लैम्ब तरंग: Difference between revisions

From Vigyanwiki
(Created page with "मेमने की लहरें ठोस प्लेटों या गोले में फैलती हैं।<ref>{{Cite journal|last=Lamb|first=Horace|dat...")
 
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
मेमने की लहरें ठोस प्लेटों या गोले में फैलती हैं।<ref>{{Cite journal|last=Lamb|first=Horace|date=1881|title=एक लोचदार क्षेत्र के कंपन पर|journal=Proceedings of the London Mathematical Society|language=en|volume=s1-13|issue=1|pages=189–212|doi=10.1112/plms/s1-13.1.189|issn=1460-244X|url=https://zenodo.org/record/2423349}}</ref> वे लोचदार तरंगें हैं जिनकी कण गति उस तल में होती है जिसमें तरंग प्रसार की दिशा और प्लेट के लंबवत दिशा होती है। 1917 में, अंग्रेजी गणितज्ञ [[होरेस लैम्ब]] ने इस प्रकार की ध्वनिक तरंगों का अपना क्लासिक विश्लेषण और विवरण प्रकाशित किया। उनके गुण काफी जटिल निकले। एक अनंत माध्यम अद्वितीय वेगों पर यात्रा करने वाले केवल दो तरंग मोड का समर्थन करता है; लेकिन प्लेटें लैम्ब वेव मोड्स के दो अनंत सेटों का समर्थन करती हैं, जिनके वेग तरंग दैर्ध्य और प्लेट की मोटाई के बीच संबंध पर निर्भर करते हैं।
'''लैम्ब तरंग''' ठोस प्लेटों या गोले में फैलती हैं।<ref>{{Cite journal|last=Lamb|first=Horace|date=1881|title=एक लोचदार क्षेत्र के कंपन पर|journal=Proceedings of the London Mathematical Society|language=en|volume=s1-13|issue=1|pages=189–212|doi=10.1112/plms/s1-13.1.189|issn=1460-244X|url=https://zenodo.org/record/2423349}}</ref> वे लोचदार तरंगें हैं जिनकी कण गति उस तल में होती है जिसमें तरंग प्रसार की दिशा और प्लेट के लंबवत दिशा होती है। 1917 में, अंग्रेजी गणितज्ञ [[होरेस लैम्ब]] ने इस प्रकार की ध्वनिक तरंगों का अपना क्लासिक विश्लेषण और विवरण प्रकाशित किया। उनके गुण काफी जटिल निकले। अनंत माध्यम अद्वितीय वेगों पर यात्रा करने वाले एकमात्र दो तरंग मोड का समर्थन करता है; किन्तु प्लेटें लैम्ब वेव मोड्स के दो अनंत सेटों का समर्थन करती हैं, जिनके वेग तरंग दैर्ध्य और प्लेट की मोटाई के बीच संबंध पर निर्भर करते हैं।


1990 के दशक के बाद से, कंप्यूटिंग शक्ति की उपलब्धता में तेजी से वृद्धि के कारण लैम्ब वेव्स की समझ और उपयोग में काफी वृद्धि हुई है। लैम्ब के सैद्धांतिक योगों को पर्याप्त व्यावहारिक अनुप्रयोग मिला है, विशेष रूप से गैर-विनाशकारी परीक्षण के क्षेत्र में।
1990 के दशक के बाद से, कंप्यूटिंग शक्ति की उपलब्धता में तेजी से वृद्धि के कारण लैम्ब तरंग की समझ और उपयोग में काफी वृद्धि हुई है। लैम्ब के सैद्धांतिक योगों को पर्याप्त व्यावहारिक अनुप्रयोग मिला है, विशेष रूप से गैर-विनाशकारी परीक्षण के क्षेत्र में होता है।


रेले-मेमने की लहरें<!-- [[Rayleigh–Lamb waves]] redirects here --> रेले तरंग को गले लगाता है, एक प्रकार की लहर जो एक सतह के साथ फैलती है। रेले और लैम्ब दोनों तरंगें सतह के लोचदार गुणों से विवश हैं जो उन्हें निर्देशित करती हैं।
रेले-लैम्ब की तरंग रेले तरंग को गले लगाता है, एक प्रकार की लहर जो एक सतह के साथ फैलती है। रेले और लैम्ब दोनों तरंगें सतह के लोचदार गुणों से विवश हैं जो उन्हें निर्देशित करती हैं।
   
   
  [[File:Lamb Waves 2 Modes.jpg|thumb | चित्र 1: क्रमशः ऊपरी और निचला:<br />एक्सटेंशनल (एस<sub>0</sub>) मोड के साथ <math>d/\lambda=0.6</math>.<br />फ्लेक्सुरल (ए<sub>0</sub>) मोड के साथ <math>d/\lambda=0.3</math>.<br />(यह एक सरलीकृत ग्राफ़िक है। यह केवल गति के z घटक पर आधारित है, इसलिए यह प्लेट के विरूपण को सटीक रूप से प्रस्तुत नहीं करता है।)]]
  [[File:Lamb Waves 2 Modes.jpg|thumb | चित्र 1: क्रमशः ऊपरी और निचला:<br />एक्सटेंशनल (एस<sub>0</sub>) मोड के साथ <math>d/\lambda=0.6</math>.<br />फ्लेक्सुरल (ए<sub>0</sub>) मोड के साथ <math>d/\lambda=0.3</math>.<br />(यह एक सरलीकृत ग्राफ़िक है। यह एकमात्र गति के z घटक पर आधारित है, इसलिए यह प्लेट के विरूपण को सटीक रूप से प्रस्तुत नहीं करता है।)]]


== मेमने की विशेषता समीकरण ==
== लैम्ब की विशेषता समीकरण ==


सामान्य तौर पर, ठोस पदार्थों में लोचदार तरंगें<ref>Achenbach, J. D. “Wave Propagation in Elastic Solids”. New York: Elsevier, 1984.</ref> मीडिया की सीमाओं द्वारा निर्देशित होते हैं जिसमें वे प्रचार करते हैं। निर्देशित लहर प्रसार के लिए एक दृष्टिकोण, व्यापक रूप से भौतिक ध्वनिकी में उपयोग किया जाता है, संरचनात्मक ज्यामिति का प्रतिनिधित्व करने वाली सीमा स्थितियों के अधीन [[3-डी लोच]] के लिए [[तरंग समीकरण]] के साइनसॉइडल समाधान की तलाश करना है। यह एक क्लासिक [[eigenvalue]] समस्या है।
सामान्यतः , ठोस पदार्थों में लोचदार तरंगें<ref>Achenbach, J. D. “Wave Propagation in Elastic Solids”. New York: Elsevier, 1984.</ref> मीडिया की सीमाओं द्वारा निर्देशित होते हैं जिसमें वे प्रचार करते हैं। निर्देशित लहर प्रसार के लिए एक दृष्टिकोण, व्यापक रूप से भौतिक ध्वनिकी में उपयोग किया जाता है, संरचनात्मक ज्यामिति का प्रतिनिधित्व करने वाली सीमा स्थितियों के अधीन [[3-डी लोच]] के लिए [[तरंग समीकरण]] के साइनसॉइडल समाधान की खोज करना है। यह क्लासिक [[eigenvalue|ईगेनवैल्यू]] समस्या है।


प्लेटों में तरंगें इस तरह से विश्लेषण की जाने वाली पहली निर्देशित तरंगों में से थीं। विश्लेषण 1917 में विकसित और प्रकाशित किया गया था<ref>Lamb, H. "On Waves in an Elastic Plate." Proc. Roy. Soc. London, Ser. A 93, 114&ndash;128, 1917.</ref> होरेस लैम्ब द्वारा, अपने समय के गणितीय भौतिकी में एक नेता।
प्लेटों में तरंगें इस तरह से विश्लेषण की जाने वाली पहली निर्देशित तरंगों में से थीं। विश्लेषण 1917 में विकसित और प्रकाशित किया गया था<ref>Lamb, H. "On Waves in an Elastic Plate." Proc. Roy. Soc. London, Ser. A 93, 114&ndash;128, 1917.</ref> होरेस लैम्ब द्वारा, अपने समय के गणितीय भौतिकी में नेता होता है।


लैम्ब के समीकरण x और y दिशाओं में अनंत विस्तार और z दिशा में मोटाई d वाली एक ठोस प्लेट के लिए औपचारिकता स्थापित करके प्राप्त किए गए थे। तरंग समीकरण के साइनसॉइडल समाधानों को पोस्ट किया गया था, जिसमें फॉर्म के x- और z- विस्थापन थे
लैम्ब के समीकरण x और y दिशाओं में अनंत विस्तार और z दिशा में मोटाई d वाली एक ठोस प्लेट के लिए औपचारिकता स्थापित करके प्राप्त किए गए थे। तरंग समीकरण के साइनसॉइडल समाधानों को पोस्ट किया गया था, जिसमें फॉर्म के x- और z- विस्थापन थे
:<math>\xi = A_x f_x(z) e^{i(\omega t - kx)} \quad \quad (1) </math>
:<math>\xi = A_x f_x(z) e^{i(\omega t - kx)} \quad \quad (1) </math>
:<math>\zeta = A_z f_z(z) e^{i(\omega t - k x)} \quad \quad (2) </math>
:<math>\zeta = A_z f_z(z) e^{i(\omega t - k x)} \quad \quad (2) </math>
यह रूप तरंग दैर्ध्य 2π/k और आवृत्ति ω/2π के साथ x दिशा में फैलने वाली साइनसोइडल तरंगों का प्रतिनिधित्व करता है। विस्थापन केवल x, z, t का फलन है; y दिशा में कोई विस्थापन नहीं होता है और y दिशा में किसी भौतिक राशि में कोई परिवर्तन नहीं होता है।
यह रूप तरंग दैर्ध्य 2π/k और आवृत्ति ω/2π के साथ x दिशा में फैलने वाली साइनसोइडल तरंगों का प्रतिनिधित्व करता है। विस्थापन एकमात्र x, z, t का फलन है; y दिशा में कोई विस्थापन नहीं होता है और y दिशा में किसी भौतिक राशि में कोई परिवर्तन नहीं होता है।


प्लेट की मुक्त सतहों के लिए भौतिक सीमा की स्थिति यह है कि z = +/- d/2 पर z दिशा में तनाव का घटक शून्य है।
प्लेट की मुक्त सतहों के लिए भौतिक सीमा की स्थिति यह है कि z = +/- d/2 पर z दिशा में तनाव का घटक शून्य है।
तरंग समीकरण के उपरोक्त औपचारिक समाधान के लिए इन दो शर्तों को लागू करने पर, विशेषता समीकरणों की एक जोड़ी पाई जा सकती है। ये:
 
तरंग समीकरण के उपरोक्त औपचारिक समाधान के लिए इन दो शर्तों को लागू करने पर, विशेषता समीकरणों की जोड़ी पाई जा सकती है। ये:
:<math>
:<math>
\frac{\tanh(\beta d / 2)} {\tanh(\alpha d / 2)} = \frac
\frac{\tanh(\beta d / 2)} {\tanh(\alpha d / 2)} = \frac
Line 34: Line 35:
:<math> \alpha^2 = k^2-\frac{\omega^2}{c_l^2}
:<math> \alpha^2 = k^2-\frac{\omega^2}{c_l^2}
\quad \quad \text{and}\quad\quad \beta^2 = k^2-\frac{\omega^2}{c_t^2}. </math>
\quad \quad \text{and}\quad\quad \beta^2 = k^2-\frac{\omega^2}{c_t^2}. </math>
इन समीकरणों में निहित कोणीय आवृत्ति ω और तरंग संख्या k के बीच संबंध है। [[चरण वेग]] सी को खोजने के लिए संख्यात्मक विधियों का उपयोग किया जाता है<sub>p</sub> = fλ = ω/k, और [[समूह वेग]] c<sub>g</sub>= dω/dk, d/λ या fd के कार्यों के रूप में। सी<sub>l</sub>और सी<sub>t</sub>क्रमशः अनुदैर्ध्य तरंग और कतरनी तरंग वेग हैं।
इन समीकरणों में निहित कोणीय आवृत्ति ω और तरंग संख्या k के बीच संबंध है। [[चरण वेग]] सी को खोजने के लिए संख्यात्मक विधियों का उपयोग किया जाता है<sub>p</sub> = fλ = ω/k, और [[समूह वेग]] c<sub>g</sub>= dω/dk, d/λ या fd के कार्यों के रूप में। सी<sub>l</sub>और सी<sub>t</sub> क्रमशः अनुदैर्ध्य तरंग और कतरनी तरंग वेग हैं।


इन समीकरणों के समाधान से कण गति के सटीक रूप का भी पता चलता है, जो समीकरण (1) और (2) केवल सामान्य रूप में दर्शाते हैं। यह पाया गया है कि समीकरण (3) तरंगों के एक परिवार को जन्म देता है जिसकी गति प्लेट के मध्य तल (तल z = 0) के बारे में सममित है, जबकि समीकरण (4) तरंगों के एक परिवार को जन्म देता है जिसकी गति इसके बारे में विषम है। मध्य विमान। चित्र 1 प्रत्येक परिवार के एक सदस्य को दिखाता है।
इन समीकरणों के समाधान से कण गति के सटीक रूप का भी पता चलता है, जो समीकरण (1) और (2) एकमात्र सामान्य रूप में दर्शाते हैं। यह पाया गया है कि समीकरण (3) तरंगों के परिवार को जन्म देता है जिसकी गति प्लेट के मध्य तल (तल z = 0) के बारे में सममित है, जबकि समीकरण (4) तरंगों के एक परिवार को जन्म देता है जिसकी गति इसके बारे में विषम है। मध्य विमान। चित्र 1 प्रत्येक परिवार के सदस्य को दिखाता है।


