विद्युत चुम्बकीय वर्णक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 60: Line 60:
| rowspan="2" | Near [[infrared]]
| rowspan="2" | Near [[infrared]]
|-
|-
| rowspan="2" style="text-align:right;" | 10 μm
| rowspan="2" style="text-align:right;" | 10 μm
| rowspan="2" style="text-align:right;" | 30 THz
| rowspan="2" style="text-align:right;" | 30 THz
| rowspan="2" style="text-align:right;" | 124 [[Milli-|m]]<nowiki/>eV
| rowspan="2" style="text-align:right;" | 124 [[Milli-|m]]<nowiki/>eV
|-
|-
Line 75: Line 75:
|-
|-
| rowspan="2" style="text-align:right;" | 1 [[Millimetre|mm]]
| rowspan="2" style="text-align:right;" | 1 [[Millimetre|mm]]
| rowspan="2" style="text-align:right;" | 300 [[Gigahertz|GHz]]
| rowspan="2" style="text-align:right;" | 300 [[Gigahertz|GHz]]
| rowspan="2" style="text-align:right;" | 1.24 meV
| rowspan="2" style="text-align:right;" | 1.24 meV
|-
|-
Line 82: Line 82:
| rowspan="2" | [[Extremely high frequency|Extremely high<br />frequency]]
| rowspan="2" | [[Extremely high frequency|Extremely high<br />frequency]]
|-
|-
| rowspan="2" style="text-align:right;" | 1 [[Centimetre|cm]]
| rowspan="2" style="text-align:right;" | 1 [[Centimetre|cm]]
| rowspan="2" style="text-align:right;" | 30GHz
| rowspan="2" style="text-align:right;" | 30GHz
| rowspan="2" style="text-align:right;" | 124 [[micro-|μ]]<nowiki/>eV
| rowspan="2" style="text-align:right;" | 124 [[micro-|μ]]<nowiki/>eV
Line 96: Line 96:
| rowspan="2" | [[Ultra high frequency|Ultra high<br />frequency]]
| rowspan="2" | [[Ultra high frequency|Ultra high<br />frequency]]
|-
|-
| rowspan="2" style="text-align:right;" | 1 [[Metre|m]]
| rowspan="2" style="text-align:right;" | 1 [[Metre|m]]
| rowspan="2" style="text-align:right;" | 300 [[Megahertz|MHz]]
| rowspan="2" style="text-align:right;" | 300 [[Megahertz|MHz]]
| rowspan="2" style="text-align:right;" | 1.24 μeV
| rowspan="2" style="text-align:right;" | 1.24 μeV
Line 159: Line 159:
| colspan=7 | Sources: [[:File:Light spectrum.svg]]<ref name=ucdavis>[http://cbst.ucdavis.edu/education/courses/winter-2006-IST8A/ist8a_2006_01_09light.pdf What is Light?] {{webarchive |url=https://web.archive.org/web/20131205005843/http://cbst.ucdavis.edu/education/courses/winter-2006-IST8A/ist8a_2006_01_09light.pdf |date=December 5, 2013 }} – [[UC Davis]] lecture slides</ref><ref name=Elert>{{cite web|author=Elert, Glenn |url=https://physics.info/em-spectrum/ |title=The Electromagnetic Spectrum |work=The Physics Hypertextbook |access-date=2022-01-21}}</ref><ref name=vlf>{{cite web|author=Stimac, Tomislav |url=http://www.vlf.it/frequency/bands.html |title=Definition of frequency bands (VLF, ELF... etc.) |publisher=vlf.it |access-date=2022-01-21}}</ref>
| colspan=7 | Sources: [[:File:Light spectrum.svg]]<ref name=ucdavis>[http://cbst.ucdavis.edu/education/courses/winter-2006-IST8A/ist8a_2006_01_09light.pdf What is Light?] {{webarchive |url=https://web.archive.org/web/20131205005843/http://cbst.ucdavis.edu/education/courses/winter-2006-IST8A/ist8a_2006_01_09light.pdf |date=December 5, 2013 }} – [[UC Davis]] lecture slides</ref><ref name=Elert>{{cite web|author=Elert, Glenn |url=https://physics.info/em-spectrum/ |title=The Electromagnetic Spectrum |work=The Physics Hypertextbook |access-date=2022-01-21}}</ref><ref name=vlf>{{cite web|author=Stimac, Tomislav |url=http://www.vlf.it/frequency/bands.html |title=Definition of frequency bands (VLF, ELF... etc.) |publisher=vlf.it |access-date=2022-01-21}}</ref>
|}
|}
विद्युतचुंबकीय स्पेक्ट्रम, विद्युतचुंबकीय विकिरण की आवृत्तियों (स्पेक्ट्रम) और उनकी संबंधित तारों और फोटन ऊर्जाओं की श्रेणी है।
'''विद्युतचुंबकीय वर्णक्रम''', विद्युतचुंबकीय विकिरण की आवृत्तियों (वर्णक्रम) और उनकी संबंधित तारों और फोटन ऊर्जाओं की श्रेणी है।
 
विद्युतचुंबकीय स्पेक्ट्रम एक हर्ट्ज से कम आवृत्ति से लेकर 1025 हर्ट्ज से अधिक आवृत्ति तक के विद्युतचुंबकीय तरंगों को शामिल करता है, जिसके संबंध में वेवलेंथ हजारों किलोमीटर से अणुक नक्षत्र के आकार के एक हिस्से तक हो सकती हैं। यह आवृत्ति सीमा अलग-अलग बैंडों में बांटी जाती है, और प्रत्येक आवृत्ति बैंड में विद्युतचुंबकीय तरंगों को अलग-अलग नामों से जाना जाता है; स्पेक्ट्रम के निचले आवृत्ति (लंबी तार की लंबाई) के प्रारंभ से इनके नाम हैं: रेडियो तरंग, माइक्रोवेव्स, इंफ्रारेड, प्रतीक्षित प्रकाश, अल्पाभ प्रकाश, एक्स-रे, और गैमा रे (ऊची आवृत्ति और कम तार की लंबाई वाले हिस्से में)।<ref>{{cite book |title=Basic Electronics Engineering |author1=Bakshi, U. A.  |author2=Godse, A. P.  |url=https://books.google.com/books?id=n0RMHUQUUY4C|pages=8–10 |year=2009 |isbn=978-81-8431-580-6 |publisher=Technical Publications }}</ref> इन बैंडों में प्रत्येक विद्युतचुंबकीय तरंगों के विभिन्न गुण होते हैं, जैसे कि वे कैसे उत्पन्न होते हैं, पदार्थ के साथ कैसे प्रभावित होते हैं और उनके व्यावहारिक अनुप्रयोग होते हैं। लंबी और छोटी तारों के लिए कोई ज्ञात सीमा नहीं है। अतिसूक्ष्म अल्ट्रा-वियोलेट, सॉफ्ट एक्स-रे, हार्ड एक्स-रे और गैमा रे को आयनिकरण विकिरण के रूप में वर्गीकृत किया जाता है क्योंकि उनके फोटनों में पर्याप्त ऊर्जा होती है जो परमाणुओं को आयनित करने के लिए कार्यक्षम होती है, जिससे रासायनिक प्रतिक्रियाएँ होती हैं। प्रतीक्षित प्रकाश और इससे लंबी तारें गैर-आयनिकरण विकिरण के रूप में वर्गीकृत की जाती हैं क्योंकि इन तारों में इस प्रभाव को पैदा करने के लिए पर्याप्त ऊर्जा नहीं होती है।
 
विद्युतचुंबकीय स्पेक्ट्रम के बहुतायत भागों में, स्पेक्ट्रोस्कोपी का उपयोग विभिन्न आवृत्तियों की तरंगों को अलग करने के लिए किया जा सकता है, जिससे मूल आवृत्तियों का एक स्पेक्ट्रम प्राप्त होता है। स्पेक्ट्रोस्कोपी का उपयोग विद्युतचुंबकीय तरंगों के पदार्थ के साथ इंटरैक्शन का अध्ययन करने के लिए किया जाता है।<ref name="em-spectrum">{{cite web|last=Mehta |first=Akul |url=http://pharmaxchange.info/press/2011/08/introduction-to-the-electromagnetic-spectrum-and-spectroscopy/ |title=Introduction to the Electromagnetic Spectrum and Spectroscopy |date=25 August 2011 |publisher=Pharmaxchange.info |access-date=2011-11-08}}</ref>


विद्युतचुंबकीय वर्णक्रम एक हर्ट्ज से कम आवृत्ति से लेकर 10<sup>25</sup> हर्ट्ज से अधिक आवृत्ति तक के विद्युतचुंबकीय तरंगों को सम्मलित करता है, जिसके संबंध में वेवलेंथ हजारों किलोमीटर से अणुक नक्षत्र के आकार के एक  भाग तक हो सकती हैं। यह आवृत्ति सीमा अलग-अलग बैंडों में बांटी जाती है, और प्रत्येक आवृत्ति बैंड में विद्युतचुंबकीय तरंगों को अलग-अलग नामों से जाना जाता है; वर्णक्रम के निचले आवृत्ति (लंबी तार की लंबाई) के प्रारंभ से इनके नाम हैं: रेडियो तरंग, माइक्रोवेव्स, इंफ्रारेड, प्रतीक्षित प्रकाश, अल्पाभ प्रकाश, एक्स-रे, और गैमा रे (ऊची आवृत्ति और कम तार की लंबाई वाले  भाग में)<ref>{{cite book |title=Basic Electronics Engineering |author1=Bakshi, U. A.  |author2=Godse, A. P.  |url=https://books.google.com/books?id=n0RMHUQUUY4C|pages=8–10 |year=2009 |isbn=978-81-8431-580-6 |publisher=Technical Publications }}</ref> इन बैंडों में प्रत्येक विद्युतचुंबकीय तरंगों के विभिन्न गुण होते हैं, जैसे कि वे कैसे उत्पन्न होते हैं, पदार्थ के साथ कैसे प्रभावित होते हैं और उनके व्यावहारिक अनुप्रयोग होते हैं। लंबी और छोटी तारों के लिए कोई ज्ञात सीमा नहीं है। अतिसूक्ष्म अल्ट्रा-वियोलेट, सॉफ्ट एक्स-रे, हार्ड एक्स-रे और गैमा रे को आयनिकरण विकिरण के रूप में वर्गीकृत किया जाता है क्योंकि उनके फोटनों में पर्याप्त ऊर्जा होती है जो परमाणुओं को आयनित करने के लिए कार्यक्षम होती है, जिससे रासायनिक प्रतिक्रियाएँ होती हैं। प्रतीक्षित प्रकाश और इससे लंबी तारें गैर-आयनिकरण विकिरण के रूप में वर्गीकृत की जाती हैं क्योंकि इन तारों में इस प्रभाव को उत्पन्न करने के लिए पर्याप्त ऊर्जा नहीं होती है।


विद्युतचुंबकीय तत्वों के सूत्रबद्धता का अध्ययन करने के लिए, विभिन्न आवृत्तियों के तरंगों को अलग करने के लिए विकिरणशास्त्र का उपयोग किया जा सकता है, जिससे तत्वीय आवृत्तियों का एक वर्णक्रम प्राप्त होता है। स्पेक्ट्रोस्कोपी का उपयोग विद्युतचुंबकीय तरंगों के पदार्थ के साथ इंटरैक्शन का अध्ययन करने के लिए किया जाता है।<ref name="em-spectrum">{{cite web|last=Mehta |first=Akul |url=http://pharmaxchange.info/press/2011/08/introduction-to-the-electromagnetic-spectrum-and-spectroscopy/ |title=Introduction to the Electromagnetic Spectrum and Spectroscopy |date=25 August 2011 |publisher=Pharmaxchange.info |access-date=2011-11-08}}</ref>
==इतिहास और खोज==
==इतिहास और खोज==
{{see also|विद्युत चुंबकत्व का इतिहास|रेडियो का इतिहास|इलेक्ट्रिकल इंजीनियरिंग का इतिहास|प्रकाशिकी का इतिहास}}
मानव सदैव दृश्य प्रकाश और तेज़ ऊष्मा के बारे में जागरूक थे, किन्तु प्राचीन के बहुत से युगों के समय इस बात का ज्ञान नहीं था कि ये प्रभाव एक-दूसरे से जुड़े हुए हैं या किसी अधिक व्यापक सिद्धांत के प्रतिनिधि हैं। प्राचीन यूनानी लोगों ने माना कि प्रकाश सीधे रेखाओं में यात्रा करता है और इसकी कुछ गुणों का अध्ययन किया, जिनमें प्रतिबिंबण और भिगोने भी सम्मलित था। 17वीं सदी की प्रारंभिक से प्रकाश प्रगट के बारे में गहराई से अध्ययन किया गया, जिससे टेलीस्कोप और माइक्रोस्कोप जैसे महत्वपूर्ण उपकरणों की खोज हुई। आइज़ेक न्यूटन ने पहले ही प्रिज्म के साथ सफेद प्रकाश को विभाजित करने के लिए रंगों की सीमा के लिए शब्द वर्णक्रम का उपयोग किया जा सकता था। 1666 से प्रारंभ होकर, न्यूटन ने दिखाया कि ये रंग प्रकाश के स्वाभाविक रूप में उपस्थित हैं और इन्हें सफेद प्रकाश में पुनः संयोजित किया जा सकता है। एक विवाद उठा कि क्या प्रकाश का एक तरंग लक्षण है या क्या यह एक कण लक्षण है, जिसमें रेने डेकार्ट, रॉबर्ट हुक और क्रिस्टियान हायगेंस तार का वर्णन करते हैं और न्यूटन एक कण वर्णन करते हैं। विशेष रूप से हायगेंस के पास प्रतिक्षांक और भिगोने के नियमों का विकसित सिद्धांत था। 1801 के आस-पास, थॉमस यंग ने अपने दो-द्वारी प्रयोग के माध्यम से प्रकाश की तारंगदैर्घ्य को मापा, जिससे यह स्पष्ट रूप से सिद्ध हुआ कि प्रकाश एक तरंग है।
मानव सदैव दृश्य प्रकाश और तेज़ ऊष्मा के बारे में जागरूक थे, लेकिन इतिहास के बहुत से युगों के दौरान इस बात का ज्ञान नहीं था कि ये प्रभाव एक-दूसरे से जुड़े हुए हैं या किसी अधिक व्यापक सिद्धांत के प्रतिनिधि हैं। प्राचीन यूनानी लोगों ने माना कि प्रकाश सीधे रेखाओं में यात्रा करता है और इसकी कुछ गुणों का अध्ययन किया, जिनमें प्रतिबिंबण और भिगोने का भी शामिल था। 17वीं सदी की शुरुआत से प्रकाश प्रगट के बारे में गहराई से अध्ययन किया गया, जिससे टेलीस्कोप और माइक्रोस्कोप जैसे महत्वपूर्ण उपकरणों की खोज हुई। आइज़ेक न्यूटन ने पहले ही प्रिज्म के साथ सफेद प्रकाश को विभाजित करने के लिए रंगों की सीमा के लिए शब्द स्पेक्ट्रम का उपयोग किया जा सकता था। 1666 से प्रारंभ होकर, न्यूटन ने दिखाया कि ये रंग प्रकाश के स्वाभाविक रूप में मौजूद हैं और इन्हें सफेद प्रकाश में पुनः संयोजित किया जा सकता है। एक विवाद उठा कि क्या प्रकाश का एक तरंग लक्षण है या क्या यह एक कण लक्षण है, जिसमें रेने डेकार्ट, रॉबर्ट हुक और क्रिस्टियान हायगेंस तार का वर्णन करते हैं और न्यूटन एक कण वर्णन करते हैं। विशेष रूप से हायगेंस के पास प्रतिक्षांक और भिगोने के नियमों का विकसित सिद्धांत था। 1801 के आस-पास, थॉमस यंग ने अपने दो-द्वारी प्रयोग के माध्यम से प्रकाश की तारंगदैर्घ्य को मापा, जिससे यह स्पष्ट रूप से साबित हुआ कि प्रकाश एक तरंग है।


