, संभाव्यता वितरण के बीच कई संबंध होते हैं। ये संबंध निम्नलिखित समूहों में वर्गीकृत किए जा सकते हैं:

  • एक वितरण एक व्यापक पैरामीटर स्थान के साथ दूसरे का एक विशेष स्थिति है
  • रूपांतरण (एक यादृच्छिक चर का कार्य);
  • संयोजन (कई चरों का कार्य);
  • सन्निकटन (सीमा) संबंध;
  • यौगिक संबंध (बायेसियन अनुमान के लिए उपयोगी);
  • द्वैत (गणित)[clarification needed];
  • संयुग्मी प्राथमिकताएँ।

वितरण पैरामीट्रिजेशन का विशेष मामला

  • एक पैरामीटर n = 1 और p के साथ एक द्विपद बंटन, पैरामीटर p के साथ एक बर्नौली वितरण होता है।
  • पैरामीटर n = 1 और p के साथ एक ऋणात्मक द्विपद बंटन, पैरामीटर p के साथ एक ज्यामितीय वितरण होता है।
  • आकार पैरामीटर α = 1 और दर पैरामीटर β के साथ एक गामा वितरण दर पैरामीटर β के साथ एक घातीय वितरण होता है।
  • आकार पैरामीटर α = v/2 और दर पैरामीटर β = 1/2 के साथ एक गामा वितरण स्वतंत्रता की ν डिग्री (सांख्यिकी) के साथ एक ची-वर्ग वितरण होता है।
  • स्वतंत्रता की 2 डिग्री (k = 2) के साथ एक ची-वर्ग वितरण 2 के माध्य मान (दर λ = 1/2) के साथ एक घातीय वितरण होता है।
  • आकार पैरामीटर k = 1 और दर पैरामीटर β के साथ एक वेइबुल वितरण दर पैरामीटर β के साथ एक घातीय वितरण है।
  • आकृति पैरामीटर α = β = 1 के साथ एक बीटा वितरण वास्तविक संख्या 0 से 1 पर निरंतर समान वितरण होता है।
  • पैरामीटर n और आकार पैरामीटर α = β = 1 के साथ एक [[बीटा-द्विपद वितरण]] पूर्णांक 0 से n पर एक असतत समान वितरण होता है।
  • स्वतंत्रता की एक डिग्री (v = 1) के साथ एक छात्र का टी-वितरण स्थान पैरामीटर x = 0 और स्केल पैरामीटर γ = 1 के साथ एक कॉची वितरण होता है।
  • मापदंडों c = 1 और k (और स्केल λ) के साथ एक Burr वितरण आकार k (और स्केल λ) के साथ एक लोमैक्स वितरण होता है।

एक चर का रूपांतरण

एक यादृच्छिक चर का गुणक

किसी भी सकारात्मक वास्तविक निर्धारित संख्या से चर को गुणा करने से मूल वितरण का स्केलिंग होता है। कुछ स्व-उत्पादक होते हैं, जिसका अर्थ होता है कि स्केलिंग उन्हीं वितरणों के परिवार को उत्पन्न करता है, के होने पर भी पैरामीटर अलग हों:सामान्य वितरण, गामा वितरण, कॉची वितरण, घातीय वितरण, एरलांग वितरण, वीबुल वितरण, रसद वितरण, त्रुटि वितरण, शक्ति-कानून वितरण, रेले वितरण

उदाहरण:

  • यदि X एक गामा यादृच्छिक चर है जिसके आकार और दर पैरामीटर(α, β) हैं, तो Y = aX एक गामा यादृचिक चर होगा जिसके पैरामीटर (α,β/a) होंगे।
  • यदि X एक गामा यादृचिक चर है जिसके आकार और पैमाने के पैरामीटर (k, θ) हैं, तो Y = aX एक गामा यादृचिक चर होगा जिसके पैरामीटर (के,एθ) होंगे।

एक यादृच्छिक चर का रैखिक कार्य

एफ़िन ट्रांसफ़ॉर्म ax + b मूल वितरण के स्थानांतरण और माप का परिवर्तन देता है। निम्नलिखित आत्म-उत्पादक हैं: नॉर्मल वितरण, कॉशी वितरण, लॉजिस्टिक वितरण, त्रुटि वितरण, पावर वितरण, रेले वितरण।

उदाहरण:

  • यदि Z पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = m, σ2 = एस2), तो X = aZ + b पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = am + b, σ2 = ए2एस2).

