क्यू-पोछाम्मेर सिंबल: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in combinatorics (part of mathematics)}} | {{Short description|Concept in combinatorics (part of mathematics)}} | ||
{{DISPLAYTITLE:''q''-Pochhammer symbol}} | {{DISPLAYTITLE:''q''-Pochhammer symbol}} | ||
साहचर्य के गणितीय क्षेत्र में, '''''क्यू''-पोछाम्मेर चिह्न''', जिसे ''क्यू''-शिफ्टेड फैक्टोरियल भी कहा जाता है, उत्पाद होता है | |||
<math display="block">(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1}),</math> | <math display="block">(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1}),</math> | ||
जहाँ <math>(a;q)_0 = 1.</math>यह | जहाँ <math>(a;q)_0 = 1.</math>यह पोछाम्मेर चिह्न का क्यू-एनालॉग|क्यू-एनालॉग है <math>(x)_n = x(x+1)\dots(x+n-1)</math>, इस अर्थ में कि | ||
<math display="block">\lim_{q\to1} \frac{(q^x;q)_n}{(1-q)^n} = (x)_n.</math> | <math display="block">\lim_{q\to1} \frac{(q^x;q)_n}{(1-q)^n} = (x)_n.</math> | ||
क्यू- | क्यू-पोछाम्मेर चिह्न क्यू-एनालॉग्स के निर्माण में एक प्रमुख बिल्डिंग ब्लॉक है; उदाहरण के लिए, हाइपरज्यामितीय श्रृंखला के सिद्धांत में, यह वह भूमिका निभाता है जो साधारण पोछाम्मेर चिह्न सामान्यीकृत हाइपरज्यामितीय श्रृंखला के सिद्धांत में निभाता है। | ||
साधारण पोचहैमर चिह्न के विपरीत, क्यू- | साधारण पोचहैमर चिह्न के विपरीत, क्यू-पोछाम्मेर चिह्न को एक अनंत उत्पाद में विस्तारित किया जा सकता है: | ||
<math display="block">(a;q)_\infty = \prod_{k=0}^{\infty} (1-aq^k).</math> | <math display="block">(a;q)_\infty = \prod_{k=0}^{\infty} (1-aq^k).</math> | ||
यह यूनिट डिस्क के अंदर क्यू के लिए एक [[विश्लेषणात्मक कार्य]] है, और इसे क्यू में एक [[औपचारिक शक्ति श्रृंखला]] के रूप में भी माना जा सकता है। विशेष | यह यूनिट डिस्क के अंदर क्यू के लिए एक [[विश्लेषणात्मक कार्य]] है, और इसे क्यू में एक [[औपचारिक शक्ति श्रृंखला]] के रूप में भी माना जा सकता है। विशेष स्थिति में | ||
<math display="block">\phi(q) = (q;q)_\infty=\prod_{k=1}^\infty (1-q^k)</math> | <math display="block">\phi(q) = (q;q)_\infty=\prod_{k=1}^\infty (1-q^k)</math> | ||
यूलर के कार्य के रूप में जाना जाता है, और संयोजक, [[संख्या सिद्धांत]] और [[मॉड्यूलर रूप]] के सिद्धांत में महत्वपूर्ण है। | यूलर के कार्य के रूप में जाना जाता है, और संयोजक, [[संख्या सिद्धांत]] और [[मॉड्यूलर रूप]] के सिद्धांत में महत्वपूर्ण है। | ||
Line 24: | Line 25: | ||
जो विभाजन कार्यों के कुछ जनरेटिंग कार्यों के लिए उपयोगी होता है। | जो विभाजन कार्यों के कुछ जनरेटिंग कार्यों के लिए उपयोगी होता है। | ||
क्यू- | क्यू-पोछाम्मेर चिह्न कई क्यू-श्रृंखला पहचानों का विषय है, विशेष रूप से अनंत श्रृंखला विस्तार | ||
<math display="block">(x;q)_\infty = \sum_{n=0}^\infty \frac{(-1)^n q^{n(n-1)/2}}{(q;q)_n} x^n</math> | <math display="block">(x;q)_\infty = \sum_{n=0}^\infty \frac{(-1)^n q^{n(n-1)/2}}{(q;q)_n} x^n</math> | ||