1800 में, विलियम हर्शल ने अवरक्त विकिरण की खोज की।<ref>{{cite web|title=Herschel Discovers Infrared Light|url=http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/herschel_bio.html|archive-url=https://web.archive.org/web/20120225094516/http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/herschel_bio.html|archive-date=2012-02-25|work=Cool Cosmos Classroom activities|access-date=4 March 2013|quote=He directed sunlight through a glass prism to create a spectrum […] and then measured the temperature of each colour. […] He found that the temperatures of the colours increased from the violet to the red part of the spectrum. […] Herschel decided to measure the temperature just ''beyond'' the red of the spectrum in a region where no sunlight was visible. To his surprise, he found that this region had the highest temperature of all.}}</ref> उन्होंने प्रिज्म द्वारा विभाजित प्रकाश में थर्मामीटर को ले जाकर विभिन्न रंगों के तापमान का अध्ययन किया। उन्हें ध्यान गया कि सबसे उच्च तापमान लाल से परे होता था। उन्होंने सिद्धांत बनाया कि यह तापमान परिवर्तन "कैलोरिफिक रेज़", एक प्रकार की प्रकाश रेखा के कारण हो सकता है जो दिखाई नहीं देती है। अगले साल, जोहान रिटर, स्पेक्ट्रम के दूसरे छोर पर काम करते हुए, ध्यान दिया कि उन्हें "रासायनिक रेज़" (दृश्य नहीं होने वाली प्रकाश रेखाएं जो कुछ रासायनिक प्रतिक्रियाओं को प्रेरित करती हैं) का पता चला। इनका व्यवहार दृश्यता वाली बैंगनी प्रकाश रेखाओं के आस-पास के सामान्य था, लेकिन स्पेक्ट्रम में उनसे परे थे।<ref>{{cite web|last=Davidson|first=Michael W.|title=Johann Wilhelm Ritter (1776–1810)|url=http://micro.magnet.fsu.edu/optics/timeline/people/ritter.html|publisher=The Florida State University|access-date=5 March 2013|quote=Ritter […] hypothesized that there must also be invisible radiation beyond the violet end of the spectrum and commenced experiments to confirm his speculation. He began working with silver chloride, a substance decomposed by light, measuring the speed at which different colours of light broke it down. […] Ritter […] demonstrated that the fastest rate of decomposition occurred with radiation that could not be seen, but that existed in a region beyond the violet. Ritter initially referred to the new type of radiation as chemical rays, but the title of ultraviolet radiation eventually became the preferred term.}}</ref> बाद में इन्हें अल्ट्रावायलेट विकिरण के नाम से पुनर्नामित किया गया।
1800 में, विलियम हर्शल ने अवरक्त विकिरण की खोज की।<ref>{{cite web|title=Herschel Discovers Infrared Light|url=http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/herschel_bio.html|archive-url=https://web.archive.org/web/20120225094516/http://coolcosmos.ipac.caltech.edu/cosmic_classroom/classroom_activities/herschel_bio.html|archive-date=2012-02-25|work=Cool Cosmos Classroom activities|access-date=4 March 2013|quote=He directed sunlight through a glass prism to create a spectrum […] and then measured the temperature of each colour. […] He found that the temperatures of the colours increased from the violet to the red part of the spectrum. […] Herschel decided to measure the temperature just ''beyond'' the red of the spectrum in a region where no sunlight was visible. To his surprise, he found that this region had the highest temperature of all.}}</ref> उन्होंने प्रिज्म द्वारा विभाजित प्रकाश में थर्मामीटर को ले जाकर विभिन्न रंगों के तापमान का अध्ययन किया। उन्हें ध्यान गया कि सबसे उच्च तापमान लाल से परे होता था। उन्होंने सिद्धांत बनाया कि यह तापमान परिवर्तन "कैलोरिफिक रेज़", एक प्रकार की प्रकाश रेखा के कारण हो सकता है जो दिखाई नहीं देती है। अगले साल, जोहान रिटर, वर्णक्रम के दूसरे छोर पर काम करते हुए, ध्यान दिया कि उन्हें "रासायनिक रेज़" (दृश्य नहीं होने वाली प्रकाश रेखाएं जो कुछ रासायनिक प्रतिक्रियाओं को प्रेरित करती हैं) का पता चला। इनका व्यवहार दृश्यता वाली बैंगनी प्रकाश रेखाओं के आस-पास के सामान्य था, किन्तु वर्णक्रम में उनसे परे थे।<ref>{{cite web|last=Davidson|first=Michael W.|title=Johann Wilhelm Ritter (1776–1810)|url=http://micro.magnet.fsu.edu/optics/timeline/people/ritter.html|publisher=The Florida State University|access-date=5 March 2013|quote=Ritter […] hypothesized that there must also be invisible radiation beyond the violet end of the spectrum and commenced experiments to confirm his speculation. He began working with silver chloride, a substance decomposed by light, measuring the speed at which different colours of light broke it down. […] Ritter […] demonstrated that the fastest rate of decomposition occurred with radiation that could not be seen, but that existed in a region beyond the violet. Ritter initially referred to the new type of radiation as chemical rays, but the title of ultraviolet radiation eventually became the preferred term.}}</ref> बाद में इन्हें अल्ट्रावायलेट विकिरण के नाम से पुनर्नामित किया गया।


विद्युतचुंबकीयता का अध्ययन 1820 में हांस क्रिस्चियन ओर्स्टेड द्वारा शुरू हुआ जब उन्होंने खोजा कि विद्युत्क्रम चुंबकीय क्षेत्र पैदा करते हैं (ओर्स्टेड का कानून)। प्रकाश को विद्युतचुंबकीयता से पहली बार 1845 में जोड़ा गया था, जब माइकल फैराडे ने देखा कि एक पारदर्शी पदार्थ से गुजरता हुआ प्रकाश एक चुंबकीय क्षेत्र के प्रतिक्रिया का सामरिक होता है (फैराडे प्रभाव देखें)। 1860 के दशक में, जेम्स क्लर्क मैक्सवेल ने विद्युत चुम्बकीय क्षेत्र के लिए चार आंशिक अंतर समीकरण (मैक्सवेल के समीकरण) विकसित किए। इनमें से दो समीकरणों ने क्षेत्र में तरंगों की संभावना और व्यवहार की भविष्यवाणी की थी। इन सिद्धांती तरंगों की गति का विश्लेषण करते हुए, मैक्सवेल ने यह जान लिया कि वे प्रकाश की ज्ञात गति के करीबी गति पर चलते हैं। इस अद्भुत संयोग में मैक्सवेल को यह निष्कर्ष निकालने पर मजबूर किया कि प्रकाश स्वयं एक प्रकार की विद्युतचुंबकीय तरंग है। मैक्सवेल के सिद्धांतों ने विद्युतचुंबकीय तरंगों की एक अनंत श्रेणी की संभावना की पूर्वभासित की, जो सभी प्रकाश की गति पर चलती हैं। यह पूरे विद्युतचुंबकीय विस्तार के अस्तित्व के पहले संकेत था।
विद्युतचुंबकीयता का अध्ययन 1820 में हांस क्रिस्चियन ओर्स्टेड द्वारा प्रारंभ हुआ जब उन्होंने खोजा कि विद्युत्क्रम चुंबकीय क्षेत्र उत्पन्न करते हैं (ओर्स्टेड का कानून)। प्रकाश को विद्युतचुंबकीयता से पहली बार 1845 में जोड़ा गया था, जब माइकल फैराडे ने देखा कि एक पारदर्शी पदार्थ से गुजरता हुआ प्रकाश एक चुंबकीय क्षेत्र के प्रतिक्रिया का सामरिक होता है (फैराडे प्रभाव देखें)। 1860 के दशक में, जेम्स क्लर्क मैक्सवेल ने विद्युत चुम्बकीय क्षेत्र के लिए चार आंशिक अंतर समीकरण (मैक्सवेल के समीकरण) विकसित किए। इनमें से दो समीकरणों ने क्षेत्र में तरंगों की संभावना और व्यवहार की भविष्यवाणी की थी। इन सिद्धांती तरंगों की गति का विश्लेषण करते हुए, मैक्सवेल ने यह जान लिया कि वे प्रकाश की ज्ञात गति के निकटी गति पर चलते हैं। इस अद्भुत संयोग में मैक्सवेल को यह निष्कर्ष निकालने पर मजबूर किया कि प्रकाश स्वयं एक प्रकार की विद्युतचुंबकीय तरंग है। मैक्सवेल के सिद्धांतों ने विद्युतचुंबकीय तरंगों की एक अनंत श्रेणी की संभावना की पूर्वभासित की, जो सभी प्रकाश की गति पर चलती हैं। यह पूरे विद्युतचुंबकीय विस्तार के अस्तित्व के पहले संकेत था।


मैक्सवेल के सिद्धांतों के अनुसार पूर्वाभासित तरंगों में इंफ्रारेड की तुलना में बहुत कम आवृत्तियों वाली तरंगें शामिल थीं, जो सिद्धांत के अनुसार साधारण विद्युतीय सर्किट के विलंबित आवर्तीयों द्वारा उत्पन्न हो सकती थीं। मैक्सवेल के सिद्धांतों को सिद्ध करने और ऐसे बहुत कम आवृत्ति विद्युतचुंबकीय विकिरण की पहचान करने का प्रयास करते हुए, 1886 में भौतिकशास्त्री हाइनरिच हर्ट्ज ने एक यंत्र बनाया जिससे वे वर्तमान में "रेडियो तरंग" कहलाने वाली तरंगों को उत्पन्न करने और पहचानने कर सकें। हर्ट्ज ने ये तरंग पाए और उनकी आवृत्ति का माप करके और उसे उनकी आवृत्ति से गुणा करके (गुणा करके उसे उनकी आवृत्ति से गुणा करके) इसे साबित किया कि वे प्रकाश की गति पर चलती हैं।हर्ट्ज ने यह भी सिद्ध किया कि नयी विकिरण को विभिन्न अधिकारी द्रव्यों द्वारा प्रतिबिंबित और विकर्णित किया जा सकता है, उसी प्रकार जैसे प्रकाश। उदाहरण के लिए, हर्ट्ज ने पेड़ के रेजिन के लेंस का उपयोग करके इन तरंगों को समाधानित किया। एक बाद में प्रयोग में, हर्ट्ज ने समान रूप से माइक्रोवेव्स को उत्पन्न किया और उनकी गुणधर्मों को मापा। इन नए प्रकार की तरंगों ने वायरलेस टेलीग्राफ और रेडियो जैसे आविष्कारों के लिए मार्ग प्रशस्त किया।
मैक्सवेल के सिद्धांतों के अनुसार पूर्वाभासित तरंगों में इंफ्रारेड की समानता में बहुत कम आवृत्तियों वाली तरंगें सम्मलित थीं, जो सिद्धांत के अनुसार साधारण विद्युतीय सर्किट के विलंबित आवर्तीयों द्वारा उत्पन्न हो सकती थीं। मैक्सवेल के सिद्धांतों को सिद्ध करने और ऐसे बहुत कम आवृत्ति विद्युतचुंबकीय विकिरण की पहचान करने का प्रयास करते हुए, 1886 में भौतिकशास्त्री हाइनरिच हर्ट्ज ने एक यंत्र बनाया जिससे वे वर्तमान में "रेडियो तरंग" कहलाने वाली तरंगों को उत्पन्न करने और पहचानने कर सकें। हर्ट्ज ने ये तरंग पाए और उनकी आवृत्ति का माप करके और उसे उनकी आवृत्ति से गुणा करके (गुणा करके उसे उनकी आवृत्ति से गुणा करके) इसे सिद्ध किया कि वे प्रकाश की गति पर चलती हैं।हर्ट्ज ने यह भी सिद्ध किया कि नयी विकिरण को विभिन्न अधिकारी द्रव्यों द्वारा प्रतिबिंबित और विकर्णित किया जा सकता है, उसी प्रकार जैसे प्रकाश। उदाहरण के लिए, हर्ट्ज ने पेड़ के रेजिन के लेंस का उपयोग करके इन तरंगों को समाधानित किया। एक बाद में प्रयोग में, हर्ट्ज ने समान रूप से माइक्रोवेव्स को उत्पन्न किया और उनकी गुणधर्मों को मापा। इन नए प्रकार की तरंगों ने वायरलेस टेलीग्राफ और रेडियो जैसे आविष्कारों के लिए मार्ग प्रशस्त किया।