लैंब के अभिलाक्षणिक समीकरणों को एक अनंत प्लेट में प्रसार करने वाली तरंगों के लिए स्थापित किया गया था - एक सजातीय, आइसोट्रोपिक ठोस जो दो समानांतर विमानों से घिरा हुआ है जिसके आगे कोई तरंग ऊर्जा नहीं फैल सकती है। अपनी समस्या को तैयार करने में, लैम्ब ने कण गति के घटकों को प्लेट की सामान्य दिशा (z- दिशा) और तरंग प्रसार की दिशा (x- दिशा) तक सीमित कर दिया। परिभाषा के अनुसार, लैम्ब तरंगों की y-दिशा में कोई कण गति नहीं होती है। प्लेटों में y-दिशा में गति तथाकथित SH या कतरनी-क्षैतिज तरंग मोड में पाई जाती है। इनकी x- या z- दिशाओं में कोई गति नहीं है, और इस प्रकार ये लैम्ब वेव मोड के पूरक हैं। ये दो एकमात्र तरंग प्रकार हैं जो ऊपर परिभाषित प्लेट में सीधे, अनंत लहर मोर्चों के साथ प्रचार कर सकते हैं।
लैंब के अभिलाक्षणिक समीकरणों को एक अनंत प्लेट में प्रसार करने वाली तरंगों के लिए स्थापित किया गया था - एक सजातीय, आइसोट्रोपिक ठोस जो दो समानांतर विमानों से घिरा हुआ है जिसके आगे कोई तरंग ऊर्जा नहीं फैल सकती है। अपनी समस्या को तैयार करने में, लैम्ब ने कण गति के घटकों को प्लेट की सामान्य दिशा (z- दिशा) और तरंग प्रसार की दिशा (x- दिशा) तक सीमित कर दिया। परिभाषा के अनुसार, लैम्ब तरंगों की y-दिशा में कोई कण गति नहीं होती है। प्लेटों में y-दिशा में गति तथाकथित SH या कतरनी-क्षैतिज तरंग मोड में पाई जाती है। इनकी x- या z- दिशाओं में कोई गति नहीं है, और इस प्रकार ये लैम्ब वेव मोड के पूरक हैं। ये दो एकमात्र तरंग प्रकार हैं जो ऊपर परिभाषित प्लेट में सीधे, अनंत लहर मोर्चों के साथ प्रचार कर सकते हैं।


== विशेषता समीकरणों में निहित वेग फैलाव ==
== विशेषता समीकरणों में निहित वेग फैलाव ==
[[File:Sym asym sigma0.27 und 0.34 edited2.svg|thumb|दो अलग-अलग प्वासों के अनुपात के लिए मुक्त लैम्ब तरंगों के फैलाव वक्र <math>\sigma</math>. एक्स-अक्ष कोणीय आवृत्ति का उत्पाद दिखाता है <math>\omega</math> और प्लेट की मोटाई <math>d</math> कतरनी तरंग वेग द्वारा सामान्यीकृत<math>v_s</math>. Y-अक्ष चरण वेग दिखाता है <math>v</math> कतरनी तरंग वेग द्वारा सामान्यीकृत मेमने की लहर। उच्च आवृत्तियों के लिए <math>S_0</math> और <math>A_0</math> मोड में रेले तरंग वेग होता है, कतरनी तरंग वेग का लगभग 92%।]]मेम्ने तरंगें वेग फैलाव प्रदर्शित करती हैं; अर्थात्, उनके प्रसार का वेग c आवृत्ति (या तरंग दैर्ध्य) पर निर्भर करता है, साथ ही सामग्री के लोचदार स्थिरांक और घनत्व पर भी। यह परिघटना प्लेटों में तरंग व्यवहार के अध्ययन और समझ के लिए केंद्रीय है। भौतिक रूप से, प्रमुख पैरामीटर प्लेट की मोटाई d से तरंग दैर्ध्य का अनुपात है <math>\lambda</math>. यह अनुपात प्लेट की प्रभावी कठोरता और इसलिए तरंग के वेग को निर्धारित करता है। तकनीकी अनुप्रयोगों में, इससे आसानी से प्राप्त एक अधिक व्यावहारिक पैरामीटर का उपयोग किया जाता है, अर्थात् मोटाई और आवृत्ति का उत्पाद:
[[File:Sym asym sigma0.27 und 0.34 edited2.svg|thumb|दो अलग-अलग प्वासों के अनुपात के लिए मुक्त लैम्ब तरंगों के फैलाव वक्र <math>\sigma</math>. एक्स-अक्ष कोणीय आवृत्ति का उत्पाद दिखाता है <math>\omega</math> और प्लेट की मोटाई <math>d</math> कतरनी तरंग वेग द्वारा सामान्यीकृत<math>v_s</math>. Y-अक्ष चरण वेग दिखाता है <math>v</math> कतरनी तरंग वेग द्वारा सामान्यीकृत लैम्ब की लहर। उच्च आवृत्तियों के लिए <math>S_0</math> और <math>A_0</math> मोड में रेले तरंग वेग होता है, कतरनी तरंग वेग का लगभग 92%।]]मेम्ने तरंगें वेग फैलाव प्रदर्शित करती हैं; अर्थात्, उनके प्रसार का वेग c आवृत्ति (या तरंग दैर्ध्य) पर निर्भर करता है, साथ ही सामग्री के लोचदार स्थिरांक और घनत्व पर भी। यह परिघटना प्लेटों में तरंग व्यवहार के अध्ययन और समझ के लिए केंद्रीय है। भौतिक रूप से, प्रमुख पैरामीटर प्लेट की मोटाई d से तरंग दैर्ध्य का अनुपात है <math>\lambda</math>. यह अनुपात प्लेट की प्रभावी कठोरता और इसलिए तरंग के वेग को निर्धारित करता है। तकनीकी अनुप्रयोगों में, इससे आसानी से प्राप्त एक अधिक व्यावहारिक पैरामीटर का उपयोग किया जाता है, अर्थात् मोटाई और आवृत्ति का उत्पाद:
{| cellspacing = 20pt
{| cellspacing = 20pt
|-
|-
Line 49: Line 50:
|<math> c = f \lambda.</math>
|<math> c = f \lambda.</math>
|}
|}
वेग और आवृत्ति (या तरंग दैर्ध्य) के बीच का संबंध विशिष्ट समीकरणों में निहित है। प्लेट के मामले में, ये समीकरण सरल नहीं हैं और उनके समाधान के लिए संख्यात्मक विधियों की आवश्यकता होती है। लैंब के मूल काम के चालीस साल बाद डिजिटल कंप्यूटर के आगमन तक यह एक दुरूह समस्या थी। विक्टोरोव द्वारा कंप्यूटर जनित फैलाव वक्र का प्रकाशन<ref>Viktorov, I. A. “Rayleigh and Lamb Waves: Physical Theory and Applications”, Plenum Press, New York, 1967.</ref> पूर्व सोवियत संघ में, फायरस्टोन के बाद संयुक्त राज्य अमेरिका में वर्ल्टन, और अंततः कई अन्य लोगों ने लैम्ब वेव सिद्धांत को व्यावहारिक प्रयोज्यता के दायरे में लाया। मुक्त फैलाव कैलक्यूलेटर (डीसी)<ref>{{cite web |last1=Huber |first1=A |title=फैलाव कैलकुलेटर|url=https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/#/gallery/33485 |website=DLR homepage |publisher=German Aerospace Center (DLR) |access-date=13 March 2021}}</ref> सॉफ्टवेयर आइसोट्रोपिक प्लेटों और बहुस्तरीय अनिसोट्रोपिक नमूनों के लिए फैलाव आरेखों की गणना की अनुमति देता है। प्लेटों में देखे गए प्रायोगिक तरंगों को परिक्षेपण वक्रों के संदर्भ में व्याख्या द्वारा समझा जा सकता है।
वेग और आवृत्ति (या तरंग दैर्ध्य) के बीच का संबंध विशिष्ट समीकरणों में निहित है। प्लेट के स्थितियों में, ये समीकरण सरल नहीं हैं और उनके समाधान के लिए संख्यात्मक विधियों की आवश्यकता होती है। लैंब के मूल काम के चालीस साल बाद डिजिटल कंप्यूटर के आगमन तक यह दुरूह समस्या थी। विक्टोरोव द्वारा कंप्यूटर जनित फैलाव वक्र का प्रकाशन<ref>Viktorov, I. A. “Rayleigh and Lamb Waves: Physical Theory and Applications”, Plenum Press, New York, 1967.</ref> पूर्व सोवियत संघ में, फायरस्टोन के बाद संयुक्त राज्य अमेरिका में वर्ल्टन, और अंततः कई अन्य लोगों ने लैम्ब वेव सिद्धांत को व्यावहारिक प्रयोज्यता के दायरे में लाया। मुक्त फैलाव कैलक्यूलेटर (डीसी)<ref>{{cite web |last1=Huber |first1=A |title=फैलाव कैलकुलेटर|url=https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/#/gallery/33485 |website=DLR homepage |publisher=German Aerospace Center (DLR) |access-date=13 March 2021}}</ref> सॉफ्टवेयर आइसोट्रोपिक प्लेटों और बहुस्तरीय अनिसोट्रोपिक नमूनों के लिए फैलाव आरेखों की गणना की अनुमति देता है। प्लेटों में देखे गए प्रायोगिक तरंगों को परिक्षेपण वक्रों के संदर्भ में व्याख्या द्वारा समझा जा सकता है।


फैलाव वक्र - ग्राफ़ जो तरंग वेग, तरंग दैर्ध्य और फैलाव प्रणालियों में आवृत्ति के बीच संबंधों को दिखाते हैं - विभिन्न रूपों में प्रस्तुत किए जा सकते हैं। वह रूप जो अंतर्निहित भौतिकी में सबसे बड़ी अंतर्दृष्टि देता है <math>\omega</math> (कोणीय आवृत्ति) y-अक्ष पर और k (तरंग संख्या) x-अक्ष पर। विक्टोरोव द्वारा उपयोग किया जाने वाला रूप, जो मेम्ने तरंगों को व्यावहारिक उपयोग में लाया, वाई-अक्ष पर तरंग वेग है और <math>d/\lambda</math>, मोटाई/तरंग दैर्ध्य अनुपात, एक्स-अक्ष पर। सभी का सबसे व्यावहारिक रूप, जिसका श्रेय जे. और एच. क्रौटक्रामर के साथ-साथ फ्लॉयड फायरस्टोन (जिन्होंने, संयोग से, लेम्ब वेव्स वाक्यांश को गढ़ा) को वाई-अक्ष और एफडी पर तरंग वेग है, आवृत्ति- मोटाई उत्पाद, एक्स-अक्ष पर।
फैलाव वक्र - ग्राफ़ जो तरंग वेग, तरंग दैर्ध्य और फैलाव प्रणालियों में आवृत्ति के बीच संबंधों को दिखाते हैं - विभिन्न रूपों में प्रस्तुत किए जा सकते हैं। वह रूप जो अंतर्निहित भौतिकी में सबसे बड़ी अंतर्दृष्टि देता है <math>\omega</math> (कोणीय आवृत्ति) y-अक्ष पर और k (तरंग संख्या) x-अक्ष पर। विक्टोरोव द्वारा उपयोग किया जाने वाला रूप, जो मेम्ने तरंगों को व्यावहारिक उपयोग में लाया, वाई-अक्ष पर तरंग वेग है और <math>d/\lambda</math>, मोटाई/तरंग दैर्ध्य अनुपात, एक्स-अक्ष पर। सभी का सबसे व्यावहारिक रूप, जिसका श्रेय जे. और एच. क्रौटक्रामर के साथ-साथ फ्लॉयड फायरस्टोन (जिन्होंने, संयोग से, लेम्ब तरंग वाक्यांश को गढ़ा) को वाई-अक्ष और एफडी पर तरंग वेग है, आवृत्ति- मोटाई उत्पाद, एक्स-अक्ष पर होता है।