और | और | ||
<math display="block">\frac{1}{(x;q)_\infty}=\sum_{n=0}^\infty \frac{x^n}{(q;q)_n},</math> | <math display="block">\frac{1}{(x;q)_\infty}=\sum_{n=0}^\infty \frac{x^n}{(q;q)_n},</math> | ||
जो दोनों क्यू-बाइनोमियल सिद्धांत के विशेष | जो दोनों क्यू-बाइनोमियल सिद्धांत के विशेष स्थितिया हैं | ||
<math display="block">\frac{(ax;q)_\infty}{(x;q)_\infty} = \sum_{n=0}^\infty \frac{(a;q)_n}{(q;q)_n} x^n.</math> | <math display="block">\frac{(ax;q)_\infty}{(x;q)_\infty} = \sum_{n=0}^\infty \frac{(a;q)_n}{(q;q)_n} x^n.</math> | ||
[[फ्रेडरिक कारपेलेविच]] ने निम्नलिखित पहचान का पता लगाया ( | [[फ्रेडरिक कारपेलेविच]] ने निम्नलिखित पहचान का पता लगाया (प्रमाण के लिए {{harvs|txt|last1=ओलशनत्स्की|last2=रोगोव|year=1995}} देखें ): | ||
<math display="block">\frac{(q;q)_{\infty}}{(z;q)_{\infty}}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{n(n+1)/2}}{(q;q)_n(1-zq^n)}, \ |z|<1.</math> | <math display="block">\frac{(q;q)_{\infty}}{(z;q)_{\infty}}=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{n(n+1)/2}}{(q;q)_n(1-zq^n)}, \ |z|<1.</math> | ||
Line 36: | Line 37: | ||
== मिश्रित व्याख्या == | == मिश्रित व्याख्या == | ||
क्यू- | क्यू-पोछाम्मेर चिह्न विभाजनों के ज्ञातिकरणीय संख्यात्मक संगणना से गहराता संबंध रखता है। | ||
<math display="block">(a;q)_\infty^{-1} = \prod_{k=0}^{\infty} (1-aq^k)^{-1}</math> | <math display="block">(a;q)_\infty^{-1} = \prod_{k=0}^{\infty} (1-aq^k)^{-1}</math> | ||
<math>q^m a^n</math> के समकोण में अध्यक्षता के | <math>q^m a^n</math> के समकोण में अध्यक्षता के के माध्यम से, यह m के बहुत से अंशों में विभाजनों की संख्या है? चूँकि विभाजनों के संयुक्तिकरण के माध्यम से, यह m के n से अधिक नहीं होने वाले अंशों में विभाजनों की संख्या के समान होता है, जेनरेटिंग सीरीज की पहचान के के माध्यम से हम इस तोते को प्राप्त करते हैं | ||
<math display="block">(a;q)_\infty^{-1} = \sum_{k=0}^\infty \left(\prod_{j=1}^k \frac{1}{1-q^j} \right) a^k | <math display="block">(a;q)_\infty^{-1} = \sum_{k=0}^\infty \left(\prod_{j=1}^k \frac{1}{1-q^j} \right) a^k | ||
= \sum_{k=0}^\infty \frac{a^k}{(q;q)_k}</math> | = \sum_{k=0}^\infty \frac{a^k}{(q;q)_k}</math> | ||
Line 47: | Line 48: | ||
यह m के n या n-1 अलग-अलग अंशों में विभाजनों की संख्या है। | यह m के n या n-1 अलग-अलग अंशों में विभाजनों की संख्या है। | ||
इस | इस प्रकार के एक विभाजन से n − 1 अंशों के साथ एक त्रिकोणीय विभाजन को हटाकर, हम अधिकांश n अंशों वाले एक अनिश्चित विभाजन के साथ छोड़ दिया जाता है। यह n या n − 1 अलग-अलग भागो में विभाजन के सेट और n − 1 अंशों वाले त्रिकोणीय विभाजन वाले जोड़े के सेट और अधिकांश n अंशों वाले विभाजन के बीच एक वजन-संरक्षण आक्षेप देता है। जनरेटिंग सीरीज़ की पहचान करके, यह पहचान की ओर ले जाता है | ||