1895 में, विल्हेल्म रेंटजेन ने एक ऊचा वोल्टेज प्रभावित खाली ट्यूब के साथ एक प्रयोग के दौरान एक नई प्रकार की विकिरण को पहचाना। उन्होंने इसे "एक्स-रे" कहा और पाया कि वे मानव शरीर के भागों से गुजर सकती हैं, लेकिन हड्डियों जैसे अधिक घन पदार्थ द्वारा प्रतिबिंबित या रोकी जा सकती हैं। जल्द ही, इस रेडियोग्राफी के लिए कई उपयोग पाए गए थे।
1895 में, विल्हेल्म रेंटजेन ने एक ऊचा वोल्टेज प्रभावित खाली ट्यूब के साथ एक प्रयोग के समय एक नई प्रकार की विकिरण को पहचाना। उन्होंने इसे "एक्स-रे" कहा और पाया कि वे मानव शरीर के भागों से गुजर सकती हैं, किन्तु हड्डियों जैसे अधिक घन पदार्थ द्वारा प्रतिबिंबित या रोकी जा सकती हैं। जल्द ही, इस रेडियोग्राफी के लिए कई उपयोग पाए गए थे।


विद्युतचुंबकीय विस्तार के अंतिम हिस्से की जगह गैमा किरणों की खोज से भरी गई। 1900 में, पॉल विलार्ड रेडियम की किरणीय प्रक्षेपणों का अध्ययन कर रहे थे जब उन्होंने एक नई प्रकार की विकिरण की पहचान की जो पहले में उन्हें पताकर लगी कि इसमें ज्ञात एल्फा और बीटा कणों के समान कण होते हैं, लेकिन इन तक प्रवेशन क्षमता के साथ इन दोनों से बहुत अधिक प्रभावी होते हैं। हालांकि, 1910 में, ब्रिटिश भौतिक विज्ञानी विलियम हेनरी ब्रैग ने सिद्ध किया कि गैमा किरणें तरंगीय विकिरण हैं, न कि कण हैं, और 1914 में, अर्नेस्ट रदरफर्ड (जिन्होंने उन्हें 1903 में गैमा किरणें नामित किया जब उन्होंने यह जान लिया कि वे चार्जयुक्त एल्फा और बीटा कणों से मूलत: अलग हैं) और एडवर्ड आंद्रेड ने उनकी आवृत्तियों को मापा और पाया कि गैमा किरणें एक्स-रे के समान होती हैं, लेकिन उनसे छोटी आवृत्तियाँ होती हैं।
विद्युतचुंबकीय विस्तार के अंतिम की जगह गैमा किरणों की खोज से भरी गई। 1900 में, पॉल विलार्ड रेडियम की किरणीय प्रक्षेपणों का अध्ययन कर रहे थे जब उन्होंने एक नई प्रकार की विकिरण की पहचान की जो पहले में उन्हें पताकर लगी कि इसमें ज्ञात एल्फा और बीटा कणों के समान कण होते हैं, किन्तु इन तक प्रवेशन क्षमता के साथ इन दोनों से बहुत अधिक प्रभावी होते हैं। चूंकि, 1910 में, ब्रिटिश भौतिक विज्ञानी विलियम हेनरी ब्रैग ने सिद्ध किया कि गैमा किरणें तरंगीय विकिरण हैं, न कि कण हैं, और 1914 में, अर्नेस्ट रदरफर्ड (जिन्होंने उन्हें 1903 में गैमा किरणें नामित किया जब उन्होंने यह जान लिया कि वे चार्जयुक्त एल्फा और बीटा कणों से मूलत: अलग हैं) और एडवर्ड आंद्रेड ने उनकी आवृत्तियों को मापा और पाया कि गैमा किरणें एक्स-रे के समान होती हैं, किन्तु उनसे छोटी आवृत्तियाँ होती हैं।


1901 में मैक्स प्लांक द्वारा प्रकाश केवल विशिष्ट "क्वांटा", जिन्हें अब फोटन कहा जाता है, में ही अवशोषित होता है, जिससे स्पष्ट हो गया कि प्रकाश में कण का स्वभाव होता है। इस विचार को अल्बर्ट आइंस्टीन ने 1905 में स्पष्ट किया, लेकिन प्लांक और कई अन्य समकालीन वैज्ञानिकों ने इसे स्वीकार नहीं किया। विज्ञान का आधुनिक स्थान यह है कि वैद्युतचुंबकीय विकिरण के एक साथ तरंग और कण का स्वभाव होता है, यानी तरंग-कण द्वैध्य। इस स्थिति से उत्पन्न विरोधाभासों पर वैज्ञानिकों और दर्शनिकों के बीच अब भी विचार-विमर्श जारी हैं।
1901 में मैक्स प्लांक द्वारा प्रकाश केवल विशिष्ट "क्वांटा", जिन्हें अब फोटन कहा जाता है, में ही अवशोषित होता है, जिससे स्पष्ट हो गया कि प्रकाश में कण का स्वभाव होता है। इस विचार को अल्बर्ट आइंस्टीन ने 1905 में स्पष्ट किया, किन्तु प्लांक और कई अन्य समकालीन वैज्ञानिकों ने इसे स्वीकार नहीं किया। विज्ञान का आधुनिक स्थान यह है कि वैद्युतचुंबकीय विकिरण के एक साथ तरंग और कण का स्वभाव होता है, अर्थात तरंग-कण द्वैध्य। इस स्थिति से उत्पन्न विरोधाभासों पर वैज्ञानिकों और दर्शनिकों के बीच अब भी विचार-विमर्श जारी हैं।


== रेंज ==
== रेंज ==
विद्युतचुंबकीय तरंगों को आमतौर पर निम्नलिखित तीन भौतिक गुणों में से किसी द्वारा वर्णित किया जाता है: आवृत्ति f, तरंग दैर्ध्य लैम्ब्डा | λ, या फोटॉन ऊर्जा ई। खगोल विज्ञान में देखी गई आवृत्तियां निम्न से लेकर होती हैं {{val|2.4|e=23|u=Hz}} (1 GeV गामा किरणें) आयनित अंतरतारकीय माध्यम (~1 kHz) की स्थानीय प्लाज्मा आवृत्ति के नीचे। तरंगदैर्घ्य तरंग आवृत्ति के व्युत्क्रमानुपाती होता है,<ref name="em-spectrum"/>इसलिए गामा किरणों में बहुत कम तरंग दैर्ध्य होते हैं जो परमाणुओं के आकार के अंश होते हैं, जबकि स्पेक्ट्रम के विपरीत छोर पर तरंग दैर्ध्य अनिश्चित काल तक लंबे हो सकते हैं। फोटॉन ऊर्जा सीधे तरंग आवृत्ति के समानुपाती होती है, इसलिए गामा किरण फोटॉन में उच्चतम ऊर्जा (लगभग एक अरब इलेक्ट्रॉन वोल्ट) होती है, जबकि रेडियो तरंग फोटॉन में बहुत कम ऊर्जा होती है (एक फेमटोइलेक्ट्रॉनवोल्ट के आसपास)। इन संबंधों को निम्नलिखित समीकरणों द्वारा दर्शाया गया है:
विद्युतचुंबकीय तरंगे सामान्यतः तीन भौतिक गुणों द्वारा वर्णित की जाती हैं: आवृत्ति f, तरंगदैर्घ्य λ, या फोटन ऊर्जा E। खगोलविज्ञान में पाए जाने वाले आवृत्तियां 2.4×10<sup>23</sup> हर्ट्ज (1 गीवी गैमा किरण) से आरम्भ होती हैं और आईनाइज्ड अंतरगलक तत्व के स्थानीय प्लाज्मा आवृत्ति (~1 किलोहर्ट्ज) तक पहुंचती हैं,<ref name="em-spectrum"/> तरंगदैर्घ्य तरंग आवृत्ति के प्रतिक के रूप में होता है, इसलिए गैमा किरण के बहुत छोटे तरंगदैर्घ्य होते हैं जो परमाणु के आयाम के भाग होते हैं, चूँकि वर्णक्रम के विपरीत छोर पर तरंगदैर्घ्य अनंत लंबा हो सकता है। फोटन ऊर्जा तरंग आवृत्ति के प्रत्युत अनुपात में सीधी रूप से होती है, इसलिए गैमा किरण फोटनों की सबसे अधिक ऊर्जा होती है (अधिकतर एक अरब इलेक्ट्रॉन वोल्ट), चूँकि रेडियो किरण फोटनों की बहुत कम ऊर्जा होती है (अधिकतर एक फेम्टोइलेक्ट्रॉन वोल्ट)। इन संबंधों को निम्नलिखित समीकरणों द्वारा दर्शाया गया है:
:<math>f = \frac{c}{\lambda}, \quad\text{or}\quad f = \frac{E}{h}, \quad\text{or}\quad E=\frac{hc}{\lambda},</math>
:<math>f = \frac{c}{\lambda}, \quad\text{or}\quad f = \frac{E}{h}, \quad\text{or}\quad E=\frac{hc}{\lambda},</math>
कहाँ पे:
यहाँ:
* सी = {{val|299792458|u=m/s}} निर्वात में प्रकाश की गति है
* c = {{val|299792458|u=m/s}} निर्वात में प्रकाश की गति है
* एच = {{val|6.62607015|e=-34|u=J·s}} = {{val|4.13566733|(10)|e=-15|u=eV·s}} प्लैंक स्थिरांक है | प्लैंक स्थिरांक।<ref name="CODATA">{{CODATA2006|url=http://physics.nist.gov/cgi-bin/cuu/Value?h}}</ref>
* h = {{val|6.62607015|e=-34|u=J·s}} = {{val|4.13566733|(10)|e=-15|u=eV·s}} इलेक्ट्रॉन वोल्ट-सेकंड है, जो प्लांक संदूल है।<ref name="CODATA">{{CODATA2006|url=http://physics.nist.gov/cgi-bin/cuu/Value?h}}</ref>
जब भी पदार्थ के साथ संचरण माध्यम में विद्युत चुम्बकीय तरंगें मौजूद होती हैं, तो उनकी तरंग दैर्ध्य कम हो जाती है। विद्युत चुम्बकीय विकिरण की तरंग दैर्ध्य, चाहे वे किसी भी माध्यम से यात्रा कर रहे हों, आमतौर पर वैक्यूम तरंग दैर्ध्य के संदर्भ में उद्धृत किया जाता है, हालांकि यह हमेशा स्पष्ट रूप से नहीं कहा जाता है।
जब विद्युतचुंबकीय तरंगे किसी पदार्थ के साथ माध्यम में यात्रा करती हैं, तो उनका तरंगदैर्घ्य कम हो जाता है। विद्युतचुंबकीय विकिरण के तरंगदैर्घ्य, चाहे वे किसी भी माध्यम में यात्रा कर रहे हों, सामान्यतः वैक्यूम तरंगदैर्घ्य के आधार पर दिए जाते हैं, चूंकि यह सदैव स्पष्ट रूप से उल्लिखित नहीं होता है।


आम तौर पर, विद्युत चुम्बकीय विकिरण को तरंग दैर्ध्य द्वारा रेडियो तरंग, माइक्रोवेव, अवरक्त, दृश्य प्रकाश, पराबैंगनी, एक्स-रे और गामा किरणों में वर्गीकृत किया जाता है। EM विकिरण का व्यवहार इसकी तरंग दैर्ध्य पर निर्भर करता है। जब EM विकिरण एकल परमाणुओं और अणुओं के साथ परस्पर क्रिया करता है, तो इसका व्यवहार भी प्रति क्वांटम (फोटॉन) ऊर्जा की मात्रा पर निर्भर करता है।
सामान्य रूप से, विद्युतचुंबकीय विकिरण को तरंगदैर्घ्य के आधार पर वर्गीकृत किया जाता है जिसमें रेडियो किरण, माइक्रोवेव, इन्फ्रारेड, प्रतीक्षामान बत्ती, अल्ट्रावायलेट, एक्स-रे और गैमा रे सम्मिलित होती हैं। विद्युतचुंबकीय विकिरण का व्यवहार इसके तरंगदैर्घ्य पर निर्भर करता है। जब विद्युतचुंबकीय विकिरण एकल परमाणु और अणुओं के साथ संवेदनशीलता करती है, तो उसका व्यवहार उस प्रति के क्वांटम (फोटन) के ऊर्जा की मात्रा पर भी निर्भर करता है।