मेम्ने के विशिष्ट समीकरण चौड़ाई के अनंत प्लेटों में साइनसोइडल वेव मोड के दो पूरे परिवारों के अस्तित्व का संकेत देते हैं <math>d</math>. यह अनबाउंड मीडिया की स्थिति के विपरीत है जहां सिर्फ दो तरंग मोड हैं, अनुदैर्ध्य तरंग और अनुप्रस्थ या अपरूपण तरंग। जैसा कि रेले तरंगों में होता है जो एकल मुक्त सतहों के साथ फैलता है, लैम्ब तरंगों में कण गति प्लेट के भीतर गहराई के आधार पर इसके एक्स और जेड घटकों के साथ अण्डाकार होती है।<ref>[http://www.me.sc.edu/Research/lamss/research/Waves/sld004.htm This link shows a video of the particle motion.]</ref> मोड के एक परिवार में, गति मिडथिकनेस प्लेन के बारे में सममित है। दूसरे परिवार में यह विषम है।
मेम्ने के विशिष्ट समीकरण चौड़ाई के अनंत प्लेटों में साइनसोइडल वेव मोड के दो पूरे परिवारों के अस्तित्व का संकेत देते हैं <math>d</math>. यह अनबाउंड मीडिया की स्थिति के विपरीत है जहां सिर्फ दो तरंग मोड हैं, अनुदैर्ध्य तरंग और अनुप्रस्थ या अपरूपण तरंग। जैसा कि रेले तरंगों में होता है जो एकल मुक्त सतहों के साथ फैलता है, लैम्ब तरंगों में कण गति प्लेट के भीतर गहराई के आधार पर इसके एक्स और जेड घटकों के साथ अण्डाकार होती है।<ref>[http://www.me.sc.edu/Research/lamss/research/Waves/sld004.htm This link shows a video of the particle motion.]</ref> मोड के एक परिवार में, गति मिडथिकनेस प्लेन के बारे में सममित है। दूसरे परिवार में यह विषम है।
जब प्लेटों में ध्वनिक तरंगें फैलती हैं तो वेग फैलाव की घटना प्रयोगात्मक रूप से देखे जाने योग्य तरंगों की एक समृद्ध विविधता की ओर ले जाती है। यह समूह वेग सी है<sub>g</sub>, उपर्युक्त चरण वेग c या c नहीं<sub>p</sub>, जो देखे गए तरंग में देखे गए मॉड्यूलेशन को निर्धारित करता है। तरंगों की उपस्थिति अवलोकन के लिए चुनी गई आवृत्ति रेंज पर गंभीर रूप से निर्भर करती है। फ्लेक्सुरल और एक्सटेंशनल मोड्स को पहचानना अपेक्षाकृत आसान है और इसे गैर-विनाशकारी परीक्षण की तकनीक के रूप में वकालत की गई है।
जब प्लेटों में ध्वनिक तरंगें फैलती हैं तो वेग फैलाव की घटना प्रयोगात्मक रूप से देखे जाने योग्य तरंगों की एक समृद्ध विविधता की ओर ले जाती है। यह समूह वेग सी है<sub>g</sub>, उपर्युक्त चरण वेग c या c नहीं<sub>p</sub>, जो देखे गए तरंग में देखे गए मॉड्यूलेशन को निर्धारित करता है। तरंगों की उपस्थिति अवलोकन के लिए चुनी गई आवृत्ति रेंज पर गंभीर रूप से निर्भर करती है। फ्लेक्सुरल और एक्सटेंशनल मोड्स को पहचानना अपेक्षाकृत आसान है और इसे गैर-विनाशकारी परीक्षण की तकनीक के रूप में वकालत की गई है।


== शून्य-आदेश मोड ==
== शून्य-आदेश मोड ==


सममित और एंटीसिमेट्रिक शून्य-क्रम मोड विशेष ध्यान देने योग्य हैं। इन विधियों में शून्य की नवजात आवृत्तियाँ होती हैं। इस प्रकार वे एकमात्र मोड हैं जो पूरे आवृत्ति स्पेक्ट्रम पर शून्य से अनिश्चित काल तक उच्च आवृत्तियों पर मौजूद हैं। कम आवृत्ति रेंज में (अर्थात जब तरंग दैर्ध्य प्लेट की मोटाई से अधिक होता है) इन मोड को अक्सर क्रमशः "एक्सटेंशनल मोड" और "फ्लेक्सुरल मोड" कहा जाता है, ऐसे शब्द जो गति की प्रकृति और वेग को नियंत्रित करने वाली लोचदार कठोरता का वर्णन करते हैं। प्रसार का। अण्डाकार कण गति मुख्य रूप से प्लेट के विमान में सममित, विस्तार मोड और प्लेट के विमान के लंबवत, एंटीसिमेट्रिक, फ्लेक्सुरल मोड के लिए होती है। ये विशेषताएँ उच्च आवृत्तियों पर बदलती हैं।
सममित और एंटीसिमेट्रिक शून्य-क्रम मोड विशेष ध्यान देने योग्य हैं। इन विधियों में शून्य की नवजात आवृत्तियाँ होती हैं। इस प्रकार वे एकमात्र मोड हैं जो पूरे आवृत्ति स्पेक्ट्रम पर शून्य से अनिश्चित काल तक उच्च आवृत्तियों पर उपस्थित हैं। कम आवृत्ति रेंज में (अर्थात जब तरंग दैर्ध्य प्लेट की मोटाई से अधिक होता है) इन मोड को अधिकांशतः क्रमशः "एक्सटेंशनल मोड" और "फ्लेक्सुरल मोड" कहा जाता है, ऐसे शब्द जो गति की प्रकृति और वेग को नियंत्रित करने वाली लोचदार कठोरता का वर्णन करते हैं। प्रसार का। अण्डाकार कण गति मुख्य रूप से प्लेट के विमान में सममित, विस्तार मोड और प्लेट के विमान के लंबवत, एंटीसिमेट्रिक, फ्लेक्सुरल मोड के लिए होती है। ये विशेषताएँ उच्च आवृत्तियों पर बदलती हैं।


ये दो मोड सबसे महत्वपूर्ण हैं क्योंकि (ए) वे सभी आवृत्तियों पर मौजूद हैं और (बी) अधिकांश व्यावहारिक स्थितियों में वे उच्च-क्रम मोड की तुलना में अधिक ऊर्जा ले जाते हैं।
ये दो मोड सबसे महत्वपूर्ण हैं क्योंकि (ए) वे सभी आवृत्तियों पर उपस्थित हैं और (बी) अधिकांश व्यावहारिक स्थितियों में वे उच्च-क्रम मोड की समानता में अधिक ऊर्जा ले जाते हैं।


शून्य-क्रम सममित मोड (नामित S<sub>0</sub>) कम आवृत्ति शासन में प्लेट वेग से यात्रा करता है जहां इसे विस्तारक मोड कहा जाता है। इस शासन में प्लेट प्रसार की दिशा में फैलती है और मोटाई की दिशा में तदनुसार सिकुड़ती है। जैसे-जैसे आवृत्ति बढ़ती है और तरंग दैर्ध्य प्लेट की मोटाई के साथ तुलनीय हो जाता है, प्लेट के घुमाव का इसकी प्रभावी कठोरता पर महत्वपूर्ण प्रभाव पड़ने लगता है। चरण वेग सुचारू रूप से गिरता है, जबकि समूह वेग कुछ तेजी से न्यूनतम की ओर गिरता है। अभी तक उच्च आवृत्तियों पर, चरण वेग और समूह वेग दोनों रेले तरंग वेग - ऊपर से चरण वेग और नीचे से समूह वेग की ओर अभिसरण करते हैं।
शून्य-क्रम सममित मोड (नामित S<sub>0</sub>) कम आवृत्ति शासन में प्लेट वेग से यात्रा करता है जहां इसे विस्तारक मोड कहा जाता है। इस शासन में प्लेट प्रसार की दिशा में फैलती है और मोटाई की दिशा में तदनुसार सिकुड़ती है। जैसे-जैसे आवृत्ति बढ़ती है और तरंग दैर्ध्य प्लेट की मोटाई के साथ तुलनीय हो जाता है, प्लेट के घुमाव का इसकी प्रभावी कठोरता पर महत्वपूर्ण प्रभाव पड़ने लगता है। चरण वेग सुचारू रूप से गिरता है, जबकि समूह वेग कुछ तेजी से न्यूनतम की ओर गिरता है। अभी तक उच्च आवृत्तियों पर, चरण वेग और समूह वेग दोनों रेले तरंग वेग - ऊपर से चरण वेग और नीचे से समूह वेग की ओर अभिसरण करते हैं।
Line 70: Line 72:
शून्य-क्रम एंटीसिमेट्रिक मोड (नामित ए<sub>0</sub>) कम आवृत्ति शासन में अत्यधिक फैलाव है जहां इसे फ्लेक्सुरल मोड या बेंडिंग मोड कहा जाता है। बहुत कम आवृत्तियों (बहुत पतली प्लेटों) के लिए चरण और समूह वेग आवृत्ति के वर्गमूल के समानुपाती होते हैं; समूह वेग चरण वेग से दोगुना है। यह सरल संबंध झुकने में पतली प्लेटों के लिए कठोरता/मोटाई संबंध का परिणाम है। उच्च आवृत्तियों पर जहां तरंग दैर्ध्य अब प्लेट की मोटाई से अधिक नहीं होता है, ये संबंध टूट जाते हैं। चरण वेग कम और तेजी से बढ़ता है और उच्च आवृत्ति सीमा में रेले तरंग वेग की ओर अभिसरित होता है। समूह वेग एक अधिकतम से होकर गुजरता है, कतरनी तरंग वेग से थोड़ा तेज, जब तरंग दैर्ध्य लगभग प्लेट की मोटाई के बराबर होता है। यह तब ऊपर से, उच्च आवृत्ति सीमा में रेले तरंग वेग में परिवर्तित हो जाता है।
शून्य-क्रम एंटीसिमेट्रिक मोड (नामित ए<sub>0</sub>) कम आवृत्ति शासन में अत्यधिक फैलाव है जहां इसे फ्लेक्सुरल मोड या बेंडिंग मोड कहा जाता है। बहुत कम आवृत्तियों (बहुत पतली प्लेटों) के लिए चरण और समूह वेग आवृत्ति के वर्गमूल के समानुपाती होते हैं; समूह वेग चरण वेग से दोगुना है। यह सरल संबंध झुकने में पतली प्लेटों के लिए कठोरता/मोटाई संबंध का परिणाम है। उच्च आवृत्तियों पर जहां तरंग दैर्ध्य अब प्लेट की मोटाई से अधिक नहीं होता है, ये संबंध टूट जाते हैं। चरण वेग कम और तेजी से बढ़ता है और उच्च आवृत्ति सीमा में रेले तरंग वेग की ओर अभिसरित होता है। समूह वेग एक अधिकतम से होकर गुजरता है, कतरनी तरंग वेग से थोड़ा तेज, जब तरंग दैर्ध्य लगभग प्लेट की मोटाई के बराबर होता है। यह तब ऊपर से, उच्च आवृत्ति सीमा में रेले तरंग वेग में परिवर्तित हो जाता है।
   
   
ऐसे प्रयोगों में जो विस्तारित और फ्लेक्सुरल मोड दोनों को उत्साहित और पता लगाने की अनुमति देते हैं, एक्सटेंडल मोड अक्सर फ्लेक्सुरल मोड के लिए उच्च-वेग, कम-आयाम अग्रदूत के रूप में प्रकट होता है। फ्लेक्सुरल मोड दोनों में से अधिक आसानी से उत्तेजित होता है और अक्सर अधिकांश ऊर्जा वहन करता है।
ऐसे प्रयोगों में जो विस्तारित और फ्लेक्सुरल मोड दोनों को उत्साहित और पता लगाने की अनुमति देते हैं, एक्सटेंडल मोड अधिकांशतः फ्लेक्सुरल मोड के लिए उच्च-वेग, कम-आयाम अग्रदूत के रूप में प्रकट होता है। फ्लेक्सुरल मोड दोनों में से अधिक आसानी से उत्तेजित होता है और अधिकांशतः अधिकांश ऊर्जा वहन करता है।


== उच्च क्रम मोड ==
== उच्च क्रम मोड ==


जैसे ही आवृत्ति बढ़ाई जाती है, उच्च-क्रम तरंग मोड शून्य-क्रम मोड के अतिरिक्त अपनी उपस्थिति बनाते हैं। प्रत्येक उच्च-क्रम मोड प्लेट की गुंजयमान आवृत्ति पर "जन्म" होता है, और केवल उस आवृत्ति से ऊपर मौजूद होता है। उदाहरण के लिए, ए में {{frac|3|4}} इंच (19मिमी) मोटी स्टील प्लेट 200 kHz की आवृत्ति पर, पहले चार लैम्ब वेव मोड मौजूद हैं और 300 kHz पर, पहले छह। अनुकूल प्रयोगात्मक परिस्थितियों में पहले कुछ उच्च-क्रम मोड स्पष्ट रूप से देखे जा सकते हैं। अनुकूल परिस्थितियों से कम के तहत वे ओवरलैप करते हैं और उन्हें अलग नहीं किया जा सकता।
जैसे ही आवृत्ति बढ़ाई जाती है, उच्च-क्रम तरंग मोड शून्य-क्रम मोड के अतिरिक्त अपनी उपस्थिति बनाते हैं। प्रत्येक उच्च-क्रम मोड प्लेट की गुंजयमान आवृत्ति पर "जन्म" होता है, और एकमात्र उस आवृत्ति से ऊपर उपस्थित होता है। उदाहरण के लिए, ए में {{frac|3|4}} इंच (19मिमी) मोटी स्टील प्लेट 200 kHz की आवृत्ति पर, पहले चार लैम्ब वेव मोड उपस्थित हैं और 300 kHz पर, पहले छह। अनुकूल प्रयोगात्मक परिस्थितियों में पहले कुछ उच्च-क्रम मोड स्पष्ट रूप से देखे जा सकते हैं। अनुकूल परिस्थितियों से कम के तहत वे ओवरलैप करते हैं और उन्हें अलग नहीं किया जा सकता हैं।