<math display="block">(-a;q)_\infty = \prod_{k=0}^\infty (1+aq^k) | <math display="block">(-a;q)_\infty = \prod_{k=0}^\infty (1+aq^k) | ||
= \sum_{k=0}^\infty \left(q^{k\choose 2} \prod_{j=1}^k \frac{1}{1-q^j}\right) a^k | = \sum_{k=0}^\infty \left(q^{k\choose 2} \prod_{j=1}^k \frac{1}{1-q^j}\right) a^k | ||
= \sum_{k=0}^\infty \frac{q^{k\choose 2}}{(q;q)_k} a^k</math> | = \sum_{k=0}^\infty \frac{q^{k\choose 2}}{(q;q)_k} a^k</math> | ||
उपरोक्त खंड में भी वर्णित है।फलन का व्युत्क्रम <math>(q)_{\infty} := (q; q)_{\infty}</math> उसी | उपरोक्त खंड में भी वर्णित है।फलन का व्युत्क्रम <math>(q)_{\infty} := (q; q)_{\infty}</math> उसी प्रकारसे, [[विभाजन समारोह (संख्या सिद्धांत)|विभाजन फ़ंक्शन(संख्या सिद्धांत)]] <math>p(n)</math> के लिए जनरेटिंग कार्य के रूप में उत्पन्न होता है, , जिसे नीचे दिए गए दूसरे दो क्यू-श्रृंखला विस्तारों के माध्यम से भी विस्तारित किया गया है:<ref>{{cite web|last1=Berndt|first1=B. C.|title=What is a q-series?|url=http://www.math.uiuc.edu/~berndt/articles/q.pdf}}</ref> | ||
<math display="block">\frac{1}{(q; q)_{\infty}} = \sum_{n \geq 0} p(n) q^n = \sum_{n \geq 0} \frac{q^n}{(q; q)_n} = \sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n^2}. </math> | <math display="block">\frac{1}{(q; q)_{\infty}} = \sum_{n \geq 0} p(n) q^n = \sum_{n \geq 0} \frac{q^n}{(q; q)_n} = \sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n^2}. </math> | ||
क्यू-बाइनोमियल उद्धरण खुद एक थोड़ी और विस्तृत संख्यात्मक तर्क के | क्यू-बाइनोमियल उद्धरण खुद एक थोड़ी और विस्तृत संख्यात्मक तर्क के के माध्यम से उठाया जा सकता है जो एक इसी प्रकार का स्वाद रखता है (अगले उपखण्ड में दिए गए विस्तारों को देखें)। | ||
इसी तरह,<math display="block">(q; q)_{\infty} = 1 - \sum_{n \geq 0} q^{n+1}(q; q)_n = \sum_{n \geq 0} q^{\frac{n(n+1)}{2}}\frac{(-1)^n}{(q; q)_n}.</math> | इसी तरह,<math display="block">(q; q)_{\infty} = 1 - \sum_{n \geq 0} q^{n+1}(q; q)_n = \sum_{n \geq 0} q^{\frac{n(n+1)}{2}}\frac{(-1)^n}{(q; q)_n}.</math> | ||
Line 60: | Line 61: | ||
== एकाधिक तर्क सम्मेलन == | == एकाधिक तर्क सम्मेलन == | ||
चूंकि क्यू-पोचहैमर चिह्नों से संबंधित उद्धरण अक्सर कई प्रतीकों के उत्पादों को | चूंकि क्यू-पोचहैमर चिह्नों से संबंधित उद्धरण अक्सर कई प्रतीकों के उत्पादों को सम्मलित करते हैं, इसलिए मानक अनुशासन एक उपकरण के रूप में एक उत्पाद को कई तर्कों का एक एकल प्रतीक लिखना है:: | ||
<math display="block">(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.</math> | <math display="block">(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.</math> | ||
Line 66: | Line 67: | ||
== क्यू-श्रृंखला == | == क्यू-श्रृंखला == | ||