एक यादृच्छिक चर का व्युत्क्रम

एक यादृच्छिक चर X के रिकिप्रोकल 1/X, निम्नलिखित स्थितियों में एक ही वितरण परिवार का सदस्य होता है:कौशी वितरण, F वितरण, लॉग रसद वितरण

उदाहरण:

  • यदि X एक कौशी (μ, σ) यादृच्छिक चर है, तो 1/X एक कौशी (μ/C, σ/C) यादृच्छिक चर है जहाँ C = μ2 + पृ2</उप>।
  • यदि X एक एफ है (ν1, N 2) यादृच्छिक चर तब 1/X एक F(ν) है2, N 1) अनियमित परिवर्तनशील वस्तु।

अन्य मामले

कुछ वितरण एक विशिष्ट परिवर्तन के अनुसार अपरिवर्तनीय हैं।

उदाहरण:

  • यदि X एक बीटा (α, β) यादृच्छिक चर है तो (1 - X) एक बीटा (β, α) है ) यादृचिक चर होता है।
  • यदि X एक द्विपद (n, p) यादृच्छिक चर है तो (n - X) एक द्विपद (n, 1 - p) यादृच्छिक चर होता है।
  • यदि X का संचयी वितरण फलन FX,है, तो कुल संचयी बंटन का व्युत्क्रम F
    X
    (X) एक मानक वर्गमूल (0,1) यादृचिक चर है।
  • यदि X एक 'सामान्य' (μ, σ2) है यादृच्छिक चर है तो eX एक 'लॉगनॉर्मल'(μ, p2) यादृचिक चर होता है।
  • इसके विपरीत, यदि X एक असामान्य (μ, σ2) यादृच्छिक चर तो लॉग x एक सामान्य (μ, p2) यादृचिक चर होता है।
  • यदि X माध्य β के साथ एक 'चरघातांकी' यादृच्छिक चर है, तो X1/γ एक 'वीबुल' (γ, β) यादृच्छिक चर होता है।
  • एक मानक सामान्य विस्तार वाली चारणी संख्यात्मक चारणी का वर्ग एक डिग्री की मुफ्त क्षैतिज विस्तार वाली चारणी का होता है।
  • यदि X एक t-विस्तारीय सामान्य चारणी है जो ν डिग्री की है, तो X2 एक F(1,ν) विस्तारीय संख्यात्मक चारणी है।
  • यदि X एक दोहरी विस्तारीय चारणी है जिसका औसत 0 है और यांत्रिक माप λ है, तो |X| औसत λ वाली एक विस्तारीय चारणी होती है।
  • एक ज्यामितीय यादृच्छिक चर एक घातीय यादृच्छिक चर का तल और छत कार्य है।
  • एक आयताकार वितरण यादृच्छिक चर एक समान यादृच्छिक चर का तल है।
  • एक पारस्परिक वितरण यादृच्छिक चर एक समान यादृच्छिक चर का घातांक है।

कई चर के कार्य

चर का योग

स्वतंत्र यादृच्छिक चर के योग का वितरण उनके वितरण के संभाव्यता वितरण का रूपांतरण है। कल्पना करना का योग है स्वतंत्र यादृच्छिक चर संभाव्यता द्रव्यमान समारोह के साथ प्रत्येक . तब

यदि इसका वितरण के समान परिवार से मूल चर के रूप में वितरण होता है, तो वितरण के उस परिवार को कनवल्शन के अनुसार बंद कहा जाता है।

इस प्रकार के अविभाजित वितरण के उदाहरण हैं: सामान सफलता संभावना वाली बाइनोमियल वितरण, पॉसों वितरण, नेगेटिव बाइनोमियल वितरण (सामान सफलता संभावना वाले), गामा वितरण (सामान्य दर पैरामीटर के साथ), चाइ-स्क्वेयर वितरण, कॉशी वितरण, हाइपरएक्सपोनेंशियल वितरण