उच्च-क्रम मेम्ने मोड प्लेट सतहों के समानांतर प्लेट के भीतर नोडल विमानों की विशेषता है। इनमें से प्रत्येक मोड केवल एक निश्चित आवृत्ति से ऊपर मौजूद होता है जिसे इसकी नवजात आवृत्ति कहा जा सकता है। किसी भी मोड के लिए कोई ऊपरी आवृत्ति सीमा नहीं है। नवजात आवृत्तियों को अनुदैर्ध्य या कतरनी तरंगों के लिए गुंजयमान आवृत्तियों के रूप में चित्रित किया जा सकता है, जो प्लेट के विमान के लंबवत फैलती हैं, अर्थात।
उच्च-क्रम मेम्ने मोड प्लेट सतहों के समानांतर प्लेट के भीतर नोडल विमानों की विशेषता है। इनमें से प्रत्येक मोड एकमात्र निश्चित आवृत्ति से ऊपर उपस्थित होता है जिसे इसकी नवजात आवृत्ति कहा जा सकता है। किसी भी मोड के लिए कोई ऊपरी आवृत्ति सीमा नहीं है। नवजात आवृत्तियों को अनुदैर्ध्य या कतरनी तरंगों के लिए गुंजयमान आवृत्तियों के रूप में चित्रित किया जा सकता है, जो प्लेट के विमान के लंबवत फैलती हैं, अर्थात।


:<math> d = \frac{n \lambda}{2} \quad \quad \text{or} \quad \quad
:<math> d = \frac{n \lambda}{2} \quad \quad \text{or} \quad \quad
f = \frac{nc}{2d}</math>
f = \frac{nc}{2d}</math>
जहाँ n कोई धनात्मक पूर्णांक है। यहाँ c या तो अनुदैर्ध्य तरंग वेग या कतरनी तरंग वेग हो सकता है, और अनुनादों के प्रत्येक परिणामी सेट के लिए संबंधित लैम्ब वेव मोड वैकल्पिक रूप से सममित और एंटीसिमेट्रिक हैं। इन दो सेटों के परस्पर क्रिया के परिणामस्वरूप नवजात आवृत्तियों का एक पैटर्न होता है जो पहली नज़र में अनियमित लगता है। उदाहरण के लिए, 3/4 इंच (19mm) मोटी स्टील प्लेट में क्रमशः 5890 m/s और 3260 m/s के अनुदैर्ध्य और अपरूपण वेग होते हैं, एंटीसिमेट्रिक मोड A की नवजात आवृत्तियाँ<sub>1</sub> और ए<sub>2</sub> क्रमशः 86 kHz और 310 kHz हैं, जबकि सममित मोड S की नवजात आवृत्तियाँ<sub>1</sub>, एस<sub>2</sub> और एस<sub>3</sub> क्रमशः 155 kHz, 172 kHz और 343 kHz हैं।
जहाँ n कोई धनात्मक पूर्णांक है। यहाँ c या तो अनुदैर्ध्य तरंग वेग या कतरनी तरंग वेग हो सकता है, और अनुनादों के प्रत्येक परिणामी सेट के लिए संबंधित लैम्ब वेव मोड वैकल्पिक रूप से सममित और एंटीसिमेट्रिक हैं। इन दो सेटों के परस्पर क्रिया के परिणामस्वरूप नवजात आवृत्तियों का पैटर्न होता है जो पहली नज़र में अनियमित लगता है। उदाहरण के लिए, 3/4 इंच (19mm) मोटी स्टील प्लेट में क्रमशः 5890 m/s और 3260 m/s के अनुदैर्ध्य और अपरूपण वेग होते हैं, एंटीसिमेट्रिक मोड A की नवजात आवृत्तियाँ<sub>1</sub> और ए<sub>2</sub> क्रमशः 86 kHz और 310 kHz हैं, जबकि सममित मोड S की नवजात आवृत्तियाँ<sub>1</sub>, एस<sub>2</sub> और एस<sub>3</sub> क्रमशः 155 kHz, 172 kHz और 343 kHz हैं।


इसकी नवजात आवृत्ति पर, इनमें से प्रत्येक मोड में एक अनंत चरण वेग और शून्य का एक समूह वेग होता है। उच्च आवृत्ति सीमा में, इन सभी मोडों के चरण और समूह वेग कतरनी तरंग वेग में परिवर्तित हो जाते हैं। इन अभिसरणों के कारण, मोटी प्लेटों में रेले और कतरनी वेग (जो एक दूसरे के बहुत करीब हैं) का बड़ा महत्व है। सबसे बड़े इंजीनियरिंग महत्व की सामग्री के संदर्भ में सीधे तौर पर कहा जाए, तो स्टील प्लेटों में लंबी दूरी तक फैलने वाली अधिकांश उच्च-आवृत्ति तरंग ऊर्जा 3000-3300 मीटर/सेकेंड पर यात्रा कर रही है।
इसकी नवजात आवृत्ति पर, इनमें से प्रत्येक मोड में एक अनंत चरण वेग और शून्य का एक समूह वेग होता है। उच्च आवृत्ति सीमा में, इन सभी मोडों के चरण और समूह वेग कतरनी तरंग वेग में परिवर्तित हो जाते हैं। इन अभिसरणों के कारण, मोटी प्लेटों में रेले और कतरनी वेग (जो एक दूसरे के बहुत करीब हैं) का बड़ा महत्व है। सबसे बड़े इंजीनियरिंग महत्व की सामग्री के संदर्भ में सीधे तौर पर कहा जाए, तो स्टील प्लेटों में लंबी दूरी तक फैलने वाली अधिकांश उच्च-आवृत्ति तरंग ऊर्जा 3000-3300 मीटर/सेकेंड पर यात्रा कर रही है।


लैम्ब वेव मोड में कण गति सामान्य रूप से अण्डाकार होती है, जिसमें प्लेट के तल के लंबवत और समानांतर दोनों घटक होते हैं। ये घटक चतुर्भुज में हैं, यानी उनके पास 90 डिग्री का चरण अंतर है। घटकों का सापेक्ष परिमाण आवृत्ति का एक कार्य है। कुछ आवृत्तियों-मोटाई वाले उत्पादों के लिए, एक घटक का आयाम शून्य से होकर गुजरता है ताकि गति पूरी तरह से प्लेट के तल के लंबवत या समानांतर हो। प्लेट की सतह पर कणों के लिए, ये स्थितियां तब होती हैं जब लैम्ब वेव फेज वेलोसिटी होती है {{radic|2}}सी<sub>''t''</sub> या केवल सिमेट्रिक मोड के लिए c<sub>''l''</sub>, क्रमश। प्लेटों से आसन्न तरल पदार्थों में ध्वनिक ऊर्जा के विकिरण पर विचार करते समय ये दिशात्मक विचार महत्वपूर्ण होते हैं।
लैम्ब वेव मोड में कण गति सामान्य रूप से अण्डाकार होती है, जिसमें प्लेट के तल के लंबवत और समानांतर दोनों घटक होते हैं। ये घटक चतुर्भुज में हैं, यानी उनके पास 90 डिग्री का चरण अंतर है। घटकों का सापेक्ष परिमाण आवृत्ति का कार्य है। कुछ आवृत्तियों-मोटाई वाले उत्पादों के लिए, एक घटक का आयाम शून्य से होकर गुजरता है जिससे गति पूरी तरह से प्लेट के तल के लंबवत या समानांतर हो। प्लेट की सतह पर कणों के लिए, ये स्थितियां तब होती हैं जब लैम्ब वेव फेज वेलोसिटी होती है {{radic|2}}सी<sub>''t''</sub> या एकमात्र सिमेट्रिक मोड के लिए c<sub>''l''</sub>, क्रमश। प्लेटों से आसन्न तरल पदार्थों में ध्वनिक ऊर्जा के विकिरण पर विचार करते समय ये दिशात्मक विचार महत्वपूर्ण होते हैं।


एक मोड की नवजात आवृत्ति पर कण गति भी पूरी तरह से लंबवत या पूरी तरह से प्लेट के विमान के समानांतर होती है। प्लेट के अनुदैर्ध्य-तरंग अनुनादों के अनुरूप मोड की नवजात आवृत्तियों के करीब, उनकी कण गति प्लेट के विमान के लिए लगभग पूरी तरह से लंबवत होगी; और शियर-वेव रेजोनेंस के पास, समानांतर।
एक मोड की नवजात आवृत्ति पर कण गति भी पूरी तरह से लंबवत या पूरी तरह से प्लेट के विमान के समानांतर होती है। प्लेट के अनुदैर्ध्य-तरंग अनुनादों के अनुरूप मोड की नवजात आवृत्तियों के करीब, उनकी कण गति प्लेट के विमान के लिए लगभग पूरी तरह से लंबवत होगी; और शियर-वेव रेजोनेंस के पास, समानांतर होती है।


जे. और एच. क्रौटक्रामर ने इंगित किया है<ref>J. and H. Krautkrämer, “Ultrasonic Testing of Materials”, 4th edition, American Society for Testing and Materials, {{ISBN|0-318-21482-2}}, April 1990.</ref> लैम्ब वेव्स को अनुदैर्ध्य और अपरूपण तरंगों की एक प्रणाली के रूप में कल्पना की जा सकती है जो प्लेट के आर-पार उपयुक्त कोणों पर फैलती है। ये तरंगें परावर्तित और मोड-रूपांतरित होती हैं और एक निरंतर, सुसंगत तरंग पैटर्न का निर्माण करने के लिए संयोजित होती हैं। इस सुसंगत तरंग पैटर्न के गठन के लिए, प्लेट की मोटाई प्रसार के कोणों और अंतर्निहित अनुदैर्ध्य और कतरनी तरंगों के तरंग दैर्ध्य के ठीक सापेक्ष होनी चाहिए; यह आवश्यकता वेग फैलाव संबंधों की ओर ले जाती है।
जे. और एच. क्रौटक्रामर ने इंगित किया है<ref>J. and H. Krautkrämer, “Ultrasonic Testing of Materials”, 4th edition, American Society for Testing and Materials, {{ISBN|0-318-21482-2}}, April 1990.</ref> लैम्ब तरंग को अनुदैर्ध्य और अपरूपण तरंगों की प्रणाली के रूप में कल्पना की जा सकती है जो प्लेट के आर-पार उपयुक्त कोणों पर फैलती है। ये तरंगें परावर्तित और मोड-रूपांतरित होती हैं और निरंतर, सुसंगत तरंग पैटर्न का निर्माण करने के लिए संयोजित होती हैं। इस सुसंगत तरंग पैटर्न के गठन के लिए, प्लेट की मोटाई प्रसार के कोणों और अंतर्निहित अनुदैर्ध्य और कतरनी तरंगों के तरंग दैर्ध्य के ठीक सापेक्ष होनी चाहिए; यह आवश्यकता वेग फैलाव संबंधों की ओर ले जाती है।


== बेलनाकार समरूपता के साथ लैम्ब तरंगें; बिंदु स्रोतों से प्लेट तरंगें ==
== बेलनाकार समरूपता के साथ लैम्ब तरंगें; बिंदु स्रोतों से प्लेट तरंगें ==


जबकि लैम्ब के विश्लेषण ने एक सीधे तरंग का अनुमान लगाया, यह दिखाया गया है<ref>Claes, S., "La forme des signaux d'émission acoustique et leur rôle dans les essais de localisation", Journées d'Etudes sur l'Emission Acoustique, Institut National des Sciences Appliquées, Lyon (France), March 17-18, p. 215-257, 1975.</ref> बेलनाकार प्लेट तरंगों पर समान अभिलाक्षणिक समीकरण लागू होते हैं (अर्थात् एक रेखा स्रोत से बाहर की ओर फैलने वाली तरंगें, प्लेट के लंबवत स्थित रेखा)। अंतर यह है कि जहाँ सीधे तरंगाग्र का वाहक साइनसॉइड है, वहीं अक्षीय तरंग का वाहक बेसेल फलन है। बेसेल फ़ंक्शन स्रोत पर विलक्षणता का ख्याल रखता है, फिर बड़ी दूरी पर साइनसोइडल व्यवहार की ओर अभिसरण करता है।
जबकि लैम्ब के विश्लेषण ने एक सीधे तरंग का अनुमान लगाया, यह दिखाया गया है<ref>Claes, S., "La forme des signaux d'émission acoustique et leur rôle dans les essais de localisation", Journées d'Etudes sur l'Emission Acoustique, Institut National des Sciences Appliquées, Lyon (France), March 17-18, p. 215-257, 1975.</ref> बेलनाकार प्लेट तरंगों पर समान अभिलाक्षणिक समीकरण लागू होते हैं (अर्थात् रेखा स्रोत से बाहर की ओर फैलने वाली तरंगें, प्लेट के लंबवत स्थित रेखा)। अंतर यह है कि जहाँ सीधे तरंगाग्र का वाहक साइनसॉइड है, वहीं अक्षीय तरंग का वाहक बेसेल फलन है। बेसेल फ़ंक्शन स्रोत पर विलक्षणता का ख्याल रखता है, फिर बड़ी दूरी पर साइनसोइडल व्यवहार की ओर अभिसरण करता है।