क्यू-श्रृंखला एक [[श्रृंखला (गणित)]] है जिसमें गुणांक एक क्यू के फ़ंक्शन होते हैं, फ़ंक्शन <math>(a; q)_{n}</math>.<ref>Bruce C. Berndt, [http://www.math.uiuc.edu/~berndt/articles/q.pdf What is a ''q''-series?], in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51</ref> इसके पहले परिणाम [[यूलर]], [[गॉस]] और [[कॉची]] के लिए हैं। संगठित अध्ययन [[एडवर्ड हेन]] (1843) के साथ | क्यू-श्रृंखला एक [[श्रृंखला (गणित)]] है जिसमें गुणांक एक क्यू के फ़ंक्शन होते हैं, फ़ंक्शन <math>(a; q)_{n}</math>.<ref>Bruce C. Berndt, [http://www.math.uiuc.edu/~berndt/articles/q.pdf What is a ''q''-series?], in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51</ref> इसके पहले परिणाम [[यूलर]], [[गॉस]] और [[कॉची]] के लिए हैं। संगठित अध्ययन [[एडवर्ड हेन]] (1843) के साथ प्रारंभ होता है।<ref>{{cite web|last1=Heine|first1=E.|title=Untersuchungen über die Reihe|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0034?tify=%7B%22view%22%3A%22info%22%2C%22pages%22%3A%5B299%5D%7D}} J. Reine Angew. Math. 34 (1847), 285-328</ref> | ||
Line 75: | Line 76: | ||
इससे [[ कारख़ाने का ]] के क्यू-एनालॉग को 'क्यू-फैक्टोरियल' के रूप में परिभाषित किया जा सकता है | इससे [[ कारख़ाने का ]] के क्यू-एनालॉग को 'क्यू-फैक्टोरियल' के रूप में परिभाषित किया जा सकता है | ||
<math display="block"> [n]!_q = \prod_{k=1}^n [k]_q = [1]_q \cdot [2]_q \cdots [n-1]_q \cdot [n]_q . </math> | <math display="block"> [n]!_q = \prod_{k=1}^n [k]_q = [1]_q \cdot [2]_q \cdots [n-1]_q \cdot [n]_q . </math> | ||
इसे कई समकक्ष तरीकों से फिर से लिखा जा सकता है, जिसमें | इसे कई समकक्ष तरीकों से फिर से लिखा जा सकता है, जिसमें सम्मलित हैं <math>\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q}</math>, <math>1 \cdot (1+q)\cdots (1+q+\cdots + q^{n-2}) \cdot (1+q+\cdots + q^{n-1})</math>, और <math>\frac{(q;q)_n}{(1-q)^n}.</math>ये संख्याएँ इस अर्थ में अनुरूप हैं जिसका अर्थ है कि | ||
<math display="block">\lim_{q\rightarrow 1}[n]_q = n,</math> | <math display="block">\lim_{q\rightarrow 1}[n]_q = n,</math> | ||
और इसलिए भी | और इसलिए भी | ||
<math display="block">\lim_{q\rightarrow 1}[n]!_q = n!.</math> | <math display="block">\lim_{q\rightarrow 1}[n]!_q = n!.</math> | ||
सीमा मूल्य n! n-तत्व सेट S के क्रम[[परिवर्तन]] की गिनता है। समान रूप से, इसके समकक्ष रूप से, यह n-अंश वाले समन्वित सेट के नेस्टेड सेटों की शृंखलाओं की संख्या को गिनता है <math>E_1 \subset E_2 \subset \cdots \subset E_n = S</math> जो इस | सीमा मूल्य n! n-तत्व सेट S के क्रम [[परिवर्तन]] की गिनता है। समान रूप से, इसके समकक्ष रूप से, यह n-अंश वाले समन्वित सेट के नेस्टेड सेटों की शृंखलाओं की संख्या को गिनता है <math>E_1 \subset E_2 \subset \cdots \subset E_n = S</math> जो इस प्रकार हो कि <math>E_i</math> में बिल्कुल i तत्व हों।<ref name="EC1">{{citation | last = Stanley | first = Richard P. | authorlink = Richard P. Stanley | title = Enumerative Combinatorics | volume = 1 | edition = 2 | publisher = Cambridge University Press | year = 2011}}, Section 1.10.2.