स्पेक्ट्रोस्कोपी निर्वात में 400 नैनोमीटर से 700 एनएम की दृश्य तरंग दैर्ध्य रेंज की तुलना में ईएम स्पेक्ट्रम के बहुत व्यापक क्षेत्र का पता लगा सकता है। एक सामान्य प्रयोगशाला स्पेक्ट्रोस्कोप 2 एनएम से 2500 एनएम तक तरंग दैर्ध्य का पता लगा सकता है।{{citation needed|reason=This claim needs a reliable source|date=November 2015}} इस प्रकार के उपकरण से वस्तुओं, गैसों या तारों के भौतिक गुणों के बारे में विस्तृत जानकारी प्राप्त की जा सकती है। खगोल भौतिकी में स्पेक्ट्रोस्कोप का व्यापक रूप से उपयोग किया जाता है। उदाहरण के लिए, कई हाइड्रोजन परमाणु उत्सर्जन (विद्युत चुम्बकीय विकिरण) एक रेडियो तरंग फोटॉन है जिसकी तरंग दैर्ध्य 21.12 सेमी है। इसके अलावा, कुछ तारकीय नीहारिकाओं के अध्ययन में 30 हर्ट्ज और उससे नीचे की आवृत्तियों का उत्पादन किया जा सकता है और महत्वपूर्ण हैं<ref>{{cite web|url=http://www.cv.nrao.edu/course/astr534/Pulsars.html|title=Essential Radio Astronomy: Pulsar Properties|author1=Condon, J. J.|author2=Ransom, S. M.|publisher=[[National Radio Astronomy Observatory]]|access-date=2008-01-05|archive-date=2011-05-04|archive-url=https://web.archive.org/web/20110504064425/http://www.cv.nrao.edu/course/astr534/Pulsars.html|url-status=dead}}</ref> और आवृत्तियों के रूप में उच्च के रूप में {{val|2.9|e=27|u=Hz}} खगोलभौतिकीय स्रोतों से पता चला है।<ref>{{Cite journal | doi = 10.1086/513696|arxiv=astro-ph/0611691| title = Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy| journal = The Astrophysical Journal| volume = 658|issue=1| pages = L33–L36| year = 2007| last1 = Abdo | first1 = A. A.| last2 = Allen | first2 = B.| last3 = Berley | first3 = D.| last4 = Blaufuss | first4 = E.| last5 = Casanova | first5 = S.| last6 = Chen | first6 = C.| last7 = Coyne | first7 = D. G.| last8 = Delay | first8 = R. S.| last9 = Dingus | first9 = B. L.|author9-link= Brenda Dingus | last10 = Ellsworth | first10 = R. W.| last11 = Fleysher | first11 = L.| last12 = Fleysher | first12 = R.| last13 = Gebauer | first13 = I.| last14 = Gonzalez | first14 = M. M.| last15 = Goodman | first15 = J. A.| last16 = Hays | first16 = E.| last17 = Hoffman | first17 = C. M.| last18 = Kolterman | first18 = B. E.| last19 = Kelley | first19 = L. A.| last20 = Lansdell | first20 = C. P.| last21 = Linnemann | first21 = J. T.| last22 = McEnery | first22 = J. E.| last23 = Mincer | first23 = A. I.| last24 = Moskalenko | first24 = I. V.| last25 = Nemethy | first25 = P.| last26 = Noyes | first26 = D.| last27 = Ryan | first27 = J. M.| last28 = Samuelson | first28 = F. W.| last29 = Saz Parkinson | first29 = P. M.| last30 = Schneider | first30 = M.| display-authors = 29| bibcode = 2007ApJ...658L..33A|s2cid=17886934}}</ref>
स्पेक्ट्रोस्कोपी एक ऐसी विधि है जो वैक्यूम में 400 नैनोमीटर से 700 नैनोमीटर के सीने में दिखाई देने वाली प्रकाशमान तरंगदैर्घ्य श्रेणी से अधिक व्याप्ति के विद्युतचुंबकीय विकिरण का पता लगा सकती है। एक साधारण प्रयोगशाला में उपयोग होने वाला स्पेक्ट्रोस्कोप 2 नैनोमीटर से 2500 नैनोमीटर तक के तरंगदैर्घ्य को पकड़ सकता है।{{citation needed|reason=This claim needs a reliable source|date=November 2015}} इस प्रकार के उपकरण से वस्तुओं, गैसों या यहाँ तक कि तारों के भौतिक गुणों के बारे में विस्तृत जानकारी प्राप्त की जा सकती है। स्पेक्ट्रोस्कोप खगोलविज्ञान में व्यापक रूप से प्रयोग होता है। उदाहरण के लिए, कई हाइड्रोजन परमाणु एक रेडियो किरण फोटन उत्पन्न करते हैं जिसका तरंगदैर्घ्य 21.12 सेमी होता है। इसके अतिरिक्त, कुछ तारामंडलीय नेबुला के अध्ययन में 30 हर्ट्ज और इससे नीचे की आवृत्तियां उत्पन्न की जा सकती हैं<ref>{{cite web|url=http://www.cv.nrao.edu/course/astr534/Pulsars.html|title=Essential Radio Astronomy: Pulsar Properties|author1=Condon, J. J.|author2=Ransom, S. M.|publisher=[[National Radio Astronomy Observatory]]|access-date=2008-01-05|archive-date=2011-05-04|archive-url=https://web.archive.org/web/20110504064425/http://www.cv.nrao.edu/course/astr534/Pulsars.html|url-status=dead}}</ref> और 2.9×10<sup>27</sup> हर्ट्ज तक की आवृत्तियां खगोलवैज्ञानिक स्रोतों से पहचानी गई हैं।<ref>{{Cite journal | doi = 10.1086/513696|arxiv=astro-ph/0611691| title = Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy| journal = The Astrophysical Journal| volume = 658|issue=1| pages = L33–L36| year = 2007| last1 = Abdo | first1 = A. A.| last2 = Allen | first2 = B.| last3 = Berley | first3 = D.| last4 = Blaufuss | first4 = E.| last5 = Casanova | first5 = S.| last6 = Chen | first6 = C.| last7 = Coyne | first7 = D. G.| last8 = Delay | first8 = R. S.| last9 = Dingus | first9 = B. L.|author9-link= Brenda Dingus | last10 = Ellsworth | first10 = R. W.| last11 = Fleysher | first11 = L.| last12 = Fleysher | first12 = R.| last13 = Gebauer | first13 = I.| last14 = Gonzalez | first14 = M. M.| last15 = Goodman | first15 = J. A.| last16 = Hays | first16 = E.| last17 = Hoffman | first17 = C. M.| last18 = Kolterman | first18 = B. E.| last19 = Kelley | first19 = L. A.| last20 = Lansdell | first20 = C. P.| last21 = Linnemann | first21 = J. T.| last22 = McEnery | first22 = J. E.| last23 = Mincer | first23 = A. I.| last24 = Moskalenko | first24 = I. V.| last25 = Nemethy | first25 = P.| last26 = Noyes | first26 = D.| last27 = Ryan | first27 = J. M.| last28 = Samuelson | first28 = F. W.| last29 = Saz Parkinson | first29 = P. M.| last30 = Schneider | first30 = M.| display-authors = 29| bibcode = 2007ApJ...658L..33A|s2cid=17886934}}</ref>




==क्षेत्र==
==क्षेत्र==
[[File:Electromagnetic-Spectrum.svg|thumb|300px|विद्युत चुम्बकीय स्पेक्ट्रम]]
[[File:Electromagnetic-Spectrum.svg|thumb|300px|विद्युतचुंबकीय स्पंद (विद्युतीय तत्वक्रम)।]]
[[File:EM Spectrum Properties edit.svg|thumb|330px|विद्युत चुम्बकीय वर्णक्रम का एक आरेख, आवृत्तियों और तरंग दैर्ध्य की सीमा में विभिन्न गुणों को दर्शाता है]]
[[File:EM Spectrum Properties edit.svg|thumb|330px|विद्युतचुंबकीय स्पंद का एक आरेख, जिसमें विभिन्न गुणधर्मों का प्रदर्शन फ्रीक्वेंसी और तरंगदैर्घ्य के सार्वभौमिक संदर्भ में दिखाया गया है।]]
विद्युत चुम्बकीय विकिरण के प्रकारों को मोटे तौर पर निम्नलिखित वर्गों (क्षेत्रों, बैंडों या प्रकारों) में वर्गीकृत किया जाता है:<ref name="em-spectrum"/>#गामा विकिरण
विद्युतचुंबकीय विकिरण के प्रकार व्यापक रूप से निम्नलिखित वर्गों (क्षेत्र, बैंड या प्रकार) में वर्गीकृत किए जाते हैं:<ref name="em-spectrum"/>
 
# गामा विकिरण
# एक्स-रे विकिरण
# एक्स-रे विकिरण
# पराबैंगनी विकिरण
# पराबैंगनी विकिरण
Line 205: Line 204:
#माइक्रोवेव विकिरण
#माइक्रोवेव विकिरण
# रेडियो तरंगें
# रेडियो तरंगें
यह वर्गीकरण तरंग दैर्ध्य के बढ़ते क्रम में जाता है, जो कि विकिरण के प्रकार की विशेषता है।<ref name="em-spectrum"/>


विद्युतचुंबकीय स्पेक्ट्रम के बैंड के बीच कोई सटीक परिभाषित सीमाएं नहीं हैं; बल्कि वे एक दूसरे में फीके पड़ जाते हैं जैसे इंद्रधनुष में बैंड (जो दृश्य प्रकाश का उप-स्पेक्ट्रम है)। प्रत्येक आवृत्ति और तरंग दैर्ध्य (या प्रत्येक बैंड में) के विकिरण में स्पेक्ट्रम के दो क्षेत्रों के गुणों का मिश्रण होता है जो इसे बाध्य करते हैं। उदाहरण के लिए, लाल प्रकाश इन्फ्रारेड विकिरण जैसा दिखता है जिसमें यह कुछ रासायनिक बंधनों को उत्तेजित और ऊर्जा जोड़ सकता है और वास्तव में प्रकाश संश्लेषण और दृश्य प्रणाली के कामकाज के लिए जिम्मेदार रासायनिक तंत्र को शक्ति देने के लिए ऐसा करना चाहिए।
यह वर्गीकरण तरंगदैर्घ्य के बढ़ते क्रम के साथ होता है, जो विकिरण के प्रकार की विशेषता है।<ref name="em-spectrum"/>


एक्स-रे और गामा किरणों के बीच का अंतर आंशिक रूप से स्रोतों पर आधारित होता है: परमाणु क्षय या अन्य परमाणु और उप-परमाणु/कण प्रक्रिया से उत्पन्न फोटॉन को हमेशा गामा किरण कहा जाता है, जबकि एक्स-रे अत्यधिक ऊर्जावान आंतरिक परमाणु इलेक्ट्रॉनों से जुड़े इलेक्ट्रॉनिक संक्रमणों से उत्पन्न होते हैं। .<ref>{{cite book
विद्युतचुंबकीय वर्णक्रम के बैंड के बीच कोई त्रुटिहीन परिभाषित सीमाएं नहीं हैं; बल्कि वे एक दूसरे में फीके पड़ जाते हैं जैसे इंद्रधनुष में बैंड (जो दृश्य प्रकाश का उप-वर्णक्रम है)। प्रत्येक आवृत्ति और तरंग दैर्ध्य (या प्रत्येक बैंड में) के विकिरण में वर्णक्रम के दो क्षेत्रों के गुणों का मिश्रण होता है जो इसे बाध्य करते हैं। उदाहरण के लिए, लाल प्रकाश इन्फ्रारेड विकिरण जैसा दिखता है जिसमें यह कुछ रासायनिक बंधनों को उत्तेजित और ऊर्जा जोड़ सकता है और वास्तव में प्रकाश संश्लेषण और दृश्य प्रणाली के कामकाज के लिए जिम्मेदार रासायनिक तंत्र को शक्ति देने के लिए ऐसा करना चाहिए।
 
एक्स-रे और गामा किरणों के बीच का अंतर आंशिक रूप से स्रोतों पर आधारित होता है: परमाणु क्षय या अन्य परमाणु और उप-परमाणु/कण प्रक्रिया से उत्पन्न फोटॉन को सदैव गामा किरण कहा जाता है, चूँकि एक्स-रे अत्यधिक ऊर्जावान आंतरिक परमाणु इलेक्ट्रॉनों से जुड़े इलेक्ट्रॉनिक संक्रमणों से उत्पन्न होते हैं। .<ref>{{cite book
  |author1=Feynman, Richard |author2=Leighton, Robert |author3=Sands, Matthew |title = The Feynman Lectures on Physics, Vol.1
  |author1=Feynman, Richard |author2=Leighton, Robert |author3=Sands, Matthew |title = The Feynman Lectures on Physics, Vol.1
  |url=https://www.feynmanlectures.caltech.edu/I_toc.html |publisher = Addison-Wesley
  |url=https://www.feynmanlectures.caltech.edu/I_toc.html |publisher = Addison-Wesley
Line 227: Line 227:
  |year = 2005
  |year = 2005
  |page = [https://archive.org/details/astroparticlephy00grup/page/n123 109]
  |page = [https://archive.org/details/astroparticlephy00grup/page/n123 109]
  |isbn = 978-3-540-25312-9}}</ref> सामान्य तौर पर, परमाणु संक्रमण इलेक्ट्रॉनिक संक्रमणों की तुलना में बहुत अधिक ऊर्जावान होते हैं, इसलिए गामा किरणें एक्स-रे की तुलना में अधिक ऊर्जावान होती हैं, लेकिन अपवाद मौजूद हैं। इलेक्ट्रॉनिक संक्रमणों के अनुरूप, म्यूओनिक परमाणु संक्रमणों को एक्स-किरणों का उत्पादन करने के लिए भी कहा जाता है, भले ही उनकी ऊर्जा अधिक हो सकती है {{convert|6|MeV}},<ref>[http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0335.pdf Corrections to muonic X-rays and a possible proton halo] slac-pub-0335 (1967)</ref> जबकि कई हैं (77 से कम होने के लिए जाना जाता है {{convert|10|keV|abbr=on}}) कम ऊर्जा वाले परमाणु संक्रमण (उदा., the {{convert|7.6|eV|abbr=on}} थोरियम के समस्थानिकों का परमाणु संक्रमण|थोरियम-229m), और, कुछ म्यूओनिक एक्स-रे की तुलना में दस लाख गुना कम ऊर्जावान होने के बावजूद, उत्सर्जित फोटॉनों को उनके परमाणु मूल के कारण अभी भी गामा किरण कहा जाता है।<ref>{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html#c5 |title=Gamma-Rays |publisher=Hyperphysics.phy-astr.gsu.edu |access-date=2010-10-16}}</ref>
  |isbn = 978-3-540-25312-9}}</ref> सामान्यतः, परमाणु संक्रमण इलेक्ट्रॉनिक संक्रमणों की समानता में बहुत अधिक ऊर्जावान होते हैं, इसलिए गामा किरणें एक्स-रे की समानता में अधिक ऊर्जावान होती हैं, किन्तु अपवाद उपस्थित हैं। इलेक्ट्रॉनिक संक्रमणों के अनुरूप, म्यूओनिक परमाणु संक्रमणों को एक्स-किरणों का उत्पादन करने के लिए भी कहा जाता है, के होने पर भी उनकी ऊर्जा अधिक हो सकती है {{convert|6|MeV}},<ref>[http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0335.pdf Corrections to muonic X-rays and a possible proton halo] slac-pub-0335 (1967)</ref> चूँकि कई हैं (77 से कम होने के लिए जाना जाता है {{convert|10|keV|abbr=on}}) कम ऊर्जा वाले परमाणु संक्रमण (उदा., the {{convert|7.6|eV|abbr=on}} थोरियम के समस्थानिकों का परमाणु संक्रमण|थोरियम-229m), और, कुछ म्यूओनिक एक्स-रे की समानता में दस लाख गुना कम ऊर्जावान होने के अतिरिक्त, उत्सर्जित फोटॉनों को उनके परमाणु मूल के कारण अभी भी गामा किरण कहा जाता है।<ref>{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html#c5 |title=Gamma-Rays |publisher=Hyperphysics.phy-astr.gsu.edu |access-date=2010-10-16}}</ref>
ईएम विकिरण जिसे नाभिक से आने के लिए जाना जाता है, उसे हमेशा गामा किरण विकिरण कहा जाता है, यह एकमात्र ऐसा सम्मेलन है जिसे सार्वभौमिक रूप से सम्मानित किया जाता है। कई खगोलीय गामा किरण स्रोत (जैसे गामा किरण फटना) परमाणु मूल के होने के लिए बहुत ऊर्जावान (तीव्रता और तरंग दैर्ध्य दोनों में) होने के लिए जाने जाते हैं। अक्सर, उच्च-ऊर्जा भौतिकी और चिकित्सा विकिरण चिकित्सा में, बहुत उच्च ऊर्जा EMR (> 10 MeV क्षेत्र में) - जो कि किसी भी परमाणु गामा किरण की तुलना में अधिक ऊर्जा की होती है - को एक्स-रे या गामा किरण नहीं कहा जाता है, बल्कि इसके बजाय उच्च-ऊर्जा फोटॉन के सामान्य शब्द द्वारा।