ये बेलनाकार तरंगें ईजेनफंक्शन हैं जिनसे प्लेट की प्रतिक्रिया बिंदु गड़बड़ी की रचना की जा सकती है। इस प्रकार एक बिंदु विक्षोभ के लिए एक प्लेट की प्रतिक्रिया को लैम्ब तरंगों के संयोजन के साथ-साथ निकट क्षेत्र में क्षणभंगुर शब्दों के रूप में व्यक्त किया जा सकता है। समग्र परिणाम को वृत्ताकार तरंगों के एक पैटर्न के रूप में शिथिल रूप से देखा जा सकता है, जैसे कि एक तालाब में गिराए गए पत्थर से लहरें लेकिन जैसे-जैसे वे बाहर की ओर बढ़ती हैं, रूप में अधिक गहराई से बदलते हैं। लैम्ब तरंग सिद्धांत केवल (r,z) दिशा में गति से संबंधित है; अनुप्रस्थ गति एक अलग विषय है।
ये बेलनाकार तरंगें ईजेनफंक्शन हैं जिनसे प्लेट की प्रतिक्रिया बिंदु गड़बड़ी की रचना की जा सकती है। इस प्रकार बिंदु विक्षोभ के लिए एक प्लेट की प्रतिक्रिया को लैम्ब तरंगों के संयोजन के साथ-साथ निकट क्षेत्र में क्षणभंगुर शब्दों के रूप में व्यक्त किया जा सकता है। समग्र परिणाम को वृत्ताकार तरंगों के एक पैटर्न के रूप में शिथिल रूप से देखा जा सकता है, जैसे कि एक तालाब में गिराए गए पत्थर से तरंग किन्तु जैसे-जैसे वे बाहर की ओर बढ़ती हैं, रूप में अधिक गहराई से बदलते हैं। लैम्ब तरंग सिद्धांत एकमात्र (r,z) दिशा में गति से संबंधित है; अनुप्रस्थ गति एक अलग विषय है।


== गाइडेड लैम्ब वेव्स ==
== गाइडेड लैम्ब वेव्स ==
यह वाक्यांश अक्सर गैर-विनाशकारी परीक्षण में पाया जाता है। गाइडेड लैम्ब वेव्स को लैम्ब जैसी तरंगों के रूप में परिभाषित किया जा सकता है जो वास्तविक परीक्षण वस्तुओं के परिमित आयामों द्वारा निर्देशित होती हैं। लेम्ब वेव वाक्यांश के लिए निर्देशित उपसर्ग जोड़ने के लिए इस प्रकार यह पहचानना है कि लैम्ब की अनंत प्लेट वास्तव में कहीं नहीं पाई जाती है।
यह वाक्यांश अधिकांशतः गैर-विनाशकारी परीक्षण में पाया जाता है। गाइडेड लैम्ब तरंग को लैम्ब जैसी तरंगों के रूप में परिभाषित किया जा सकता है जो वास्तविक परीक्षण वस्तुओं के परिमित आयामों द्वारा निर्देशित होती हैं। लेम्ब वेव वाक्यांश के लिए निर्देशित उपसर्ग जोड़ने के लिए इस प्रकार यह पहचानना है कि लैम्ब की अनंत प्लेट वास्तव में कहीं नहीं पाई जाती है।


वास्तव में हम परिमित प्लेटों, या बेलनाकार पाइपों या जहाजों में लिपटे प्लेटों, या पतली पट्टियों में कटी हुई प्लेटों आदि के साथ व्यवहार करते हैं। लैम्ब वेव थ्योरी अक्सर ऐसी संरचनाओं के तरंग व्यवहार का बहुत अच्छा लेखा-जोखा देती है। यह एक सटीक खाता नहीं देगा, और यही कारण है कि गाइडेड लैम्ब वेव्स वाक्यांश लैम्ब वेव्स की तुलना में व्यावहारिक रूप से अधिक प्रासंगिक है। एक सवाल यह है कि मेम्ने जैसी तरंगों के वेग और मोड आकार भाग की वास्तविक ज्यामिति से कैसे प्रभावित होंगे। उदाहरण के लिए, एक पतले बेलन में मेमने जैसी तरंग का वेग थोड़ा सा बेलन की त्रिज्या पर और इस बात पर निर्भर करेगा कि तरंग अक्ष के अनुदिश यात्रा कर रही है या परिधि के चारों ओर घूम रही है। एक और सवाल यह है कि भाग की वास्तविक ज्यामिति में पूरी तरह से भिन्न ध्वनिक व्यवहार और तरंग मोड क्या हो सकते हैं। उदाहरण के लिए, एक बेलनाकार पाइप में पूरे पाइप के शारीरिक संचलन से जुड़े फ्लेक्सुरल मोड होते हैं, जो पाइप की दीवार के लैम्ब-जैसे फ्लेक्सुरल मोड से काफी अलग होते हैं।
वास्तव में हम परिमित प्लेटों, या बेलनाकार पाइपों या जहाजों में लिपटे प्लेटों, या पतली पट्टियों में कटी हुई प्लेटों आदि के साथ व्यवहार करते हैं। लैम्ब वेव थ्योरी अधिकांशतः ऐसी संरचनाओं के तरंग व्यवहार का बहुत अच्छा लेखा-जोखा देती है। यह एक सटीक खाता नहीं देगा, और यही कारण है कि गाइडेड लैम्ब तरंग वाक्यांश लैम्ब तरंग की तुलना में व्यावहारिक रूप से अधिक प्रासंगिक है। एक सवाल यह है कि मेम्ने जैसी तरंगों के वेग और मोड आकार भाग की वास्तविक ज्यामिति से कैसे प्रभावित होंगे। उदाहरण के लिए, एक पतले बेलन में लैम्ब जैसी तरंग का वेग थोड़ा सा बेलन की त्रिज्या पर और इस बात पर निर्भर करेगा कि तरंग अक्ष के अनुदिश यात्रा कर रही है या परिधि के चारों ओर घूम रही है। एक और सवाल यह है कि भाग की वास्तविक ज्यामिति में पूरी तरह से भिन्न ध्वनिक व्यवहार और तरंग मोड क्या हो सकते हैं। उदाहरण के लिए, एक बेलनाकार पाइप में पूरे पाइप के शारीरिक संचलन से जुड़े फ्लेक्सुरल मोड होते हैं, जो पाइप की दीवार के लैम्ब-जैसे फ्लेक्सुरल मोड से काफी अलग होते हैं।


== [[अल्ट्रासोनिक परीक्षण]] में मेम्ने तरंगें ==
== [[अल्ट्रासोनिक परीक्षण]] में मेम्ने तरंगें ==


अल्ट्रासोनिक परीक्षण का उद्देश्य आमतौर पर परीक्षण की जा रही वस्तु में व्यक्तिगत खामियों को खोजना और उनकी पहचान करना है। ऐसी खामियों का पता तब चलता है जब वे टकराने वाली लहर को परावर्तित या बिखेरती हैं और परावर्तित या बिखरी हुई लहर पर्याप्त आयाम के साथ खोज इकाई तक पहुंचती है।
अल्ट्रासोनिक परीक्षण का उद्देश्य सामान्यतः परीक्षण की जा रही वस्तु में व्यक्तिगत खामियों को खोजना और उनकी पहचान करना है। ऐसी खामियों का पता तब चलता है जब वे टकराने वाली लहर को परावर्तित या बिखेरती हैं और परावर्तित या बिखरी हुई लहर पर्याप्त आयाम के साथ खोज इकाई तक पहुंचती है।


परंपरागत रूप से, अल्ट्रासोनिक परीक्षण तरंगों के साथ आयोजित किया गया है जिसका तरंग दैर्ध्य निरीक्षण किए जा रहे हिस्से के आयाम से बहुत कम है। इस उच्च-आवृत्ति-शासन में, अल्ट्रासोनिक इंस्पेक्टर उन तरंगों का उपयोग करता है जो अनंत-मध्यम अनुदैर्ध्य और कतरनी तरंग मोड, ज़िग-ज़ैगिंग से प्लेट की मोटाई तक और उसके आस-पास होती हैं। हालांकि लैम्ब वेव अग्रदूतों ने गैर-विनाशकारी परीक्षण अनुप्रयोगों पर काम किया और सिद्धांत की ओर ध्यान आकर्षित किया, व्यापक उपयोग 1990 के दशक तक नहीं आया जब फैलाव घटता की गणना के लिए कंप्यूटर प्रोग्राम और उन्हें प्रयोगात्मक रूप से देखने योग्य संकेतों से संबंधित करने के लिए बहुत अधिक व्यापक रूप से उपलब्ध हो गए। लैम्ब तरंगों की प्रकृति की अधिक व्यापक समझ के साथ-साथ इन कम्प्यूटेशनल उपकरणों ने प्लेट की मोटाई से तुलनीय या उससे अधिक तरंग दैर्ध्य का उपयोग करके गैर-विनाशकारी परीक्षण के लिए तकनीकों को तैयार करना संभव बना दिया। इन लंबी तरंग दैर्ध्य पर तरंग का क्षीणन कम होता है ताकि अधिक दूरी पर दोषों का पता लगाया जा सके।
परंपरागत रूप से, अल्ट्रासोनिक परीक्षण तरंगों के साथ आयोजित किया गया है जिसका तरंग दैर्ध्य निरीक्षण किए जा रहे हिस्से के आयाम से बहुत कम है। इस उच्च-आवृत्ति-शासन में, अल्ट्रासोनिक इंस्पेक्टर उन तरंगों का उपयोग करता है जो अनंत-मध्यम अनुदैर्ध्य और कतरनी तरंग मोड, ज़िग-ज़ैगिंग से प्लेट की मोटाई तक और उसके आस-पास होती हैं। चूंकि लैम्ब वेव अग्रदूतों ने गैर-विनाशकारी परीक्षण अनुप्रयोगों पर काम किया और सिद्धांत की ओर ध्यान आकर्षित किया, व्यापक उपयोग 1990 के दशक तक नहीं आया जब फैलाव घटता की गणना के लिए कंप्यूटर प्रोग्राम और उन्हें प्रयोगात्मक रूप से देखने योग्य संकेतों से संबंधित करने के लिए बहुत अधिक व्यापक रूप से उपलब्ध हो गए। लैम्ब तरंगों की प्रकृति की अधिक व्यापक समझ के साथ-साथ इन कम्प्यूटेशनल उपकरणों ने प्लेट की मोटाई से तुलनीय या उससे अधिक तरंग दैर्ध्य का उपयोग करके गैर-विनाशकारी परीक्षण के लिए तकनीकों को तैयार करना संभव बना दिया। इन लंबी तरंग दैर्ध्य पर तरंग का क्षीणन कम होता है जिससे अधिक दूरी पर दोषों का पता लगाया जा सकता है।


अल्ट्रासोनिक परीक्षण के लिए मेम्ने तरंगों के उपयोग में एक बड़ी चुनौती और कौशल विशिष्ट आवृत्तियों पर विशिष्ट मोड की पीढ़ी है जो अच्छी तरह से प्रचार करेगी और स्वच्छ प्रतिध्वनि देगी। इसके लिए उत्तेजना पर सावधानीपूर्वक नियंत्रण की आवश्यकता होती है। इसके लिए तकनीकों में कंघी ट्रांसड्यूसर, वेजेज, तरल मीडिया से तरंगें और विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर (ईएमएटी) शामिल हैं।
अल्ट्रासोनिक परीक्षण के लिए मेम्ने तरंगों के उपयोग में एक बड़ी चुनौती और कौशल विशिष्ट आवृत्तियों पर विशिष्ट मोड की पीढ़ी है जो अच्छी तरह से प्रचार करेगी और स्वच्छ प्रतिध्वनि देगी। इसके लिए उत्तेजना पर सावधानीपूर्वक नियंत्रण की आवश्यकता होती है। इसके लिए तकनीकों में कंघी ट्रांसड्यूसर, वेजेज, तरल मीडिया से तरंगें और विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर (ईएमएटी) सम्मलित हैं।


== ध्वनि-अल्ट्रासोनिक परीक्षण == में मेम्ने तरंगें
== ध्वनि-अल्ट्रासोनिक परीक्षण == में मेम्ने तरंगें


ध्वनि-अल्ट्रासोनिक परीक्षण अल्ट्रासोनिक परीक्षण से भिन्न होता है जिसमें इसे अलग-अलग दोषों को चित्रित करने के बजाय पर्याप्त क्षेत्रों में वितरित क्षति (और अन्य सामग्री विशेषताओं) का आकलन करने के साधन के रूप में माना जाता था। मेम्ने तरंगें इस अवधारणा के लिए अच्छी तरह से अनुकूल हैं, क्योंकि वे पूरी प्लेट की मोटाई को विकिरणित करते हैं और गति के सुसंगत पैटर्न के साथ पर्याप्त दूरी का प्रसार करते हैं।
ध्वनि-अल्ट्रासोनिक परीक्षण अल्ट्रासोनिक परीक्षण से भिन्न होता है जिसमें इसे अलग-अलग दोषों को चित्रित करने के अतिरिक्त पर्याप्त क्षेत्रों में वितरित क्षति (और अन्य सामग्री विशेषताओं) का आकलन करने के साधन के रूप में माना जाता था। मेम्ने तरंगें इस अवधारणा के लिए अच्छी तरह से अनुकूल हैं, क्योंकि वे पूरी प्लेट की मोटाई को विकिरणित करते हैं और गति के सुसंगत पैटर्न के साथ पर्याप्त दूरी का प्रसार करते हैं।


== ध्वनिक उत्सर्जन परीक्षण में लैम्ब तरंगें ==
== ध्वनिक उत्सर्जन परीक्षण में लैम्ब तरंगें ==