</ref> समानता करने पर, जब क्यू एक प्राइम पावर हो और V क्यू तत्वों वाले फ़ील्ड पर एक n-विमानित वेक्टर अंतरिक्ष हो, तो क्यू-अनुशंष <math>V_1 \subset V_2 \subset \cdots \subset V_n = V</math> में पूर्ण झंडों की संख्या है, अर्थात यह उप-स्थान की शृंखला है <math>V_i</math> का आयाम i होता है।<ref name = "EC1" /> पिछली विचारों से यह सुझाव देते हैं कि कोई एक तत्व वाली फ़ील्ड के उपर एक नेस्टेड सेट की शृंखला को एक झंडे के रूप में देखा जा सकता है। | ||
ऋणात्मक पूर्णांक क्यू-कोष्ठकों के गुणनफल को क्यू-फैक्टोरियल के रूप में व्यक्त किया जा सकता है | ऋणात्मक पूर्णांक क्यू-कोष्ठकों के गुणनफल को क्यू-फैक्टोरियल के रूप में व्यक्त किया जा सकता है | ||
Line 136: | Line 137: | ||
\frac{[n]!_q}{[k_1]!_q \cdots [k_m]!_q}, | \frac{[n]!_q}{[k_1]!_q \cdots [k_m]!_q}, | ||
</math> | </math> | ||
यहाँ तर्क <math>k_1, \ldots, k_m</math> गैर-ऋणात्मक पूर्णांक हैं जो संतुष्ट करते हैं <math> | यहाँ तर्क <math>k_1, \ldots, k_m</math> गैर-ऋणात्मक पूर्णांक हैं जो संतुष्ट करते हैं <math> | ||
\sum_{i=1}^m k_i = n | \sum_{i=1}^m k_i = n | ||
</math>. उपरोक्त गुणांक झंडे की संख्या की गणना करता है | </math>. उपरोक्त गुणांक झंडे की संख्या की गणना करता है | ||
Line 182: | Line 183: | ||
* {{MathWorld|urlname=q-Factorial|title=''q''-Series}} | * {{MathWorld|urlname=q-Factorial|title=''q''-Series}} | ||
* {{MathWorld|urlname=q-BinomialCoefficient|title=''q''-Binomial Coefficient}} | * {{MathWorld|urlname=q-BinomialCoefficient|title=''q''-Binomial Coefficient}} | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with ignored display titles]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:क्यू-एनालॉग्स]] | |||
[[Category:संख्या सिद्धांत]] |
Latest revision as of 12:34, 26 October 2023
साहचर्य के गणितीय क्षेत्र में, क्यू-पोछाम्मेर चिह्न, जिसे क्यू-शिफ्टेड फैक्टोरियल भी कहा जाता है, उत्पाद होता है
साधारण पोचहैमर चिह्न के विपरीत, क्यू-पोछाम्मेर चिह्न को एक अनंत उत्पाद में विस्तारित किया जा सकता है:
पहचान
अंतिम उत्पाद अनंत उत्पाद के शब्दों में व्यक्त किया जा सकता है::
क्यू-पोछाम्मेर चिह्न कई क्यू-श्रृंखला पहचानों का विषय है, विशेष रूप से अनंत श्रृंखला विस्तार
मिश्रित व्याख्या
क्यू-पोछाम्मेर चिह्न विभाजनों के ज्ञातिकरणीय संख्यात्मक संगणना से गहराता संबंध रखता है।
हमारे पास वह गुणांक भी है में
इस प्रकार के एक विभाजन से n − 1 अंशों के साथ एक त्रिकोणीय विभाजन को हटाकर, हम अधिकांश n अंशों वाले एक अनिश्चित विभाजन के साथ छोड़ दिया जाता है। यह n या n − 1 अलग-अलग भागो में विभाजन के सेट और n − 1 अंशों वाले त्रिकोणीय विभाजन वाले जोड़े के सेट और अधिकांश n अंशों वाले विभाजन के बीच एक वजन-संरक्षण आक्षेप देता है। जनरेटिंग सीरीज़ की पहचान करके, यह पहचान की ओर ले जाता है
इसी तरह,
एकाधिक तर्क सम्मेलन