'उदाहरण:[3][4]

    • यदि X 1 और X 2 μ1 और μ2अनुकूलताओं के साथ पॉइसन यादृच्छिक चर विचारी हैं, तो X1 + X 2 का मान μ1 + μ2 वाले पॉइसन यादृचिक चर होता है। .
    • गामा का योग (αi, b) यादृच्छिक चर में एक 'गामा' (Sai, बी) वितरण होता है।
    • यदि X1 कॉची (μ1, σ1) यादृच्छिक चर है और X2 एक कॉची है (μ2, σ2) है , फिर X1 + X2 कॉची है (μ1 + μ2, σ1 + σ2) यादृचिक चर होता है।
    • यदि X1 और X2 ν1 और ν2डिग्री के साथ चाइ-वर्ग यादृचिक चर होते हैं तो X1 + X2 विसंगति ν1 + ν2 डिग्री के साथ एक चाइ-वर्ग यादृचिक चर होता है।
    • यदि X1 सामान्य है (μ1, σ2
      1
      ) यादृच्छिक चर है और X2 सामान्य (μ2, σ2
      2
      ) यादृच्छिक चर है फिर X1 + X 2 सामान्य (μ1 + μ2, σ2
      1
      + σ2
      2
      ) यादृचिक चर होता है।
    • N ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग N डिग्री स्वतंत्रता वाले चाइ-वर्ग वितरण होता है।

अन्य वितरण अविनाशी वितरण के अनुसार संयोजन के लिए बंद नहीं होते हैं, किन्तु उनकी योग संयोजन के अनुसार एक ज्ञात वितरण होता है:

  • N 'बर्नौली' (p) यादृच्छिक चर का योग एक 'द्विपद' (N , p) यादृच्छिक चर होता है।
  • n ज्यामितीय यादृच्छिक चर जिनमें सफलता की संभावना p होती है, का योग पूरक बिनोमियल यादृच्छिक चर होता है जिसके पैरामीटर n और p होते हैं।
  • n घनात्मक (β) यादृच्छिक चरों का योग एक गामा (n, β) यादृच्छिक चर होता है। क्योंकि n एक पूर्णांक होता है, इसलिए गामा वितरण एक अर्लेंग वितरण भी होता है।
  • N मानक नियमित यादृच्छिक चरों के वर्गों का योग N अंकितों के साथ एक चि-वर्ग वितरण होता है।

चर का उत्पाद

स्वतंत्र यादृच्छिक चर X और Y का उत्पाद वितरण के उसी परिवार से संबंधित हो सकता है जैसे X और Y: बर्नौली वितरण और लॉग-सामान्य वितरण

'उदाहरण: '

  • यदि X1 और X2 पैरामीटर के साथ स्वतंत्र लॉग-सामान्य यादृच्छिक चर हैं (μ1, p2
    1
    ) और (μ2, p2
    2
    ) क्रमशः, फिर X1 X2 मापदंडों के साथ एक लॉग-सामान्य यादृच्छिक चर है (μ1 + म2, p2
    1
    + प2
    2
    ).

(See also उत्पाद वितरण.)

न्यूनतम और अधिकतम स्वतंत्र यादृच्छिक चर

कुछ वितरणों के लिए, कुछ स्वतंत्र यादृच्छिक चर वितरणों का न्यूनतम मान भी उनके समान परिवार का सदस्य होता है, किन्तु अलग-अलग मानों के साथ: बर्नौली वितरण, ज्यामितीय वितरण, चरम मूल्य वितरण, परेटो वितरण, रेले वितरण, वीबुल वितरण।

उदाहरण:

  • यदि X1 और X2 स्वतंत्र रूप से व्यक्तिगत ज्यामितीय यादृच्छिक चर वे हों, जिनकी सफलता की संभावना p1 और p2 हैं, तो न्यूनतम ( X1,X2) एक ज्यामितीय यादृच्छिक चर होता है जिसकी सफलता की संभावना p = p1 + p2 - p1 p2 होती है। यदि पताने की संभावना के अभाव में व्यक्त किए गए हों, तो इस संबंध को सरल बनाया जा सकता है: q = q1 q2.
  • यदि X 1 और X 2 स्वतंत्र रूप से व्यक्तिगत अप्रत्यक्ष यादृच्छिक चर हों जिनकी दर μ1 और μ2 हों तो न्यूनतम ( X1, X2) एक एक्सपोनेंशियल यादृच्छिक चर होता है जिसकी दर μ = μ1 + μ2 होती है।.