ध्वनिक उत्सर्जन पारंपरिक अल्ट्रासोनिक परीक्षण की तुलना में बहुत कम आवृत्तियों का उपयोग करता है, और सेंसर से आमतौर पर कई मीटर तक की दूरी पर सक्रिय खामियों का पता लगाने की उम्मीद की जाती है। ध्वनिक उत्सर्जन के साथ परंपरागत रूप से परीक्षण करने वाली संरचनाओं का एक बड़ा अंश स्टील प्लेट - टैंक, दबाव वाहिकाओं, पाइप आदि से बना है। लैम्ब वेव थ्योरी, इसलिए, ध्वनिक उत्सर्जन परीक्षण आयोजित करते समय देखे जाने वाले सिग्नल फॉर्म और प्रचार वेगों को समझाने के लिए प्रमुख सिद्धांत है। एई स्रोत स्थान (एई परीक्षण की एक प्रमुख तकनीक) की सटीकता में पर्याप्त सुधार ज्ञान की लैम्ब वेव बॉडी की अच्छी समझ और कुशल उपयोग के माध्यम से प्राप्त किया जा सकता है।
ध्वनिक उत्सर्जन पारंपरिक अल्ट्रासोनिक परीक्षण की समानता में बहुत कम आवृत्तियों का उपयोग करता है, और सेंसर से सामान्यतः कई मीटर तक की दूरी पर सक्रिय खामियों का पता लगाने की उम्मीद की जाती है। ध्वनिक उत्सर्जन के साथ परंपरागत रूप से परीक्षण करने वाली संरचनाओं का एक बड़ा अंश स्टील प्लेट - टैंक, दबाव वाहिकाओं, पाइप आदि से बना है। लैम्ब वेव थ्योरी, इसलिए, ध्वनिक उत्सर्जन परीक्षण आयोजित करते समय देखे जाने वाले सिग्नल फॉर्म और प्रचार वेगों को समझाने के लिए प्रमुख सिद्धांत है। एई स्रोत स्थान (एई परीक्षण की एक प्रमुख तकनीक) की सटीकता में पर्याप्त सुधार ज्ञान की लैम्ब वेव बॉडी की अच्छी समझ और कुशल उपयोग के माध्यम से प्राप्त किया जा सकता है।


== अल्ट्रासोनिक और ध्वनिक उत्सर्जन परीक्षण विपरीत ==
== अल्ट्रासोनिक और ध्वनिक उत्सर्जन परीक्षण विपरीत ==


एक प्लेट पर लागू एक मनमाना यांत्रिक उत्तेजना आवृत्तियों की एक श्रृंखला में ऊर्जा ले जाने वाली लैम्ब तरंगों की बहुलता उत्पन्न करेगा। ध्वनिक उत्सर्जन तरंग के मामले में ऐसा ही है। ध्वनिक उत्सर्जन परीक्षण में, प्राप्त तरंग में कई लैम्ब वेव घटकों को पहचानना और स्रोत गति के संदर्भ में उनकी व्याख्या करना चुनौती है। यह अल्ट्रासोनिक परीक्षण की स्थिति के विपरीत है, जहां पहली चुनौती एकल आवृत्ति पर एकल, अच्छी तरह से नियंत्रित लैम्ब वेव मोड उत्पन्न करना है। लेकिन अल्ट्रासोनिक परीक्षण में भी, मोड रूपांतरण तब होता है जब उत्पन्न लैम्ब वेव दोषों के साथ परस्पर क्रिया करता है, इसलिए कई मोड से मिश्रित परावर्तित संकेतों की व्याख्या दोष लक्षण वर्णन का एक साधन बन जाती है।
एक प्लेट पर लागू एक इच्छानुसार यांत्रिक उत्तेजना आवृत्तियों की श्रृंखला में ऊर्जा ले जाने वाली लैम्ब तरंगों की बहुलता उत्पन्न करेगा। ध्वनिक उत्सर्जन तरंग के स्थितियों में ऐसा ही है। ध्वनिक उत्सर्जन परीक्षण में, प्राप्त तरंग में कई लैम्ब वेव घटकों को पहचानना और स्रोत गति के संदर्भ में उनकी व्याख्या करना चुनौती है। यह अल्ट्रासोनिक परीक्षण की स्थिति के विपरीत है, जहां पहली चुनौती एकल आवृत्ति पर एकल, अच्छी तरह से नियंत्रित लैम्ब वेव मोड उत्पन्न करना है। किन्तु अल्ट्रासोनिक परीक्षण में भी, मोड रूपांतरण तब होता है जब उत्पन्न लैम्ब वेव दोषों के साथ परस्पर क्रिया करता है, इसलिए कई मोड से मिश्रित परावर्तित संकेतों की व्याख्या दोष लक्षण वर्णन का साधन बन जाती है।


== यह भी देखें ==
== यह भी देखें ==
Line 138: Line 140:
*[https://web.archive.org/web/20080207131945/http://www.ndt.net/article/az/ut/lamb.htm Lamb wave] in Nondestructive Testing Encyclopedia
*[https://web.archive.org/web/20080207131945/http://www.ndt.net/article/az/ut/lamb.htm Lamb wave] in Nondestructive Testing Encyclopedia
*[http://www.ndt.net/article/wcndt00/papers/idn602/idn602.htm Lamb Wave Analysis of Acousto-Ultrasonic Signals in Plate] by Liu Zhenqing: an article which includes the complete Lamb wave equations.
*[http://www.ndt.net/article/wcndt00/papers/idn602/idn602.htm Lamb Wave Analysis of Acousto-Ultrasonic Signals in Plate] by Liu Zhenqing: an article which includes the complete Lamb wave equations.
[[Category: ध्वनि-विज्ञान]] [[Category: तरंग यांत्रिकी]] [[Category: गैर विनाशकारी परीक्षण]] [[Category: लोच (भौतिकी)]]


[[Category: Machine Translated Page]]
[[Category:CS1]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:गैर विनाशकारी परीक्षण]]
[[Category:तरंग यांत्रिकी]]
[[Category:ध्वनि-विज्ञान]]
[[Category:लोच (भौतिकी)]]

Latest revision as of 15:33, 26 October 2023

लैम्ब तरंग ठोस प्लेटों या गोले में फैलती हैं।[1] वे लोचदार तरंगें हैं जिनकी कण गति उस तल में होती है जिसमें तरंग प्रसार की दिशा और प्लेट के लंबवत दिशा होती है। 1917 में, अंग्रेजी गणितज्ञ होरेस लैम्ब ने इस प्रकार की ध्वनिक तरंगों का अपना क्लासिक विश्लेषण और विवरण प्रकाशित किया। उनके गुण काफी जटिल निकले। अनंत माध्यम अद्वितीय वेगों पर यात्रा करने वाले एकमात्र दो तरंग मोड का समर्थन करता है; किन्तु प्लेटें लैम्ब वेव मोड्स के दो अनंत सेटों का समर्थन करती हैं, जिनके वेग तरंग दैर्ध्य और प्लेट की मोटाई के बीच संबंध पर निर्भर करते हैं।

1990 के दशक के बाद से, कंप्यूटिंग शक्ति की उपलब्धता में तेजी से वृद्धि के कारण लैम्ब तरंग की समझ और उपयोग में काफी वृद्धि हुई है। लैम्ब के सैद्धांतिक योगों को पर्याप्त व्यावहारिक अनुप्रयोग मिला है, विशेष रूप से गैर-विनाशकारी परीक्षण के क्षेत्र में होता है।

रेले-लैम्ब की तरंग रेले तरंग को गले लगाता है, एक प्रकार की लहर जो एक सतह के साथ फैलती है। रेले और लैम्ब दोनों तरंगें सतह के लोचदार गुणों से विवश हैं जो उन्हें निर्देशित करती हैं।

चित्र 1: क्रमशः ऊपरी और निचला:
एक्सटेंशनल (एस0) मोड के साथ .
फ्लेक्सुरल (ए0) मोड के साथ .
(यह एक सरलीकृत ग्राफ़िक है। यह एकमात्र गति के z घटक पर आधारित है, इसलिए यह प्लेट के विरूपण को सटीक रूप से प्रस्तुत नहीं करता है।)

लैम्ब की विशेषता समीकरण

सामान्यतः , ठोस पदार्थों में लोचदार तरंगें[2] मीडिया की सीमाओं द्वारा निर्देशित होते हैं जिसमें वे प्रचार करते हैं। निर्देशित लहर प्रसार के लिए एक दृष्टिकोण, व्यापक रूप से भौतिक ध्वनिकी में उपयोग किया जाता है, संरचनात्मक ज्यामिति का प्रतिनिधित्व करने वाली सीमा स्थितियों के अधीन 3-डी लोच के लिए तरंग समीकरण के साइनसॉइडल समाधान की खोज करना है। यह क्लासिक ईगेनवैल्यू समस्या है।

प्लेटों में तरंगें इस तरह से विश्लेषण की जाने वाली पहली निर्देशित तरंगों में से थीं। विश्लेषण 1917 में विकसित और प्रकाशित किया गया था[3] होरेस लैम्ब द्वारा, अपने समय के गणितीय भौतिकी में नेता होता है।

लैम्ब के समीकरण x और y दिशाओं में अनंत विस्तार और z दिशा में मोटाई d वाली एक ठोस प्लेट के लिए औपचारिकता स्थापित करके प्राप्त किए गए थे। तरंग समीकरण के साइनसॉइडल समाधानों को पोस्ट किया गया था, जिसमें फॉर्म के x- और z- विस्थापन थे

यह रूप तरंग दैर्ध्य 2π/k और आवृत्ति ω/2π के साथ x दिशा में फैलने वाली साइनसोइडल तरंगों का प्रतिनिधित्व करता है। विस्थापन एकमात्र x, z, t का फलन है; y दिशा में कोई विस्थापन नहीं होता है और y दिशा में किसी भौतिक राशि में कोई परिवर्तन नहीं होता है।

प्लेट की मुक्त सतहों के लिए भौतिक सीमा की स्थिति यह है कि z = +/- d/2 पर z दिशा में तनाव का घटक शून्य है।

तरंग समीकरण के उपरोक्त औपचारिक समाधान के लिए इन दो शर्तों को लागू करने पर, विशेषता समीकरणों की जोड़ी पाई जा सकती है। ये:

सममित मोड के लिए और

असममित मोड के लिए, जहाँ

इन समीकरणों में निहित कोणीय आवृत्ति ω और तरंग संख्या k के बीच संबंध है। चरण वेग सी को खोजने के लिए संख्यात्मक विधियों का उपयोग किया जाता हैp = fλ = ω/k, और समूह वेग cg= dω/dk, d/λ या fd के कार्यों के रूप में। सीlऔर सीt क्रमशः अनुदैर्ध्य तरंग और कतरनी तरंग वेग हैं।

इन समीकरणों के समाधान से कण गति के सटीक रूप का भी पता चलता है, जो समीकरण (1) और (2) एकमात्र सामान्य रूप में दर्शाते हैं। यह पाया गया है कि समीकरण (3) तरंगों के परिवार को जन्म देता है जिसकी गति प्लेट के मध्य तल (तल z = 0) के बारे में सममित है, जबकि समीकरण (4) तरंगों के एक परिवार को जन्म देता है जिसकी गति इसके बारे में विषम है। मध्य विमान। चित्र 1 प्रत्येक परिवार के सदस्य को दिखाता है।

लैंब के अभिलाक्षणिक समीकरणों को एक अनंत प्लेट में प्रसार करने वाली तरंगों के लिए स्थापित किया गया था - एक सजातीय, आइसोट्रोपिक ठोस जो दो समानांतर विमानों से घिरा हुआ है जिसके आगे कोई तरंग ऊर्जा नहीं फैल सकती है। अपनी समस्या को तैयार करने में, लैम्ब ने कण गति के घटकों को प्लेट की सामान्य दिशा (z- दिशा) और तरंग प्रसार की दिशा (x- दिशा) तक सीमित कर दिया। परिभाषा के अनुसार, लैम्ब तरंगों की y-दिशा में कोई कण गति नहीं होती है। प्लेटों में y-दिशा में गति तथाकथित SH या कतरनी-क्षैतिज तरंग मोड में पाई जाती है। इनकी x- या z- दिशाओं में कोई गति नहीं है, और इस प्रकार ये लैम्ब वेव मोड के पूरक हैं। ये दो एकमात्र तरंग प्रकार हैं जो ऊपर परिभाषित प्लेट में सीधे, अनंत लहर मोर्चों के साथ प्रचार कर सकते हैं।

विशेषता समीकरणों में निहित वेग फैलाव

दो अलग-अलग प्वासों के अनुपात के लिए मुक्त लैम्ब तरंगों के फैलाव वक्र . एक्स-अक्ष कोणीय आवृत्ति का उत्पाद दिखाता है और प्लेट की मोटाई कतरनी तरंग वेग द्वारा सामान्यीकृत. Y-अक्ष चरण वेग दिखाता है कतरनी तरंग वेग द्वारा सामान्यीकृत लैम्ब की लहर। उच्च आवृत्तियों के लिए और मोड में रेले तरंग वेग होता है, कतरनी तरंग वेग का लगभग 92%।