स्पेक्ट्रम का वह क्षेत्र जहां एक विशेष रूप से देखा गया विद्युत चुम्बकीय विकिरण गिरता है, संदर्भ-निर्भर (प्रकाश के लिए डॉपलर शिफ्ट के कारण) का फ्रेम है, इसलिए ईएम विकिरण जो एक पर्यवेक्षक कहेगा कि स्पेक्ट्रम के एक क्षेत्र में है, एक पर्यवेक्षक को आगे बढ़ते हुए दिखाई दे सकता है स्पेक्ट्रम के दूसरे हिस्से में होने वाले पहले के संबंध में प्रकाश की गति का एक बड़ा अंश। उदाहरण के लिए, कॉस्मिक माइक्रोवेव बैकग्राउंड पर विचार करें। यह तब उत्पन्न हुआ था जब हाइड्रोजन परमाणुओं के डी-इलेक्ट्रॉन उत्तेजना द्वारा जमीनी अवस्था में पदार्थ और विकिरण को विघटित किया गया था। ये फोटॉन लाइमैन श्रृंखला के संक्रमण से थे, उन्हें विद्युत चुम्बकीय स्पेक्ट्रम के पराबैंगनी (यूवी) भाग में डाल दिया। अब यह विकिरण ब्रह्मांड के संबंध में धीरे-धीरे (प्रकाश की गति की तुलना में) आगे बढ़ने वाले पर्यवेक्षकों के लिए स्पेक्ट्रम के माइक्रोवेव क्षेत्र में डालने के लिए पर्याप्त ब्रह्माण्ड संबंधी लाल बदलाव आया है।
कायिकी से आने वाले विद्युतचुंबकीय विकिरण को सदैव "गामा रे" विकिरण कहा जाना ही एकमात्र रूढ़िवाद है, चूंकि। कई खगोलीय गामा रे स्रोत (जैसे गामा रे विस्फोट) का ज्ञात है कि वे परमाणुओं के मूल्य से अधिक ऊर्जाशील (उच्चता और तरंगदैर्घ्य दोनों में) हैं, इसलिए नाभिकीय मूल का नहीं हो सकते। अधिकांशतः, उच्च ऊर्जा भौतिकी और चिकित्सा रेडियोथेरेपी में, बहुत उच्च ऊर्जा वाले विद्युतचुंबकीय विकिरण (10 MeV से अधिक क्षेत्र में) — जो किसी भी परमाणुओं के गामा रे से भी अधिक ऊर्जाशील होता है — को "एक्स-रे" या "गामा रे" कहने की अतिरिक्त "उच्च-ऊर्जा फोटोन" के सामान्य शब्द से पुकारा जाता है।
 
वह क्षेत्र जहां एक विशेष देखी गई विकिरण स्थित होती है, संदर्भ-आधारित होता है (प्रकाश के लिए डॉप्लर शिफ्ट के कारण), इसलिए एक अवलोकन कर्ता के लिए विद्युतचुंबकीय विकिरण जो एक तरंगस्पंद के एक क्षेत्र में होगी, पहले के संबंध में दृश्यमान हो सकती है जो विद्युतीय रफ्तार के समानांतर चल रहे अवलोकन कर्ता के लिए वर्णक्रम के दूसरे में होगी। उदाहरण के लिए, ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि को विचार करें। यह जब पदार्थ और विकिरण अलग हो गए, इयों के नीचे के स्थिति में हाइड्रोजन परमाणुओं के द्वारा उत्पन्न हुआ था।ये फोटन लाइमन श्रृंखला के संक्रमणों से थे, जिससे इन्हें विद्युतचुंबकीय स्पंद के अल्पावरोही (अल्ट्रावायलेट) में रखा जाता है। अब इस विकिरण कोस्मोलॉजिकल लाल स्थिरता के कारण माइक्रोवेव स्पंद के में आ गया है, जो धीमी गति से (प्रकाश की समानता में धीमी रफ्तार से) गति कर रहे अवलोकन कर्ताओं के संबंध में ब्रह्मांड की समानता में हैं।


=== नामों का औचित्य ===
=== नामों का औचित्य ===
विद्युत चुम्बकीय विकिरण स्पेक्ट्रम में विभिन्न तरीकों से पदार्थ के साथ परस्पर क्रिया करता है। इस प्रकार की अंतःक्रियाएं इतनी भिन्न हैं कि स्पेक्ट्रम के विभिन्न भागों में ऐतिहासिक रूप से अलग-अलग नाम लागू किए गए हैं, जैसे कि ये विभिन्न प्रकार के विकिरण थे। इस प्रकार, हालांकि ये विभिन्न प्रकार के विद्युत चुम्बकीय विकिरण आवृत्तियों और तरंग दैर्ध्य के मात्रात्मक रूप से निरंतर स्पेक्ट्रम बनाते हैं, इन गुणात्मक अंतःक्रियात्मक अंतरों से संबंधित व्यावहारिक कारणों से स्पेक्ट्रम विभाजित रहता है।
विद्युत चुम्बकीय विकिरण वर्णक्रम में विभिन्न तरीकों से पदार्थ के साथ परस्पर क्रिया करता है। इस प्रकार की अंतःक्रियाएं इतनी भिन्न हैं कि वर्णक्रम के विभिन्न भागों में ऐतिहासिक रूप से अलग-अलग नाम लागू किए गए हैं, जैसे कि ये विभिन्न प्रकार के विकिरण थे। इस प्रकार, चूंकि ये विभिन्न प्रकार के विद्युत चुम्बकीय विकिरण आवृत्तियों और तरंग दैर्ध्य के मात्रात्मक रूप से निरंतर वर्णक्रम बनाते हैं, इन गुणात्मक अंतःक्रियात्मक अंतरों से संबंधित व्यावहारिक कारणों से वर्णक्रम विभाजित रहता है।


{| class="wikitable" width:70%; font-size:95%;
{| class="wikitable" width:70%; font-size:95%;
|+पदार्थ के साथ विद्युत चुम्बकीय विकिरण की बातचीत
|+पदार्थ के साथ विद्युत चुम्बकीय विकिरण की बातचीत
|-
|-
! स्पेक्ट्रम का क्षेत्र
! वर्णक्रम का क्षेत्र
! पदार्थ के साथ मुख्य अन्योन्यक्रियाएँ
! पदार्थ के साथ मुख्य अन्योन्यक्रियाएँ
|-
|-
|[[Radio wave|रेडियो]]
|[[Radio wave|रेडियो]]
|थोक सामग्री ([[plasma oscillation|प्लाज्मा दोलन]]) में आवेश वाहकों का सामूहिक दोलन। एक उदाहरण [[antenna (radio)|ऐन्टेना]] में इलेक्ट्रॉनों की दोलनशील यात्रा होगी।
|थोक सामग्री ([[plasma oscillation|प्लाज्मा दोलन]]) में आवेश वाहकों का सामूहिक दोलन। एक उदाहरण [[antenna (radio)|ऐन्टेना]] में इलेक्ट्रॉनों की दोलनशील यात्रा होगी।
|-
|-
|nowrap|दूर[[infrared|अवरक्त]] के माध्यम से [[Microwave|माइक्रोवेव]]  
|nowrap|दूर[[infrared|अवरक्त]] के माध्यम से [[Microwave|माइक्रोवेव]]  
|प्लाज्मा दोलन, आणविक रोटेशन
|प्लाज्मा दोलन, आणविक रोटेशन
|-
|-
Line 263: Line 264:
|-
|-
|nowrap|उच्च ऊर्जा [[gamma ray|गामा किरणें]]
|nowrap|उच्च ऊर्जा [[gamma ray|गामा किरणें]]
|[[Virtual pair|कण-प्रतिपक्ष जोड़े]] का निर्माण। बहुत उच्च ऊर्जा पर एक एकल फोटॉन पदार्थ के साथ परस्पर क्रिया करने पर उच्च-ऊर्जा कणों और प्रतिकणों की बौछार कर सकता है।
|[[Virtual pair|कण-प्रतिपक्ष जोड़े]] का निर्माण। बहुत उच्च ऊर्जा पर एक एकल फोटॉन पदार्थ के साथ परस्पर क्रिया करने पर उच्च-ऊर्जा कणों और प्रतिकणों की बौछार कर सकता है।
|}
|}


==विकिरण के प्रकार ==
==विकिरण के प्रकार ==
Line 271: Line 271:
=== रेडियो तरंगें ===
=== रेडियो तरंगें ===
{{Main|आकाशवाणी आवृति|रेडियो स्पेक्ट्रम|रेडियो तरंगें}}
{{Main|आकाशवाणी आवृति|रेडियो स्पेक्ट्रम|रेडियो तरंगें}}
रेडियो तरंगें एंटेना (रेडियो) द्वारा उत्सर्जित और प्राप्त की जाती हैं, जिसमें धातु रॉड रेज़ोनेटर जैसे कंडक्टर होते हैं। रेडियो तरंगों की कृत्रिम पीढ़ी में, एक इलेक्ट्रॉनिक उपकरण जिसे ट्रांसमीटर कहा जाता है, एक प्रत्यावर्ती धारा विद्युत प्रवाह उत्पन्न करता है जो एक एंटीना पर लगाया जाता है। ऐन्टेना में दोलन करने वाले इलेक्ट्रॉन दोलन विद्युत क्षेत्र और चुंबकीय क्षेत्र उत्पन्न करते हैं जो रेडियो तरंगों के रूप में एंटीना से दूर विकिरण करते हैं। रेडियो तरंगों के स्वागत में, एक रेडियो तरंग युगल के दोलन विद्युत और चुंबकीय क्षेत्र एक एंटीना में इलेक्ट्रॉनों को, उन्हें आगे और पीछे धकेलते हुए, दोलन धाराओं का निर्माण करते हैं जो एक रेडियो रिसीवर पर लागू होते हैं। आयनमंडल में आवेशित कणों की परतों को छोड़कर, जो कुछ आवृत्तियों को प्रतिबिंबित कर सकती हैं, पृथ्वी का वायुमंडल मुख्य रूप से रेडियो तरंगों के लिए पारदर्शी है।


रेडियो प्रसारण, टेलीविजन, दोतरफा रेडियो, मोबाइल फोन, संचार उपग्रह और वायरलेस नेटवर्किंग जैसे रेडियो संचार प्रणालियों में दूर-दूर तक सूचना प्रसारित करने के लिए रेडियो तरंगों का व्यापक रूप से उपयोग किया जाता है। एक रेडियो संचार प्रणाली में, एक रेडियो फ़्रीक्वेंसी करंट एक ट्रांसमीटर में एक सूचना-असर संकेत के साथ मॉड्यूलेशन होता है, जो या तो आयाम, आवृत्ति या चरण को बदलता है, और एक एंटीना पर लागू होता है। रेडियो तरंगें सूचना को पूरे अंतरिक्ष में एक रिसीवर तक ले जाती हैं, जहां वे एक एंटीना द्वारा प्राप्त की जाती हैं और रिसीवर में डिमोड्यूलेशन द्वारा निकाली गई जानकारी। रेडियो तरंगों का उपयोग ग्लोबल पोजिशनिंग सिस्टम (जीपीएस) और नेविगेशनल बीकन जैसी प्रणालियों में नेविगेशन के लिए और रेडियोलोकेशन और रडार में दूर की वस्तुओं का पता लगाने के लिए भी किया जाता है। उनका उपयोग रिमोट कंट्रोल और औद्योगिक हीटिंग के लिए भी किया जाता है।
रेडियो तरंगें एंटेना द्वारा उत्सर्जित और प्राप्त की जाती हैं, जिसमें धातु की छड़ गुंजयमान यंत्र जैसे कंडक्टर होते हैं। रेडियो तरंगों की कृत्रिम पीढ़ी में, एक इलेक्ट्रॉनिक उपकरण जिसे ट्रांसमीटर कहा जाता है, एक एसी विद्युत प्रवाह उत्पन्न करता है जिसे एंटीना पर लागू किया जाता है। एंटीना में दोलन करने वाले इलेक्ट्रॉन दोलनशील विद्युत और चुंबकीय क्षेत्र उत्पन्न करते हैं जो एंटीना से रेडियो तरंगों के रूप में विकीर्ण होते हैं। रेडियो तरंगों के स्वागत में, एक रेडियो तरंग युगल के दोलन विद्युत और चुंबकीय क्षेत्र एक एंटीना में इलेक्ट्रॉनों के लिए, उन्हें आगे और पीछे धकेलते हैं, एक रेडियो रिसीवर पर लागू दोलन धाराओं का निर्माण करते हैं। आयनमंडल में आवेशित कणों की परतों को छोड़कर पृथ्वी का वातावरण मुख्य रूप से रेडियो तरंगों के लिए पारदर्शी है, जो कुछ आवृत्तियों को प्रतिबिंबित कर सकते हैं।
 