इसी प्रकार, ज्यामितीय यादृच्छिक चर जैसे कुछ वितरण हैं जिनके लिए कुछ स्वतंत्र यादृच्छिक चरों के सबसे अधिक मूल्य भी उसी फैमिली के होते हैं। उनमें से कुछ हैं बर्नुली वितरण, पावर लॉ वितरण।

अन्य

  • यदि X और Y स्वतंत्र 'मानक सामान्य' यादृच्छिक चर हैं, तो X/Y एक 'कॉची' (0,1) यादृच्छिक चर है।
  • यदि X1 और X2 स्वतंत्र रूप से ची-स्क्वायर स्वतंत्र रूप से v1 और v2 हैं, तो ( X1/v1)/( X2/v2) एक F(ν1, v2) वित्तीय चरण है।
  • यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो विद्यार्थी का t(ν) यादृच्छिक चर है।
  • यदि X1 एक गामा (α1, 1) यादृच्छिक मान वाली चर धारा है और X2 एक स्वतंत्र गामा (α2, 1) मान वाली चर धारा है, तो X1/( X 1 + X 2) बीटा (α1, α2) यादृच्छिक मान वाली चर धारा होती है। अधिक सामान्यतः, यदि X1 एक गामा (α1, α1)यादृच्छिक मान वाली चर धारा है और X2 एक स्वतंत्र गामा (α2, β2) यादृच्छिक मान वाली चर धारा है, तो β2 X1/(β2 X1 + β1 X2) बीटा (α1, α2) यादृच्छिक मान वाली चर धारा होती है।
  • यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक 'लाप्लास वितरण' यादृच्छिक चर है।
  • यदि X i स्वतंत्र बर्नौली यादृच्छिक चर हैं तो उनका समता समारोह ( XOR) पाइलिंग-अप लेम्मा के माध्यम से वर्णित बर्नौली वैरिएबल है।

(यह भी देखें अनुपात वितरण।)

अनुमानित (सीमा) संबंध

अनुमानित या सीमा संबंध का अर्थ है

  • या तो एक असीमित संख्या के iid यादृच्छिक चर वितरण की कुछ वितरण के लिए आस पास होता है,
  • या यह कि जब कोई पैरामीटर कुछ मान के लिए आस पास होता है तो अलग वितरण तक पहुंच जाता है।

'iid यादृच्छिक चर वितरणों का संयोजन:

  • निश्चित शर्तों के अंतर्गत, एक पर्याप्त बड़ी संख्या के iid यादृच्छिक चर वितरणों के योग (अर्थात औसत) में पर्याप्त अंतर्निहितता होगी, जो अधिकतर सामान्य वितरण होता है। यह केंद्रीय सीमा प्रमेय (CLT) होता है।।

'वितरण के विशेष पैरामीट्रिकरण का विशेष मामला:'

  • X एक 'हाइपरज्यामितीय' (m, N , n) यादृच्छिक चर है। यदि n और m N की समानता में बड़े हैं, और p = m/N 0 या 1 के निकट नहीं है, तो X का अधिकतर एक 'द्विपद' (n, p) वितरण होता है।
  • X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो p = α/(α + β) और मान लीजिए α + β बड़ा है, तो X अधिकतर एक 'द्विपद' (n, p) वितरण होता है।
  • यदि X 'द्विपद' (n, p) यादृच्छिक चर है और यदि n बड़ा है और np छोटा है तो X में अधिकतर 'पॉइसन' (np) वितरण होता है।
  • यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ अधिकतर 'पॉइसन' वितरण होता है।

केंद्रीय सीमा प्रमेय (सीएलटी) के परिणाम:

  • यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/2 ≤ Y ≤ k + 1/2) के समान है जहाँ Y नॉर्मल वितरण है जिसका मान और चार गुणा विस्तार X के विस्तार के समान हैं।
  • यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/) के समान है। 2 ≤ Y ≤ k + 1/2) जहां Y एक 'सामान्य' यादृच्छिक चर है जिसका समान माध्य और X के समान प्रसरण है, अर्थात np और np(1 − p)।
  • यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β समान और बड़ा है, तो X का अधिकतर समान माध्य और भिन्नता वाला 'सामान्य' वितरण है, i। इ। माध्य α/(α + β) और विचरण αβ/((α + β)2(α + β + 1))।
  • यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में अधिकतर समान माध्य और विचरण वाला 'सामान्य' यादृच्छिक चर होता है।
  • यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का अधिकतर 'मानक सामान्य' वितरण है।
  • यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है।

यौगिक (या बायेसियन) संबंध

जब किसी वितरण के एक या एक से अधिक पैरामीटर एक से अधिक रैंडम चर की प्रकार होते हैं, तो यौगिक संभाव्यता वितरण वितरण चर के मार्जिनल वितरण होता है।

उदाहरण:

  • यदि X | N एक द्विपद (N ,p) यादृच्छिक चर है, जहां पैरामीटर N नकारात्मक-द्विपद (m, r') के साथ एक यादृच्छिक चर है ') वितरण, तो X एक ऋणात्मक द्विपद (m, r/(p + qr)) के रूप में वितरित किया जाता है।
  • यदि X | N एक द्विपद (N ,p) यादृच्छिक चर है, जहां पैरामीटर N प्वासों(μ) वितरण के साथ एक यादृच्छिक चर है, फिर X को पोइसन (μp) के रूप में वितरित किया जाता है।
  • यदि X | μ एक प्वासों(μ) यादृच्छिक चर है और पैरामीटर μ गामा(m, θ) वितरण के साथ यादृच्छिक चर है (जहाँ θ पैमाना पैरामीटर है), तो X को ऋणात्मक-द्विपद (m, θ/(1 + θ)) के रूप में वितरित किया जाता है, जिसे कभी-कभी गामा-पोइसन वितरण कहा जाता है।

कुछ वितरणों को विशेष रूप से समष्टि वितरणों के रूप में नाम दिया गया है: बीटा-द्विपद वितरण, बीटा नकारात्मक द्विपद वितरण, गामा-सामान्य वितरण होता है।

उदाहरण:

  • यदि X एक द्विपद(n,p) यादृच्छिक चर है, और पैरामीटर p बीटा(α, β) वितरण के साथ एक यादृच्छिक चर है, तब X को बीटा-द्विपद(α,β,n) के रूप में वितरित किया जाता है।
  • यदि X एक नकारात्मक-द्विपद(r,p) यादृच्छिक चर है, और पैरामीटर p बीटा(α, के साथ एक यादृच्छिक चर है β) वितरण, फिर X को बीटा ऋणात्मक द्विपद वितरण(r,α,β) के रूप में वितरित किया जाता है।

यह भी देखें

संदर्भ

  1. LEEMIS, Lawrence M.; Jacquelyn T. MCQUESTON (February 2008). "यूनीवेरिएट वितरण संबंध" (PDF). American Statistician. 62 (1): 45–53. doi:10.1198/000313008x270448. S2CID 9367367.
  2. Swat, MJ; Grenon, P; Wimalaratne, S (2016). "ProbOnto: ontology and knowledge base of probability distributions". Bioinformatics. 32 (17): 2719–21. doi:10.1093/bioinformatics/btw170. PMC 5013898. PMID 27153608.
  3. Cook, John D. "वितरण संबंधों का आरेख".
  4. Dinov, Ivo D.; Siegrist, Kyle; Pearl, Dennis; Kalinin, Alex; Christou, Nicolas (2015). "Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions". Computational Statistics. 594 (2): 249–271. doi:10.1007/s00180-015-0594-6. PMC 4856044. PMID 27158191.


बाहरी संबंध