मेम्ने तरंगें वेग फैलाव प्रदर्शित करती हैं; अर्थात्, उनके प्रसार का वेग c आवृत्ति (या तरंग दैर्ध्य) पर निर्भर करता है, साथ ही सामग्री के लोचदार स्थिरांक और घनत्व पर भी। यह परिघटना प्लेटों में तरंग व्यवहार के अध्ययन और समझ के लिए केंद्रीय है। भौतिक रूप से, प्रमुख पैरामीटर प्लेट की मोटाई d से तरंग दैर्ध्य का अनुपात है . यह अनुपात प्लेट की प्रभावी कठोरता और इसलिए तरंग के वेग को निर्धारित करता है। तकनीकी अनुप्रयोगों में, इससे आसानी से प्राप्त एक अधिक व्यावहारिक पैरामीटर का उपयोग किया जाता है, अर्थात् मोटाई और आवृत्ति का उत्पाद:

since for all waves

वेग और आवृत्ति (या तरंग दैर्ध्य) के बीच का संबंध विशिष्ट समीकरणों में निहित है। प्लेट के स्थितियों में, ये समीकरण सरल नहीं हैं और उनके समाधान के लिए संख्यात्मक विधियों की आवश्यकता होती है। लैंब के मूल काम के चालीस साल बाद डिजिटल कंप्यूटर के आगमन तक यह दुरूह समस्या थी। विक्टोरोव द्वारा कंप्यूटर जनित फैलाव वक्र का प्रकाशन[4] पूर्व सोवियत संघ में, फायरस्टोन के बाद संयुक्त राज्य अमेरिका में वर्ल्टन, और अंततः कई अन्य लोगों ने लैम्ब वेव सिद्धांत को व्यावहारिक प्रयोज्यता के दायरे में लाया। मुक्त फैलाव कैलक्यूलेटर (डीसी)[5] सॉफ्टवेयर आइसोट्रोपिक प्लेटों और बहुस्तरीय अनिसोट्रोपिक नमूनों के लिए फैलाव आरेखों की गणना की अनुमति देता है। प्लेटों में देखे गए प्रायोगिक तरंगों को परिक्षेपण वक्रों के संदर्भ में व्याख्या द्वारा समझा जा सकता है।

फैलाव वक्र - ग्राफ़ जो तरंग वेग, तरंग दैर्ध्य और फैलाव प्रणालियों में आवृत्ति के बीच संबंधों को दिखाते हैं - विभिन्न रूपों में प्रस्तुत किए जा सकते हैं। वह रूप जो अंतर्निहित भौतिकी में सबसे बड़ी अंतर्दृष्टि देता है (कोणीय आवृत्ति) y-अक्ष पर और k (तरंग संख्या) x-अक्ष पर। विक्टोरोव द्वारा उपयोग किया जाने वाला रूप, जो मेम्ने तरंगों को व्यावहारिक उपयोग में लाया, वाई-अक्ष पर तरंग वेग है और , मोटाई/तरंग दैर्ध्य अनुपात, एक्स-अक्ष पर। सभी का सबसे व्यावहारिक रूप, जिसका श्रेय जे. और एच. क्रौटक्रामर के साथ-साथ फ्लॉयड फायरस्टोन (जिन्होंने, संयोग से, लेम्ब तरंग वाक्यांश को गढ़ा) को वाई-अक्ष और एफडी पर तरंग वेग है, आवृत्ति- मोटाई उत्पाद, एक्स-अक्ष पर होता है।

मेम्ने के विशिष्ट समीकरण चौड़ाई के अनंत प्लेटों में साइनसोइडल वेव मोड के दो पूरे परिवारों के अस्तित्व का संकेत देते हैं . यह अनबाउंड मीडिया की स्थिति के विपरीत है जहां सिर्फ दो तरंग मोड हैं, अनुदैर्ध्य तरंग और अनुप्रस्थ या अपरूपण तरंग। जैसा कि रेले तरंगों में होता है जो एकल मुक्त सतहों के साथ फैलता है, लैम्ब तरंगों में कण गति प्लेट के भीतर गहराई के आधार पर इसके एक्स और जेड घटकों के साथ अण्डाकार होती है।[6] मोड के एक परिवार में, गति मिडथिकनेस प्लेन के बारे में सममित है। दूसरे परिवार में यह विषम है।

जब प्लेटों में ध्वनिक तरंगें फैलती हैं तो वेग फैलाव की घटना प्रयोगात्मक रूप से देखे जाने योग्य तरंगों की एक समृद्ध विविधता की ओर ले जाती है। यह समूह वेग सी हैg, उपर्युक्त चरण वेग c या c नहींp, जो देखे गए तरंग में देखे गए मॉड्यूलेशन को निर्धारित करता है। तरंगों की उपस्थिति अवलोकन के लिए चुनी गई आवृत्ति रेंज पर गंभीर रूप से निर्भर करती है। फ्लेक्सुरल और एक्सटेंशनल मोड्स को पहचानना अपेक्षाकृत आसान है और इसे गैर-विनाशकारी परीक्षण की तकनीक के रूप में वकालत की गई है।

शून्य-आदेश मोड

सममित और एंटीसिमेट्रिक शून्य-क्रम मोड विशेष ध्यान देने योग्य हैं। इन विधियों में शून्य की नवजात आवृत्तियाँ होती हैं। इस प्रकार वे एकमात्र मोड हैं जो पूरे आवृत्ति स्पेक्ट्रम पर शून्य से अनिश्चित काल तक उच्च आवृत्तियों पर उपस्थित हैं। कम आवृत्ति रेंज में (अर्थात जब तरंग दैर्ध्य प्लेट की मोटाई से अधिक होता है) इन मोड को अधिकांशतः क्रमशः "एक्सटेंशनल मोड" और "फ्लेक्सुरल मोड" कहा जाता है, ऐसे शब्द जो गति की प्रकृति और वेग को नियंत्रित करने वाली लोचदार कठोरता का वर्णन करते हैं। प्रसार का। अण्डाकार कण गति मुख्य रूप से प्लेट के विमान में सममित, विस्तार मोड और प्लेट के विमान के लंबवत, एंटीसिमेट्रिक, फ्लेक्सुरल मोड के लिए होती है। ये विशेषताएँ उच्च आवृत्तियों पर बदलती हैं।

ये दो मोड सबसे महत्वपूर्ण हैं क्योंकि (ए) वे सभी आवृत्तियों पर उपस्थित हैं और (बी) अधिकांश व्यावहारिक स्थितियों में वे उच्च-क्रम मोड की समानता में अधिक ऊर्जा ले जाते हैं।

शून्य-क्रम सममित मोड (नामित S0) कम आवृत्ति शासन में प्लेट वेग से यात्रा करता है जहां इसे विस्तारक मोड कहा जाता है। इस शासन में प्लेट प्रसार की दिशा में फैलती है और मोटाई की दिशा में तदनुसार सिकुड़ती है। जैसे-जैसे आवृत्ति बढ़ती है और तरंग दैर्ध्य प्लेट की मोटाई के साथ तुलनीय हो जाता है, प्लेट के घुमाव का इसकी प्रभावी कठोरता पर महत्वपूर्ण प्रभाव पड़ने लगता है। चरण वेग सुचारू रूप से गिरता है, जबकि समूह वेग कुछ तेजी से न्यूनतम की ओर गिरता है। अभी तक उच्च आवृत्तियों पर, चरण वेग और समूह वेग दोनों रेले तरंग वेग - ऊपर से चरण वेग और नीचे से समूह वेग की ओर अभिसरण करते हैं।

विस्तारित मोड के लिए कम-आवृत्ति सीमा में, सतह विस्थापन के z- और x-घटक चतुर्भुज में हैं और उनके आयाम का अनुपात इस प्रकार दिया गया है:

कहाँ प्वासों का अनुपात है।

शून्य-क्रम एंटीसिमेट्रिक मोड (नामित ए0) कम आवृत्ति शासन में अत्यधिक फैलाव है जहां इसे फ्लेक्सुरल मोड या बेंडिंग मोड कहा जाता है। बहुत कम आवृत्तियों (बहुत पतली प्लेटों) के लिए चरण और समूह वेग आवृत्ति के वर्गमूल के समानुपाती होते हैं; समूह वेग चरण वेग से दोगुना है। यह सरल संबंध झुकने में पतली प्लेटों के लिए कठोरता/मोटाई संबंध का परिणाम है। उच्च आवृत्तियों पर जहां तरंग दैर्ध्य अब प्लेट की मोटाई से अधिक नहीं होता है, ये संबंध टूट जाते हैं। चरण वेग कम और तेजी से बढ़ता है और उच्च आवृत्ति सीमा में रेले तरंग वेग की ओर अभिसरित होता है। समूह वेग एक अधिकतम से होकर गुजरता है, कतरनी तरंग वेग से थोड़ा तेज, जब तरंग दैर्ध्य लगभग प्लेट की मोटाई के बराबर होता है। यह तब ऊपर से, उच्च आवृत्ति सीमा में रेले तरंग वेग में परिवर्तित हो जाता है।

ऐसे प्रयोगों में जो विस्तारित और फ्लेक्सुरल मोड दोनों को उत्साहित और पता लगाने की अनुमति देते हैं, एक्सटेंडल मोड अधिकांशतः फ्लेक्सुरल मोड के लिए उच्च-वेग, कम-आयाम अग्रदूत के रूप में प्रकट होता है। फ्लेक्सुरल मोड दोनों में से अधिक आसानी से उत्तेजित होता है और अधिकांशतः अधिकांश ऊर्जा वहन करता है।

उच्च क्रम मोड

जैसे ही आवृत्ति बढ़ाई जाती है, उच्च-क्रम तरंग मोड शून्य-क्रम मोड के अतिरिक्त अपनी उपस्थिति बनाते हैं। प्रत्येक उच्च-क्रम मोड प्लेट की गुंजयमान आवृत्ति पर "जन्म" होता है, और एकमात्र उस आवृत्ति से ऊपर उपस्थित होता है। उदाहरण के लिए, ए में 34 इंच (19मिमी) मोटी स्टील प्लेट 200 kHz की आवृत्ति पर, पहले चार लैम्ब वेव मोड उपस्थित हैं और 300 kHz पर, पहले छह। अनुकूल प्रयोगात्मक परिस्थितियों में पहले कुछ उच्च-क्रम मोड स्पष्ट रूप से देखे जा सकते हैं। अनुकूल परिस्थितियों से कम के तहत वे ओवरलैप करते हैं और उन्हें अलग नहीं किया जा सकता हैं।

उच्च-क्रम मेम्ने मोड प्लेट सतहों के समानांतर प्लेट के भीतर नोडल विमानों की विशेषता है। इनमें से प्रत्येक मोड एकमात्र निश्चित आवृत्ति से ऊपर उपस्थित होता है जिसे इसकी नवजात आवृत्ति कहा जा सकता है। किसी भी मोड के लिए कोई ऊपरी आवृत्ति सीमा नहीं है। नवजात आवृत्तियों को अनुदैर्ध्य या कतरनी तरंगों के लिए गुंजयमान आवृत्तियों के रूप में चित्रित किया जा सकता है, जो प्लेट के विमान के लंबवत फैलती हैं, अर्थात।

जहाँ n कोई धनात्मक पूर्णांक है। यहाँ c या तो अनुदैर्ध्य तरंग वेग या कतरनी तरंग वेग हो सकता है, और अनुनादों के प्रत्येक परिणामी सेट के लिए संबंधित लैम्ब वेव मोड वैकल्पिक रूप से सममित और एंटीसिमेट्रिक हैं। इन दो सेटों के परस्पर क्रिया के परिणामस्वरूप नवजात आवृत्तियों का पैटर्न होता है जो पहली नज़र में अनियमित लगता है। उदाहरण के लिए, 3/4 इंच (19mm) मोटी स्टील प्लेट में क्रमशः 5890 m/s और 3260 m/s के अनुदैर्ध्य और अपरूपण वेग होते हैं, एंटीसिमेट्रिक मोड A की नवजात आवृत्तियाँ1 और ए2 क्रमशः 86 kHz और 310 kHz हैं, जबकि सममित मोड S की नवजात आवृत्तियाँ1, एस2 और एस3 क्रमशः 155 kHz, 172 kHz और 343 kHz हैं।

इसकी नवजात आवृत्ति पर, इनमें से प्रत्येक मोड में एक अनंत चरण वेग और शून्य का एक समूह वेग होता है। उच्च आवृत्ति सीमा में, इन सभी मोडों के चरण और समूह वेग कतरनी तरंग वेग में परिवर्तित हो जाते हैं। इन अभिसरणों के कारण, मोटी प्लेटों में रेले और कतरनी वेग (जो एक दूसरे के बहुत करीब हैं) का बड़ा महत्व है। सबसे बड़े इंजीनियरिंग महत्व की सामग्री के संदर्भ में सीधे तौर पर कहा जाए, तो स्टील प्लेटों में लंबी दूरी तक फैलने वाली अधिकांश उच्च-आवृत्ति तरंग ऊर्जा 3000-3300 मीटर/सेकेंड पर यात्रा कर रही है।

लैम्ब वेव मोड में कण गति सामान्य रूप से अण्डाकार होती है, जिसमें प्लेट के तल के लंबवत और समानांतर दोनों घटक होते हैं। ये घटक चतुर्भुज में हैं, यानी उनके पास 90 डिग्री का चरण अंतर है। घटकों का सापेक्ष परिमाण आवृत्ति का कार्य है। कुछ आवृत्तियों-मोटाई वाले उत्पादों के लिए, एक घटक का आयाम शून्य से होकर गुजरता है जिससे गति पूरी तरह से प्लेट के तल के लंबवत या समानांतर हो। प्लेट की सतह पर कणों के लिए, ये स्थितियां तब होती हैं जब लैम्ब वेव फेज वेलोसिटी होती है 2सीt या एकमात्र सिमेट्रिक मोड के लिए cl, क्रमश। प्लेटों से आसन्न तरल पदार्थों में ध्वनिक ऊर्जा के विकिरण पर विचार करते समय ये दिशात्मक विचार महत्वपूर्ण होते हैं।