रेडियो प्रसारण, टेलीविजन, दो तरफा रेडियो, मोबाइल फोन, संचार उपग्रह और वायरलेस नेटवर्किंग जैसी रेडियो संचार प्रणालियों में दूरियों में सूचना प्रसारित करने के लिए रेडियो तरंगों का अत्यधिक व्यापक रूप से उपयोग किया जाता है। एक रेडियो संचार प्रणाली में, एक रेडियो फ्रीक्वेंसी करंट को एक ट्रांसमीटर में एक सूचना-संकेत सिग्नल के साथ या तो आयाम, आवृत्ति या चरण को बदलकर और एक एंटीना पर लागू किया जाता है। रेडियो तरंगें सूचना को पूरे अंतरिक्ष में एक रिसीवर तक ले जाती हैं, जहां उन्हें एक एंटीना द्वारा प्राप्त किया जाता है और रिसीवर में डिमॉड्यूलेशन द्वारा निकाली गई जानकारी। रेडियो तरंगों का उपयोग ग्लोबल पोजिशनिंग सिस्टम (जीपीएस) और नेविगेशनल बीकन जैसी प्रणालियों में नेविगेशन के लिए और रेडियोलोकेशन और रडार में दूर की वस्तुओं का पता लगाने के लिए भी किया जाता है। उनका उपयोग रिमोट कंट्रोल और औद्योगिक ताप के लिए भी किया जाता है।


अंतर्राष्ट्रीय दूरसंचार संघ (आईटीयू) द्वारा समन्वित सरकारों द्वारा रेडियो स्पेक्ट्रम के उपयोग को कड़ाई से नियंत्रित किया जाता है, जो विभिन्न उपयोगों के लिए विभिन्न उपयोगकर्ताओं को आवृत्ति आवंटन करता है।
रेडियो वर्णक्रम के उपयोग को सरकारों द्वारा कड़ाई से विनियमित किया जाता है, अंतर्राष्ट्रीय दूरसंचार संघ (ITU) द्वारा समन्वित किया जाता है जो विभिन्न उपयोगों के लिए विभिन्न उपयोगकर्ताओं को आवृत्तियों का आवंटन करता है।


=== माइक्रोवेव ===
=== माइक्रोवेव ===
{{Main|माइक्रोवेव}}
{{Main|माइक्रोवेव}}
[[File:Atmospheric electromagnetic opacity.svg|thumb|right|upright=1.6|विद्युत चुम्बकीय विकिरण के विभिन्न तरंग दैर्ध्य के लिए पृथ्वी की वायुमंडलीय अस्पष्टता का प्लॉट। यह सतह से अंतरिक्ष की अपारदर्शिता है, वायुमंडल क्षोभमंडल के भीतर लंबी तरंग रेडियो प्रसारण के लिए पारदर्शी है लेकिन आयनोस्फीयर के कारण अंतरिक्ष के लिए अपारदर्शी है।]]
[[File:Atmospheric electromagnetic opacity.svg|thumb|right|upright=1.6|विद्युतचुंबकीय विकिरण के विभिन्न तरंगदैर्घ्यों के लिए पृथ्वी की वायुमंडलीय अस्पष्टता का आँकड़ा। यह सतह से अंतरिक्ष तक की अस्पष्टता है, त्रोपोस्फियर के भीतर लॉन्गवेव रेडियो प्रसारण के लिए वायुमंडल स्पष्ट है, किन्तु आयनमंडल के कारण अंतरिक्ष के लिए अस्पष्ट है।]]
[[File:2013 Atmospheric absorption of electromagnetic waves.svg|thumb|upright=1.6|स्थलीय से स्थलीय संचरण के लिए वायुमंडलीय अस्पष्टता का प्लॉट कुछ प्रतिध्वनि के लिए जिम्मेदार अणुओं को दर्शाता है]]
[[File:2013 Atmospheric absorption of electromagnetic waves.svg|thumb|upright=1.6|पृथ्वी से पृथ्वी प्रसारण के लिए वायुमंडलीय अस्पष्टता का आँकड़ा, जिसमें कुछ प्रतिध्वनियों के लिए जिम्मेदार मोलेक्यूल दिखाए गए हैं।]]
माइक्रोवेव सुपर-हाई फ़्रीक्वेंसी और बेहद हाई फ़्रीक्वेंसी बैंड में लगभग 10 सेंटीमीटर से लेकर एक मिलीमीटर तक शॉर्ट वेवलेंथ की रेडियो तरंगें हैं। माइक्रोवेव ऊर्जा का उत्पादन क्लिस्ट्रॉन और मैग्नेट्रोन ट्यूबों के साथ, और सॉलिड-स्टेट इलेक्ट्रॉनिक्स उपकरणों जैसे गन डायोड और IMPATT डायोड के साथ किया जाता है। यद्यपि वे छोटे एंटेना द्वारा उत्सर्जित और अवशोषित होते हैं, वे ध्रुवीय अणुओं द्वारा भी अवशोषित होते हैं, कंपन और घूर्णी मोड से जुड़ते हैं, जिसके परिणामस्वरूप थोक ताप होता है। इन्फ्रारेड और प्रकाश जैसी उच्च आवृत्ति तरंगों के विपरीत, जो मुख्य रूप से सतहों पर अवशोषित होती हैं, माइक्रोवेव सामग्री में प्रवेश कर सकते हैं और सतह के नीचे अपनी ऊर्जा जमा कर सकते हैं। इस प्रभाव का उपयोग माइक्रोवेव ओवन में भोजन को गर्म करने के लिए, और औद्योगिक हीटिंग और मेडिकल डायथर्मी के लिए किया जाता है। माइक्रोवेव रडार में उपयोग की जाने वाली मुख्य तरंग दैर्ध्य हैं, और उपग्रह संचार, और वायरलेस नेटवर्किंग तकनीकों जैसे वाई-फाई के लिए उपयोग की जाती हैं। तांबे के केबल (ट्रांसमिशन लाइन) जिनका उपयोग कम आवृत्ति वाली रेडियो तरंगों को एंटेना तक ले जाने के लिए किया जाता है, माइक्रोवेव आवृत्तियों पर अत्यधिक बिजली की हानि होती है, और उन्हें ले जाने के लिए वेवगाइड नामक धातु के पाइप का उपयोग किया जाता है। हालांकि बैंड के निचले सिरे पर वातावरण मुख्य रूप से पारदर्शी होता है, बैंड के ऊपरी छोर पर वायुमंडलीय गैसों द्वारा माइक्रोवेव का अवशोषण व्यावहारिक प्रसार दूरी को कुछ किलोमीटर तक सीमित कर देता है।
माइक्रोवेव सुपर-हाई फ़्रीक्वेंसी और अत्यधिक हाई फ़्रीक्वेंसी बैंड में अधिकतर 10 सेंटीमीटर से लेकर एक मिलीमीटर तक शॉर्ट वेवलेंथ की रेडियो तरंगें हैं। माइक्रोवेव ऊर्जा का उत्पादन क्लिस्ट्रॉन और मैग्नेट्रोन ट्यूबों के साथ, और सॉलिड-स्टेट इलेक्ट्रॉनिक्स उपकरणों जैसे गन डायोड और IMPATT डायोड के साथ किया जाता है। यद्यपि वे छोटे एंटेना द्वारा उत्सर्जित और अवशोषित होते हैं, वे ध्रुवीय अणुओं द्वारा भी अवशोषित होते हैं, कंपन और घूर्णी मोड से जुड़ते हैं, जिसके परिणामस्वरूप थोक ताप होता है। इन्फ्रारेड और प्रकाश जैसी उच्च आवृत्ति तरंगों के विपरीत, जो मुख्य रूप से सतहों पर अवशोषित होती हैं, माइक्रोवेव सामग्री में प्रवेश कर सकते हैं और सतह के नीचे अपनी ऊर्जा जमा कर सकते हैं। इस प्रभाव का उपयोग माइक्रोवेव ओवन में भोजन को गर्म करने के लिए, और औद्योगिक हीटिंग और मेडिकल डायथर्मी के लिए किया जाता है। माइक्रोवेव रडार में उपयोग की जाने वाली मुख्य तरंग दैर्ध्य हैं, और उपग्रह संचार, और वायरलेस नेटवर्किंग तकनीकों जैसे वाई-फाई के लिए उपयोग की जाती हैं। तांबे के केबल (ट्रांसमिशन लाइन) जिनका उपयोग कम आवृत्ति वाली रेडियो तरंगों को एंटेना तक ले जाने के लिए किया जाता है, माइक्रोवेव आवृत्तियों पर अत्यधिक बिजली की हानि होती है, और उन्हें ले जाने के लिए वेवगाइड नामक धातु के पाइप का उपयोग किया जाता है। चूंकि बैंड के निचले सिरे पर वातावरण मुख्य रूप से पारदर्शी होता है, बैंड के ऊपरी छोर पर वायुमंडलीय गैसों द्वारा माइक्रोवेव का अवशोषण व्यावहारिक प्रसार दूरी को कुछ किलोमीटर तक सीमित कर देता है।


टेराहर्ट्ज़ विकिरण या उप-मिलीमीटर विकिरण माइक्रोवेव और दूर अवरक्त के बीच लगभग 100 गीगाहर्ट्ज़ से 30 टेराहर्ट्ज़ (THz) के स्पेक्ट्रम का एक क्षेत्र है जिसे किसी भी बैंड से संबंधित माना जा सकता है। कुछ समय पहले तक, रेंज का शायद ही कभी अध्ययन किया गया था और तथाकथित टेराहर्ट्ज़ गैप में माइक्रोवेव ऊर्जा के लिए कुछ स्रोत मौजूद थे, लेकिन इमेजिंग और संचार जैसे अनुप्रयोग अब दिखाई दे रहे हैं। वैज्ञानिक सशस्त्र बलों में टेराहर्ट्ज तकनीक को भी लागू करना चाह रहे हैं, जहां उच्च आवृत्ति तरंगों को दुश्मन सैनिकों पर उनके इलेक्ट्रॉनिक उपकरणों को अक्षम करने के लिए निर्देशित किया जा सकता है।<ref>{{cite news|title=Advanced weapon systems using lethal Short-pulse terahertz radiation from high-intensity-laser-produced plasmas |date=March 6, 2005 |url=http://www.indiadaily.com/editorial/1803.asp |work=India Daily |access-date=2010-09-27 |url-status=dead |archive-url=https://web.archive.org/web/20100106223741/http://indiadaily.com/editorial/1803.asp |archive-date=6 January 2010 }}</ref> टेराहर्ट्ज़ विकिरण वायुमंडलीय गैसों द्वारा दृढ़ता से अवशोषित होता है, जिससे यह आवृत्ति रेंज लंबी दूरी के संचार के लिए बेकार हो जाती है।
टेराहर्ट्ज़ विकिरण या उप-मिलीमीटर विकिरण माइक्रोवेव और दूर अवरक्त के बीच अधिकतर 100 गीगाहर्ट्ज़ से 30 टेराहर्ट्ज़ (THz) के वर्णक्रम का एक क्षेत्र है जिसे किसी भी बैंड से संबंधित माना जा सकता है। कुछ समय पहले तक, रेंज का संभवतः ही कभी अध्ययन किया गया था और तथाकथित टेराहर्ट्ज़ गैप में माइक्रोवेव ऊर्जा के लिए कुछ स्रोत उपस्थित थे, किन्तु इमेजिंग और संचार जैसे अनुप्रयोग अब दिखाई दे रहे हैं। वैज्ञानिक सशस्त्र बलों में टेराहर्ट्ज तकनीक को भी लागू करना चाह रहे हैं, जहां उच्च आवृत्ति तरंगों को दुश्मन सैनिकों पर उनके इलेक्ट्रॉनिक उपकरणों को अक्षम करने के लिए निर्देशित किया जा सकता है।<ref>{{cite news|title=Advanced weapon systems using lethal Short-pulse terahertz radiation from high-intensity-laser-produced plasmas |date=March 6, 2005 |url=http://www.indiadaily.com/editorial/1803.asp |work=India Daily |access-date=2010-09-27 |url-status=dead |archive-url=https://web.archive.org/web/20100106223741/http://indiadaily.com/editorial/1803.asp |archive-date=6 January 2010 }}</ref> टेराहर्ट्ज़ विकिरण वायुमंडलीय गैसों द्वारा दृढ़ता से अवशोषित होता है, जिससे यह आवृत्ति रेंज लंबी दूरी के संचार के लिए प्रयोगहीन हो जाती है।