चूंकि क्यू-पोचहैमर चिह्नों से संबंधित उद्धरण अक्सर कई प्रतीकों के उत्पादों को सम्मलित करते हैं, इसलिए मानक अनुशासन एक उपकरण के रूप में एक उत्पाद को कई तर्कों का एक एकल प्रतीक लिखना है::
क्यू-श्रृंखला
क्यू-श्रृंखला एक श्रृंखला (गणित) है जिसमें गुणांक एक क्यू के फ़ंक्शन होते हैं, फ़ंक्शन .[2] इसके पहले परिणाम यूलर, गॉस और कॉची के लिए हैं। संगठित अध्ययन एडवर्ड हेन (1843) के साथ प्रारंभ होता है।[3]
अन्य क्यू-फ़ंक्शंस से संबंध
n का क्यू-एनालॉग, जिसे n का 'क्यू-ब्रैकेट' या 'क्यू-संख्या' भी कहा जाता है, को परिभाषित किया गया है
सीमा मूल्य n! n-तत्व सेट S के क्रम परिवर्तन की गिनता है। समान रूप से, इसके समकक्ष रूप से, यह n-अंश वाले समन्वित सेट के नेस्टेड सेटों की शृंखलाओं की संख्या को गिनता है जो इस प्रकार हो कि में बिल्कुल i तत्व हों।[4] समानता करने पर, जब क्यू एक प्राइम पावर हो और V क्यू तत्वों वाले फ़ील्ड पर एक n-विमानित वेक्टर अंतरिक्ष हो, तो क्यू-अनुशंष में पूर्ण झंडों की संख्या है, अर्थात यह उप-स्थान की शृंखला है का आयाम i होता है।[4] पिछली विचारों से यह सुझाव देते हैं कि कोई एक तत्व वाली फ़ील्ड के उपर एक नेस्टेड सेट की शृंखला को एक झंडे के रूप में देखा जा सकता है।
ऋणात्मक पूर्णांक क्यू-कोष्ठकों के गुणनफल को क्यू-फैक्टोरियल के रूप में व्यक्त किया जा सकता है
सभी के लिए .
इससे हम देख सकते हैं कि
सीमा सामान्य बहुराष्ट्रीय गुणांक देता है , जो शब्दों को अलग-अलग चिह्नों में गिनता है ऐसा है कि प्रत्येक दिखाई पड़ना बार।
एक व्यक्ति गामा फलन का क्यू-एनालॉग भी प्राप्त करता है, जिसे 'क्यू-गामा फलन' कहा जाता है, और इसे इस रूप में परिभाषित किया जाता है
यह भी देखें
- बुनियादी हाइपरज्यामितीय श्रृंखला
- अण्डाकार गामा समारोह
- थीटा समारोह
- लैम्बर्ट श्रृंखला
- पंचकोणीय संख्या प्रमेय
- क्यू-व्युत्पन्न|क्यू-व्युत्पन्न
- क्यू-थीटा कार्य | क्यू-थीटा कार्य
- क्यू-वंडरमोंडे की पहचान|क्यू-वंडरमोंडे की पहचान
- रोजर्स-रामानुजन पहचान
- रोजर्स-रामानुजन ने अंश जारी रखा
संदर्भ
- ↑ Berndt, B. C. "What is a q-series?" (PDF).
- ↑ Bruce C. Berndt, What is a q-series?, in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51
- ↑ Heine, E. "Untersuchungen über die Reihe". J. Reine Angew. Math. 34 (1847), 285-328
- ↑ 4.0 4.1 Stanley, Richard P. (2011), Enumerative Combinatorics, vol. 1 (2 ed.), Cambridge University Press, Section 1.10.2.
- ↑ Olver; et al. (2010). "Section 17.2". गणितीय कार्यों की एनआईएसटी हैंडबुक. p. 421.
- George Gasper and Mizan Rahman, Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN 0-521-83357-4.
- Roelof Koekoek and Rene F. Swarttouw, The Askey scheme of orthogonal polynomials and its क्यू-analogues, section 0.2.
- Exton, H. (1983), क्यू-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
- M.A. Olshanetsky and V.B.K. Rogov (1995), The Modified क्यू-Bessel Functions and the क्यू-Bessel-Macdonald Functions, arXiv:क्यू-alg/9509013.