एक मोड की नवजात आवृत्ति पर कण गति भी पूरी तरह से लंबवत या पूरी तरह से प्लेट के विमान के समानांतर होती है। प्लेट के अनुदैर्ध्य-तरंग अनुनादों के अनुरूप मोड की नवजात आवृत्तियों के करीब, उनकी कण गति प्लेट के विमान के लिए लगभग पूरी तरह से लंबवत होगी; और शियर-वेव रेजोनेंस के पास, समानांतर होती है।

जे. और एच. क्रौटक्रामर ने इंगित किया है[7] लैम्ब तरंग को अनुदैर्ध्य और अपरूपण तरंगों की प्रणाली के रूप में कल्पना की जा सकती है जो प्लेट के आर-पार उपयुक्त कोणों पर फैलती है। ये तरंगें परावर्तित और मोड-रूपांतरित होती हैं और निरंतर, सुसंगत तरंग पैटर्न का निर्माण करने के लिए संयोजित होती हैं। इस सुसंगत तरंग पैटर्न के गठन के लिए, प्लेट की मोटाई प्रसार के कोणों और अंतर्निहित अनुदैर्ध्य और कतरनी तरंगों के तरंग दैर्ध्य के ठीक सापेक्ष होनी चाहिए; यह आवश्यकता वेग फैलाव संबंधों की ओर ले जाती है।

बेलनाकार समरूपता के साथ लैम्ब तरंगें; बिंदु स्रोतों से प्लेट तरंगें

जबकि लैम्ब के विश्लेषण ने एक सीधे तरंग का अनुमान लगाया, यह दिखाया गया है[8] बेलनाकार प्लेट तरंगों पर समान अभिलाक्षणिक समीकरण लागू होते हैं (अर्थात् रेखा स्रोत से बाहर की ओर फैलने वाली तरंगें, प्लेट के लंबवत स्थित रेखा)। अंतर यह है कि जहाँ सीधे तरंगाग्र का वाहक साइनसॉइड है, वहीं अक्षीय तरंग का वाहक बेसेल फलन है। बेसेल फ़ंक्शन स्रोत पर विलक्षणता का ख्याल रखता है, फिर बड़ी दूरी पर साइनसोइडल व्यवहार की ओर अभिसरण करता है।

ये बेलनाकार तरंगें ईजेनफंक्शन हैं जिनसे प्लेट की प्रतिक्रिया बिंदु गड़बड़ी की रचना की जा सकती है। इस प्रकार बिंदु विक्षोभ के लिए एक प्लेट की प्रतिक्रिया को लैम्ब तरंगों के संयोजन के साथ-साथ निकट क्षेत्र में क्षणभंगुर शब्दों के रूप में व्यक्त किया जा सकता है। समग्र परिणाम को वृत्ताकार तरंगों के एक पैटर्न के रूप में शिथिल रूप से देखा जा सकता है, जैसे कि एक तालाब में गिराए गए पत्थर से तरंग किन्तु जैसे-जैसे वे बाहर की ओर बढ़ती हैं, रूप में अधिक गहराई से बदलते हैं। लैम्ब तरंग सिद्धांत एकमात्र (r,z) दिशा में गति से संबंधित है; अनुप्रस्थ गति एक अलग विषय है।

गाइडेड लैम्ब वेव्स

यह वाक्यांश अधिकांशतः गैर-विनाशकारी परीक्षण में पाया जाता है। गाइडेड लैम्ब तरंग को लैम्ब जैसी तरंगों के रूप में परिभाषित किया जा सकता है जो वास्तविक परीक्षण वस्तुओं के परिमित आयामों द्वारा निर्देशित होती हैं। लेम्ब वेव वाक्यांश के लिए निर्देशित उपसर्ग जोड़ने के लिए इस प्रकार यह पहचानना है कि लैम्ब की अनंत प्लेट वास्तव में कहीं नहीं पाई जाती है।

वास्तव में हम परिमित प्लेटों, या बेलनाकार पाइपों या जहाजों में लिपटे प्लेटों, या पतली पट्टियों में कटी हुई प्लेटों आदि के साथ व्यवहार करते हैं। लैम्ब वेव थ्योरी अधिकांशतः ऐसी संरचनाओं के तरंग व्यवहार का बहुत अच्छा लेखा-जोखा देती है। यह एक सटीक खाता नहीं देगा, और यही कारण है कि गाइडेड लैम्ब तरंग वाक्यांश लैम्ब तरंग की तुलना में व्यावहारिक रूप से अधिक प्रासंगिक है। एक सवाल यह है कि मेम्ने जैसी तरंगों के वेग और मोड आकार भाग की वास्तविक ज्यामिति से कैसे प्रभावित होंगे। उदाहरण के लिए, एक पतले बेलन में लैम्ब जैसी तरंग का वेग थोड़ा सा बेलन की त्रिज्या पर और इस बात पर निर्भर करेगा कि तरंग अक्ष के अनुदिश यात्रा कर रही है या परिधि के चारों ओर घूम रही है। एक और सवाल यह है कि भाग की वास्तविक ज्यामिति में पूरी तरह से भिन्न ध्वनिक व्यवहार और तरंग मोड क्या हो सकते हैं। उदाहरण के लिए, एक बेलनाकार पाइप में पूरे पाइप के शारीरिक संचलन से जुड़े फ्लेक्सुरल मोड होते हैं, जो पाइप की दीवार के लैम्ब-जैसे फ्लेक्सुरल मोड से काफी अलग होते हैं।

अल्ट्रासोनिक परीक्षण में मेम्ने तरंगें

अल्ट्रासोनिक परीक्षण का उद्देश्य सामान्यतः परीक्षण की जा रही वस्तु में व्यक्तिगत खामियों को खोजना और उनकी पहचान करना है। ऐसी खामियों का पता तब चलता है जब वे टकराने वाली लहर को परावर्तित या बिखेरती हैं और परावर्तित या बिखरी हुई लहर पर्याप्त आयाम के साथ खोज इकाई तक पहुंचती है।

परंपरागत रूप से, अल्ट्रासोनिक परीक्षण तरंगों के साथ आयोजित किया गया है जिसका तरंग दैर्ध्य निरीक्षण किए जा रहे हिस्से के आयाम से बहुत कम है। इस उच्च-आवृत्ति-शासन में, अल्ट्रासोनिक इंस्पेक्टर उन तरंगों का उपयोग करता है जो अनंत-मध्यम अनुदैर्ध्य और कतरनी तरंग मोड, ज़िग-ज़ैगिंग से प्लेट की मोटाई तक और उसके आस-पास होती हैं। चूंकि लैम्ब वेव अग्रदूतों ने गैर-विनाशकारी परीक्षण अनुप्रयोगों पर काम किया और सिद्धांत की ओर ध्यान आकर्षित किया, व्यापक उपयोग 1990 के दशक तक नहीं आया जब फैलाव घटता की गणना के लिए कंप्यूटर प्रोग्राम और उन्हें प्रयोगात्मक रूप से देखने योग्य संकेतों से संबंधित करने के लिए बहुत अधिक व्यापक रूप से उपलब्ध हो गए। लैम्ब तरंगों की प्रकृति की अधिक व्यापक समझ के साथ-साथ इन कम्प्यूटेशनल उपकरणों ने प्लेट की मोटाई से तुलनीय या उससे अधिक तरंग दैर्ध्य का उपयोग करके गैर-विनाशकारी परीक्षण के लिए तकनीकों को तैयार करना संभव बना दिया। इन लंबी तरंग दैर्ध्य पर तरंग का क्षीणन कम होता है जिससे अधिक दूरी पर दोषों का पता लगाया जा सकता है।

अल्ट्रासोनिक परीक्षण के लिए मेम्ने तरंगों के उपयोग में एक बड़ी चुनौती और कौशल विशिष्ट आवृत्तियों पर विशिष्ट मोड की पीढ़ी है जो अच्छी तरह से प्रचार करेगी और स्वच्छ प्रतिध्वनि देगी। इसके लिए उत्तेजना पर सावधानीपूर्वक नियंत्रण की आवश्यकता होती है। इसके लिए तकनीकों में कंघी ट्रांसड्यूसर, वेजेज, तरल मीडिया से तरंगें और विद्युत चुम्बकीय ध्वनिक ट्रांसड्यूसर (ईएमएटी) सम्मलित हैं।

== ध्वनि-अल्ट्रासोनिक परीक्षण == में मेम्ने तरंगें

ध्वनि-अल्ट्रासोनिक परीक्षण अल्ट्रासोनिक परीक्षण से भिन्न होता है जिसमें इसे अलग-अलग दोषों को चित्रित करने के अतिरिक्त पर्याप्त क्षेत्रों में वितरित क्षति (और अन्य सामग्री विशेषताओं) का आकलन करने के साधन के रूप में माना जाता था। मेम्ने तरंगें इस अवधारणा के लिए अच्छी तरह से अनुकूल हैं, क्योंकि वे पूरी प्लेट की मोटाई को विकिरणित करते हैं और गति के सुसंगत पैटर्न के साथ पर्याप्त दूरी का प्रसार करते हैं।

ध्वनिक उत्सर्जन परीक्षण में लैम्ब तरंगें

ध्वनिक उत्सर्जन पारंपरिक अल्ट्रासोनिक परीक्षण की समानता में बहुत कम आवृत्तियों का उपयोग करता है, और सेंसर से सामान्यतः कई मीटर तक की दूरी पर सक्रिय खामियों का पता लगाने की उम्मीद की जाती है। ध्वनिक उत्सर्जन के साथ परंपरागत रूप से परीक्षण करने वाली संरचनाओं का एक बड़ा अंश स्टील प्लेट - टैंक, दबाव वाहिकाओं, पाइप आदि से बना है। लैम्ब वेव थ्योरी, इसलिए, ध्वनिक उत्सर्जन परीक्षण आयोजित करते समय देखे जाने वाले सिग्नल फॉर्म और प्रचार वेगों को समझाने के लिए प्रमुख सिद्धांत है। एई स्रोत स्थान (एई परीक्षण की एक प्रमुख तकनीक) की सटीकता में पर्याप्त सुधार ज्ञान की लैम्ब वेव बॉडी की अच्छी समझ और कुशल उपयोग के माध्यम से प्राप्त किया जा सकता है।

अल्ट्रासोनिक और ध्वनिक उत्सर्जन परीक्षण विपरीत

एक प्लेट पर लागू एक इच्छानुसार यांत्रिक उत्तेजना आवृत्तियों की श्रृंखला में ऊर्जा ले जाने वाली लैम्ब तरंगों की बहुलता उत्पन्न करेगा। ध्वनिक उत्सर्जन तरंग के स्थितियों में ऐसा ही है। ध्वनिक उत्सर्जन परीक्षण में, प्राप्त तरंग में कई लैम्ब वेव घटकों को पहचानना और स्रोत गति के संदर्भ में उनकी व्याख्या करना चुनौती है। यह अल्ट्रासोनिक परीक्षण की स्थिति के विपरीत है, जहां पहली चुनौती एकल आवृत्ति पर एकल, अच्छी तरह से नियंत्रित लैम्ब वेव मोड उत्पन्न करना है। किन्तु अल्ट्रासोनिक परीक्षण में भी, मोड रूपांतरण तब होता है जब उत्पन्न लैम्ब वेव दोषों के साथ परस्पर क्रिया करता है, इसलिए कई मोड से मिश्रित परावर्तित संकेतों की व्याख्या दोष लक्षण वर्णन का साधन बन जाती है।

यह भी देखें

संदर्भ

  1. Lamb, Horace (1881). "एक लोचदार क्षेत्र के कंपन पर". Proceedings of the London Mathematical Society (in English). s1-13 (1): 189–212. doi:10.1112/plms/s1-13.1.189. ISSN 1460-244X.
  2. Achenbach, J. D. “Wave Propagation in Elastic Solids”. New York: Elsevier, 1984.
  3. Lamb, H. "On Waves in an Elastic Plate." Proc. Roy. Soc. London, Ser. A 93, 114–128, 1917.
  4. Viktorov, I. A. “Rayleigh and Lamb Waves: Physical Theory and Applications”, Plenum Press, New York, 1967.
  5. Huber, A. "फैलाव कैलकुलेटर". DLR homepage. German Aerospace Center (DLR). Retrieved 13 March 2021.
  6. This link shows a video of the particle motion.
  7. J. and H. Krautkrämer, “Ultrasonic Testing of Materials”, 4th edition, American Society for Testing and Materials, ISBN 0-318-21482-2, April 1990.
  8. Claes, S., "La forme des signaux d'émission acoustique et leur rôle dans les essais de localisation", Journées d'Etudes sur l'Emission Acoustique, Institut National des Sciences Appliquées, Lyon (France), March 17-18, p. 215-257, 1975.
  • Rose, J.L.; "Ultrasonic Waves in Solid Media," Cambridge University Press, 1999.


बाहरी संबंध