=== इन्फ्रारेड विकिरण ===
=== इन्फ्रारेड विकिरण ===
{{Main|अवरक्त विकिरण}}
{{Main|अवरक्त विकिरण}}
विद्युतचुंबकीय स्पेक्ट्रम का अवरक्त भाग लगभग 300 गीगाहर्ट्ज़ से 400 THz (1 मिमी - 750 एनएम) की सीमा को कवर करता है। इसे तीन भागों में विभाजित किया जा सकता है:<ref name="em-spectrum"/>* दूर-अवरक्त, 300 गीगाहर्ट्ज़ से 30 THz (1 मिमी - 10 माइक्रोन) तक। इस श्रेणी के निचले हिस्से को माइक्रोवेव या टेराहर्ट्ज तरंगें भी कहा जा सकता है। यह विकिरण आमतौर पर गैस-चरण अणुओं में तथाकथित घूर्णी मोड द्वारा, तरल पदार्थों में आणविक गतियों द्वारा और ठोस में फोनोन द्वारा अवशोषित किया जाता है। पृथ्वी के वायुमंडल में पानी इस श्रेणी में इतनी दृढ़ता से अवशोषित होता है कि यह वातावरण को अपारदर्शी बना देता है। हालांकि, अपारदर्शी सीमा के भीतर कुछ तरंगदैर्ध्य श्रेणियां (खिड़कियां) हैं जो आंशिक संचरण की अनुमति देती हैं, और खगोल विज्ञान के लिए उपयोग की जा सकती हैं। लगभग 200 माइक्रोन से लेकर कुछ मिमी तक की तरंग दैर्ध्य रेंज को अक्सर सबमिलिमीटर खगोल विज्ञान के रूप में जाना जाता है, जो 200 माइक्रोन से कम तरंग दैर्ध्य के लिए दूर अवरक्त को आरक्षित करता है।
विद्युतचुंबकीय वर्णक्रम का अवरक्त भाग अधिकतर 300 गीगाहर्ट्ज़ से 400 THz (1 मिमी - 750 एनएम) की सीमा को कवर करता है। इसे तीन भागों में विभाजित किया जा सकता है:<ref name="em-spectrum"/>* दूर-अवरक्त, 300 गीगाहर्ट्ज़ से 30 THz (1 मिमी - 10 माइक्रोन) तक। इस श्रेणी के निचले को माइक्रोवेव या टेराहर्ट्ज तरंगें भी कहा जा सकता है। यह विकिरण सामान्यतः गैस-चरण अणुओं में तथाकथित घूर्णी मोड द्वारा, तरल पदार्थों में आणविक गतियों द्वारा और ठोस में फोनोन द्वारा अवशोषित किया जाता है। पृथ्वी के वायुमंडल में पानी इस श्रेणी में इतनी दृढ़ता से अवशोषित होता है कि यह वातावरण को अपारदर्शी बना देता है। चूंकि, अपारदर्शी सीमा के भीतर कुछ तरंगदैर्ध्य श्रेणियां (खिड़कियां) हैं जो आंशिक संचरण की अनुमति देती हैं, और खगोल विज्ञान के लिए उपयोग की जा सकती हैं। अधिकतर 200 माइक्रोन से लेकर कुछ मिमी तक की तरंग दैर्ध्य रेंज को अधिकांशतः सबमिलिमीटर खगोल विज्ञान के रूप में जाना जाता है, जो 200 माइक्रोन से कम तरंग दैर्ध्य के लिए दूर अवरक्त को आरक्षित करता है।
* मध्य-अवरक्त, 30 से 120 THz (10-2.5 माइक्रोन) तक। गर्म वस्तुएं (ब्लैक-बॉडी रेडिएटर) इस सीमा में दृढ़ता से विकिरण कर सकती हैं, और सामान्य शरीर के तापमान पर मानव त्वचा इस क्षेत्र के निचले सिरे पर दृढ़ता से विकिरण करती है। यह विकिरण आणविक कंपनों द्वारा अवशोषित होता है, जहां एक अणु में विभिन्न परमाणु अपने संतुलन की स्थिति के आसपास कंपन करते हैं। इस श्रेणी को कभी-कभी 'फिंगरप्रिंट क्षेत्र' कहा जाता है, क्योंकि किसी यौगिक का मध्य-अवरक्त अवशोषण स्पेक्ट्रम उस यौगिक के लिए बहुत विशिष्ट होता है।
* मध्य-अवरक्त, 30 से 120 THz (10-2.5 माइक्रोन) तक। गर्म वस्तुएं (ब्लैक-बॉडी रेडिएटर) इस सीमा में दृढ़ता से विकिरण कर सकती हैं, और सामान्य शरीर के तापमान पर मानव त्वचा इस क्षेत्र के निचले सिरे पर दृढ़ता से विकिरण करती है। यह विकिरण आणविक कंपनों द्वारा अवशोषित होता है, जहां एक अणु में विभिन्न परमाणु अपने संतुलन की स्थिति के आसपास कंपन करते हैं। इस श्रेणी को कभी-कभी 'फिंगरप्रिंट क्षेत्र' कहा जाता है, क्योंकि किसी यौगिक का मध्य-अवरक्त अवशोषण वर्णक्रम उस यौगिक के लिए बहुत विशिष्ट होता है।
* निकट-अवरक्त, 120 से 400 THz (2,500-750 एनएम) तक। भौतिक प्रक्रियाएं जो इस श्रेणी के लिए प्रासंगिक हैं वे दृश्य प्रकाश के समान हैं। इस क्षेत्र में उच्चतम आवृत्तियों को सीधे कुछ प्रकार की फोटोग्राफिक फिल्म द्वारा और इन्फ्रारेड फोटोग्राफी और वीडियोग्राफी के लिए कई प्रकार के ठोस राज्य छवि सेंसर द्वारा पता लगाया जा सकता है।
* निकट-अवरक्त, 120 से 400 THz (2,500-750 एनएम) तक। भौतिक प्रक्रियाएं जो इस श्रेणी के लिए प्रासंगिक हैं वे दृश्य प्रकाश के समान हैं। इस क्षेत्र में उच्चतम आवृत्तियों को सीधे कुछ प्रकार की फोटोग्राफिक फिल्म द्वारा और इन्फ्रारेड फोटोग्राफी और वीडियोग्राफी के लिए कई प्रकार के ठोस राज्य छवि सेंसर द्वारा पता लगाया जा सकता है।


=== दृश्यमान प्रकाश ===
=== दृश्यमान प्रकाश ===
{{Spectral colours simple table}}
 
{{Main|दृश्यमान प्रतिबिम्ब}}
{{Main|दृश्यमान प्रतिबिम्ब}}
आवृत्ति में इन्फ्रारेड से ऊपर दृश्य प्रकाश आता है। सूर्य दृश्य क्षेत्र में अपनी चरम शक्ति का उत्सर्जन करता है, हालांकि सभी तरंग दैर्ध्य के माध्यम से संपूर्ण उत्सर्जन शक्ति स्पेक्ट्रम को एकीकृत करने से पता चलता है कि सूर्य दृश्य प्रकाश की तुलना में थोड़ा अधिक अवरक्त उत्सर्जित करता है।<ref>{{cite web|url=http://rredc.nrel.gov/solar/spectra/am1.5/ |title=Reference Solar Spectral Irradiance: Air Mass 1.5|access-date=2009-11-12}}</ref> परिभाषा के अनुसार, दृश्य प्रकाश EM स्पेक्ट्रम का हिस्सा है, जिसके लिए ल्यूमिनोसिटी फ़ंक्शन सबसे संवेदनशील है। दृश्यमान प्रकाश (और निकट-अवरक्त प्रकाश) आमतौर पर अणुओं और परमाणुओं में इलेक्ट्रॉनों द्वारा अवशोषित और उत्सर्जित होता है जो एक ऊर्जा स्तर से दूसरे में जाते हैं। यह क्रिया उन रासायनिक तंत्रों को अनुमति देती है जो मानव दृष्टि और पौधे प्रकाश संश्लेषण के अंतर्गत आते हैं। मानव दृश्य प्रणाली को उत्तेजित करने वाला प्रकाश विद्युत चुम्बकीय स्पेक्ट्रम का एक बहुत छोटा हिस्सा है। एक इंद्रधनुष विद्युत चुम्बकीय वर्णक्रम के ऑप्टिकल (दृश्यमान) भाग को दर्शाता है; इन्फ्रारेड (यदि इसे देखा जा सकता है) इंद्रधनुष के लाल पक्ष के ठीक आगे स्थित होगा, जबकि पराबैंगनी विपरीत वायलेट छोर से ठीक आगे दिखाई देगा।
आवृत्ति में इन्फ्रारेड से ऊपर दृश्य प्रकाश आता है। सूर्य दृश्य क्षेत्र में अपनी चरम शक्ति का उत्सर्जन करता है, चूंकि सभी तरंग दैर्ध्य के माध्यम से संपूर्ण उत्सर्जन शक्ति वर्णक्रम को एकीकृत करने से पता चलता है कि सूर्य दृश्य प्रकाश की समानता में थोड़ा अधिक अवरक्त उत्सर्जित करता है।<ref>{{cite web|url=http://rredc.nrel.gov/solar/spectra/am1.5/ |title=Reference Solar Spectral Irradiance: Air Mass 1.5|access-date=2009-11-12}}</ref> परिभाषा के अनुसार, दृश्य प्रकाश EM वर्णक्रम का भाग है, जिसके लिए ल्यूमिनोसिटी फ़ंक्शन सबसे संवेदनशील है। दृश्यमान प्रकाश (और निकट-अवरक्त प्रकाश) सामान्यतः अणुओं और परमाणुओं में इलेक्ट्रॉनों द्वारा अवशोषित और उत्सर्जित होता है जो एक ऊर्जा स्तर से दूसरे में जाते हैं। यह क्रिया उन रासायनिक तंत्रों को अनुमति देती है जो मानव दृष्टि और पौधे प्रकाश संश्लेषण के अंतर्गत आते हैं। मानव दृश्य प्रणाली को उत्तेजित करने वाला प्रकाश विद्युत चुम्बकीय वर्णक्रम का एक बहुत छोटा भाग है। एक इंद्रधनुष विद्युत चुम्बकीय वर्णक्रम के ऑप्टिकल (दृश्यमान) भाग को दर्शाता है; इन्फ्रारेड (यदि इसे देखा जा सकता है) इंद्रधनुष के लाल पक्ष के ठीक आगे स्थित होगा, चूँकि पराबैंगनी विपरीत वायलेट छोर से ठीक आगे दिखाई देगा।


380 नैनोमीटर और 760 एनएम (400-790 टेराहर्ट्ज) के बीच तरंगदैर्घ्य वाले विद्युतचुंबकीय विकिरण का मानव आंख द्वारा पता लगाया जाता है और इसे दृश्य प्रकाश के रूप में माना जाता है। अन्य तरंग दैर्ध्य, विशेष रूप से निकट अवरक्त (760 एनएम से अधिक) और पराबैंगनी (380 एनएम से कम) को भी कभी-कभी प्रकाश के रूप में संदर्भित किया जाता है, खासकर जब मनुष्यों के लिए दृश्यता प्रासंगिक नहीं होती है। श्वेत प्रकाश दृश्य स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य की रोशनी का एक संयोजन है। एक प्रिज्म के माध्यम से सफेद प्रकाश को पार करने से यह 400 एनएम और 780 एनएम के बीच दृश्यमान स्पेक्ट्रम में देखे गए प्रकाश के कई रंगों में विभाजित हो जाता है।
380 नैनोमीटर और 760 एनएम (400-790 टेराहर्ट्ज) के बीच तरंगदैर्घ्य वाले विद्युतचुंबकीय विकिरण का मानव आंख द्वारा पता लगाया जाता है और इसे दृश्य प्रकाश के रूप में माना जाता है। अन्य तरंग दैर्ध्य, विशेष रूप से निकट अवरक्त (760 एनएम से अधिक) और पराबैंगनी (380 एनएम से कम) को भी कभी-कभी प्रकाश के रूप में संदर्भित किया जाता है, खासकर जब मनुष्यों के लिए दृश्यता प्रासंगिक नहीं होती है। श्वेत प्रकाश दृश्य वर्णक्रम में विभिन्न तरंग दैर्ध्य की रोशनी का एक संयोजन है। एक प्रिज्म के माध्यम से सफेद प्रकाश को पार करने से यह 400 एनएम और 780 एनएम के बीच दृश्यमान वर्णक्रम में देखे गए प्रकाश के कई रंगों में विभाजित हो जाता है।


यदि ईएम स्पेक्ट्रम के दृश्य क्षेत्र में आवृत्ति वाली विकिरण किसी वस्तु, जैसे, फल के कटोरे से परावर्तित होती है, और फिर आंखों से टकराती है, तो इसका परिणाम दृश्य की दृश्य धारणा में होता है। मस्तिष्क की दृश्य प्रणाली विभिन्न रंगों और रंगों में परावर्तित आवृत्तियों की भीड़ को संसाधित करती है, और इस अपर्याप्त रूप से समझी जाने वाली मनो-शारीरिक घटना के माध्यम से, अधिकांश लोग एक कटोरी फल का अनुभव करते हैं।
यदि ईएम वर्णक्रम के दृश्य क्षेत्र में आवृत्ति वाली विकिरण किसी वस्तु, जैसे, फल के कटोरे से परावर्तित होती है, और फिर आंखों से टकराती है, तो इसका परिणाम दृश्य की दृश्य धारणा में होता है। मस्तिष्क की दृश्य प्रणाली विभिन्न रंगों और रंगों में परावर्तित आवृत्तियों की भीड़ को संसाधित करती है, और इस अपर्याप्त रूप से समझी जाने वाली मनो-शारीरिक घटना के माध्यम से, अधिकांश लोग एक कटोरी फल का अनुभव करते हैं।


अधिकांश तरंग दैर्ध्य पर, हालांकि, विद्युत चुम्बकीय विकिरण द्वारा की गई जानकारी को सीधे मानव इंद्रियों द्वारा नहीं पहचाना जाता है। प्राकृतिक स्रोत पूरे स्पेक्ट्रम में ईएम विकिरण उत्पन्न करते हैं, और प्रौद्योगिकी तरंग दैर्ध्य की एक विस्तृत श्रृंखला में भी हेरफेर कर सकती है। ऑप्टिकल फाइबर प्रकाश को प्रसारित करता है, हालांकि जरूरी नहीं कि स्पेक्ट्रम के दृश्य भाग में (यह आमतौर पर अवरक्त होता है), जानकारी ले सकता है। मॉडुलन रेडियो तरंगों के साथ प्रयोग के समान है।
अधिकांश तरंग दैर्ध्य पर, चूंकि, विद्युत चुम्बकीय विकिरण द्वारा की गई जानकारी को सीधे मानव इंद्रियों द्वारा नहीं पहचाना जाता है। प्राकृतिक स्रोत पूरे वर्णक्रम में ईएम विकिरण उत्पन्न करते हैं, और प्रौद्योगिकी तरंग दैर्ध्य की एक विस्तृत श्रृंखला में भी हेरफेर कर सकती है। ऑप्टिकल फाइबर प्रकाश को प्रसारित करता है, चूंकि आवश्यक नहीं कि वर्णक्रम के दृश्य भाग में (यह सामान्यतः अवरक्त होता है), जानकारी ले सकता है। मॉडुलन रेडियो तरंगों के साथ प्रयोग के समान है।


===पराबैंगनी विकिरण ===
===पराबैंगनी विकिरण ===
{{Main|पराबैंगनी}}
{{Main|पराबैंगनी}}
[[File:Ozone altitude UV graph.svg|right|thumb|पृथ्वी की ओजोन परत में ऊंचाई के सापेक्ष यूवी के प्रवेश की मात्रा]]
[[File:Ozone altitude UV graph.svg|right|thumb|पृथ्वी के ओजोन के साथ ऊचाई के संबंध में UV के प्रवेश की मात्रा।]]
आवृत्ति में अगला पराबैंगनी (यूवी) आता है। यूवी किरणों की तरंग दैर्ध्य दृश्यमान स्पेक्ट्रम के बैंगनी सिरे से छोटी होती है लेकिन एक्स-रे से लंबी होती है।
आवृत्ति में अगला पराबैंगनी (यूवी) आता है। यूवी किरणों की तरंग दैर्ध्य दृश्यमान वर्णक्रम के बैंगनी सिरे से छोटी होती है किन्तु एक्स-रे से लंबी होती है।


यूवी सबसे लंबी तरंग दैर्ध्य विकिरण है जिसके फोटॉन आयनीकरण परमाणुओं के लिए पर्याप्त ऊर्जावान हैं, उनसे इलेक्ट्रॉनों को अलग करते हैं, और इस प्रकार रासायनिक प्रतिक्रियाएं पैदा करते हैं। लघु तरंग दैर्ध्य यूवी और इसके ऊपर कम तरंग दैर्ध्य विकिरण (एक्स-रे और गामा किरण) को आयनकारी विकिरण कहा जाता है, और उनके संपर्क में रहने वाले ऊतकों को नुकसान पहुंचा सकता है, जिससे उन्हें स्वास्थ्य के लिए खतरा हो सकता है। यूवी भी कई पदार्थों को दृश्य प्रकाश के साथ चमकने का कारण बन सकता है; इसे प्रतिदीप्ति कहते हैं।
यूवी सबसे लंबी तरंग दैर्ध्य विकिरण है जिसके फोटॉन आयनीकरण परमाणुओं के लिए पर्याप्त ऊर्जावान हैं, उनसे इलेक्ट्रॉनों को अलग करते हैं, और इस प्रकार रासायनिक प्रतिक्रियाएं उत्पन्न करते हैं। लघु तरंग दैर्ध्य यूवी और इसके ऊपर कम तरंग दैर्ध्य विकिरण (एक्स-रे और गामा किरण) को आयनकारी विकिरण कहा जाता है, और उनके संपर्क में रहने वाले ऊतकों को हानि पहुंचा सकता है, जिससे उन्हें स्वास्थ्य के लिए खतरा हो सकता है। यूवी भी कई पदार्थों को दृश्य प्रकाश के साथ चमकने का कारण बन सकता है; इसे प्रतिदीप्ति कहते हैं।


यूवी की मध्य सीमा पर, यूवी किरणें आयनित नहीं हो सकती हैं, लेकिन रासायनिक बंधनों को तोड़ सकती हैं, जिससे अणु असामान्य रूप से प्रतिक्रियाशील हो जाते हैं। उदाहरण के लिए, सनबर्न मानव त्वचा कोशिका (जीव विज्ञान) पर मध्यम श्रेणी के यूवी विकिरण के विघटनकारी प्रभावों के कारण होता है, जो त्वचा कैंसर का मुख्य कारण है। मध्यम श्रेणी में यूवी किरणें थाइमिन डिमर बनाने वाली कोशिकाओं में जटिल डीएनए अणुओं को अपूरणीय रूप से नुकसान पहुंचा सकती हैं, जिससे यह एक बहुत ही शक्तिशाली उत्परिवर्तजन बन जाता है।
यूवी की मध्य सीमा पर, यूवी किरणें आयनित नहीं हो सकती हैं, किन्तु रासायनिक बंधनों को तोड़ सकती हैं, जिससे अणु असामान्य रूप से प्रतिक्रियाशील हो जाते हैं। उदाहरण के लिए, सनबर्न मानव त्वचा कोशिका (जीव विज्ञान) पर मध्यम श्रेणी के यूवी विकिरण के विघटनकारी प्रभावों के कारण होता है, जो त्वचा कैंसर का मुख्य कारण है। मध्यम श्रेणी में यूवी किरणें थाइमिन डिमर बनाने वाली कोशिकाओं में जटिल डीएनए अणुओं को अपूरणीय रूप से हानि पहुंचा सकती हैं, जिससे यह एक बहुत ही शक्तिशाली उत्परिवर्तजन बन जाता है।


सूर्य महत्वपूर्ण यूवी विकिरण (अपनी कुल शक्ति का लगभग 10%) उत्सर्जित करता है, जिसमें अत्यंत कम तरंग दैर्ध्य यूवी शामिल है जो संभावित रूप से भूमि पर अधिकांश जीवन को नष्ट कर सकता है (समुद्र का पानी वहां जीवन के लिए कुछ सुरक्षा प्रदान करेगा)। हालांकि, सूर्य की अधिकांश हानिकारक यूवी तरंग दैर्ध्य सतह पर पहुंचने से पहले वायुमंडल द्वारा अवशोषित कर ली जाती हैं। यूवी की उच्च ऊर्जा (सबसे छोटी तरंग दैर्ध्य) रेंज (जिसे वैक्यूम यूवी कहा जाता है) नाइट्रोजन द्वारा और लंबी तरंग दैर्ध्य पर, हवा में साधारण डायटोमिक ऑक्सीजन द्वारा अवशोषित की जाती है। ऊर्जा की मध्य-श्रेणी में अधिकांश यूवी ओजोन परत द्वारा अवरुद्ध होती है, जो महत्वपूर्ण 200–315 एनएम रेंज में दृढ़ता से अवशोषित होती है, जिसका निचला ऊर्जा हिस्सा हवा में सामान्य डाइअॉॉक्सिन को अवशोषित करने के लिए बहुत लंबा होता है। यह यूवी में समुद्र के स्तर पर 3% से कम सूरज की रोशनी छोड़ता है, यह सब कम ऊर्जा पर शेष रहता है। शेष यूवी-ए है, कुछ यूवी-बी के साथ। 315 एनएम और दृश्य प्रकाश (यूवी-ए कहा जाता है) के बीच यूवी की सबसे कम ऊर्जा सीमा वातावरण द्वारा अच्छी तरह से अवरुद्ध नहीं होती है, लेकिन सनबर्न का कारण नहीं बनती है और कम जैविक क्षति होती है। हालांकि, यह हानिरहित नहीं है और ऑक्सीजन रेडिकल्स, म्यूटेशन और त्वचा को नुकसान पहुंचाता है।
सूर्य महत्वपूर्ण यूवी विकिरण (अपनी कुल शक्ति का अधिकतर 10%) उत्सर्जित करता है, जिसमें अत्यंत कम तरंग दैर्ध्य यूवी सम्मलित है जो संभावित रूप से भूमि पर अधिकांश जीवन को नष्ट कर सकता है (समुद्र का पानी वहां जीवन के लिए कुछ सुरक्षा प्रदान करेगा)। चूंकि, सूर्य की अधिकांश हानिकारक यूवी तरंग दैर्ध्य सतह पर पहुंचने से पहले वायुमंडल द्वारा अवशोषित कर ली जाती हैं। यूवी की उच्च ऊर्जा (सबसे छोटी तरंग दैर्ध्य) रेंज (जिसे वैक्यूम यूवी कहा जाता है) नाइट्रोजन द्वारा और लंबी तरंग दैर्ध्य पर, हवा में साधारण डायटोमिक ऑक्सीजन द्वारा अवशोषित की जाती है। ऊर्जा की मध्य-श्रेणी में अधिकांश यूवी ओजोन परत द्वारा अवरुद्ध होती है, जो महत्वपूर्ण 200–315 एनएम रेंज में दृढ़ता से अवशोषित होती है, जिसका निचला ऊर्जा भाग हवा में सामान्य डाइअॉॉक्सिन को अवशोषित करने के लिए बहुत लंबा होता है। यह यूवी में समुद्र के स्तर पर 3% से कम सूरज की रोशनी छोड़ता है, यह सब कम ऊर्जा पर शेष रहता है। शेष यूवी-ए है, कुछ यूवी-बी के साथ। 315 एनएम और दृश्य प्रकाश (यूवी-ए कहा जाता है) के बीच यूवी की सबसे कम ऊर्जा सीमा वातावरण द्वारा अच्छी प्रकार से अवरुद्ध नहीं होती है, किन्तु सनबर्न का कारण नहीं बनती है और कम जैविक क्षति होती है। चूंकि, यह हानिरहित नहीं है और ऑक्सीजन रेडिकल्स, म्यूटेशन और त्वचा को हानि पहुंचाता है।


=== एक्स-रे ===
=== एक्स-रे ===
{{Main|एक्स-किरणें}}
{{Main|एक्स-किरणें}}
यूवी के बाद एक्स-रे आते हैं, जो यूवी की ऊपरी श्रेणियों की तरह आयनकारी भी होते हैं। हालांकि, उनकी उच्च ऊर्जा के कारण, एक्स-रे कॉम्पटन स्कैटरिंग के माध्यम से पदार्थ के साथ बातचीत भी कर सकते हैं। कठोर एक्स-रे में नरम एक्स-रे की तुलना में कम तरंग दैर्ध्य होते हैं और चूंकि वे कम अवशोषण वाले कई पदार्थों से गुजर सकते हैं, इसलिए उनका उपयोग कुछ मीटर पानी के बराबर की तुलना में कम 'मोटाई' वाली वस्तुओं को 'देखने' के लिए किया जा सकता है। एक उल्लेखनीय उपयोग चिकित्सा में नैदानिक ​​एक्स-रे इमेजिंग है (एक प्रक्रिया जिसे रेडियोग्राफी के रूप में जाना जाता है)। उच्च-ऊर्जा भौतिकी में जांच के रूप में एक्स-रे उपयोगी होते हैं। खगोल विज्ञान में, न्यूट्रॉन सितारों के चारों ओर अभिवृद्धि डिस्क और ब्लैक होल एक्स-रे उत्सर्जित करते हैं, जिससे इन घटनाओं का अध्ययन किया जा सकता है। एक्स-रे भी तारकीय कोरोना द्वारा उत्सर्जित होते हैं और कुछ प्रकार के नीहारिकाओं द्वारा दृढ़ता से उत्सर्जित होते हैं। हालांकि, खगोलीय एक्स-रे देखने के लिए एक्स-रे दूरबीनों को पृथ्वी के वायुमंडल के बाहर रखा जाना चाहिए, क्योंकि पृथ्वी के वायुमंडल की महान गहराई एक्स-रे के लिए अपारदर्शी है (1000 ग्राम/सेमी के क्षेत्र घनत्व के साथ)<sup>2</sup>), पानी की 10 मीटर मोटाई के बराबर।<ref>Koontz, Steve (26 June 2012) [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120012405.pdf Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose]. NASA/MIT Workshop. See pages I-7 (atmosphere) and I-23 (for water).</ref> यह लगभग सभी खगोलीय एक्स-रे (और खगोलीय गामा किरणों-नीचे देखें) को अवरुद्ध करने के लिए पर्याप्त राशि है।
यूवी के बाद एक्स-रे आते हैं, जो यूवी के ऊपरी सीमाओं की प्रकार आयनीकरण करते हैं। चूंकि, उनकी ऊर्जा अधिक होने के कारण, एक्स-रे संक्रमण प्रभाव के माध्यम से भी पदार्थ के साथ परस्पराक्रमण कर सकते हैं। हार्ड एक्स-रे सॉफ्ट एक्स-रे से छोटी तरंगदैर्घ्य रखते हैं और क्योंकि वे कम अवशोषण के साथ कई पदार्थों से गुजर सकते हैं, इसलिए वे कम वस्तुओं के 'मोटाई' से कम वस्तुओं को 'देखने' के लिए उपयोग किए जा सकते हैं, जो कुछ मीटर पानी के समान होता है। एक महत्वपूर्ण उपयोग उपचार में चिकित्सा में एक्स-रे छवि लेना है (रेडियोग्राफी के रूप में जाना जाता है)। एक्स-रे ऊर्जा के रूप में प्रोब्स के रूप में उच्च-ऊर्जा भौतिकी में उपयोगी होते हैं। खगोलज्ञान में, न्यूट्रॉन स्टार्स और ब्लैक होल के चक्रणी ताराएँ एक्स-रे उत्पन्न करती हैं, जो इन घटनाओं का अध्ययन करने को संभव बनाते हैं। तारामंडल में तारा कोरोना द्वारा एक्स-रे उत्पन्न होते हैं और कुछ प्रकार के नेब्यूला द्वारा मजबूत एक्स-रे उत्पन्न होते हैं। चूंकि, खगोलीय एक्स-रे देखने के लिए एक्स-रे दूरबीन को पृथ्वी के बाहर स्थापित किया जाना चाहिए, क्योंकि पृथ्वी की वायुमंडल की गहराई एक्स-रे के प्रति अस्पष्ट होती है (जो 1000 ग्राम/सेमी<sup>2</sup> के एरियल घनत्व के समान है), जो पानी की 10 मीटर मोटाई के समकक्ष होता है।<ref>Koontz, Steve (26 June 2012) [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120012405.pdf Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose]. NASA/MIT Workshop. See pages I-7 (atmosphere) and I-23 (for water).</ref> यह एक ऐसी मात्रा है जो अधिकतर सभी खगोलीय एक्स-रे (और खगोलीय गैमा रे—नीचे देखें) को रोकने के लिए पर्याप्त है।


===गामा किरणें ===
===गामा किरणें ===
{{Main|गामा किरणें}}
{{Main|गामा किरणें}}
कठोर एक्स-रे के बाद गामा किरणें आती हैं, जिन्हें पॉल उलरिच विलार्ड ने 1900 में खोजा था। ये सबसे ऊर्जावान फोटॉन हैं, जिनकी तरंग दैर्ध्य की कोई निर्धारित निचली सीमा नहीं है। खगोल विज्ञान में वे उच्च-ऊर्जा वस्तुओं या क्षेत्रों का अध्ययन करने के लिए मूल्यवान हैं, हालांकि एक्स-रे के साथ यह केवल पृथ्वी के वायुमंडल के बाहर दूरबीनों के साथ ही किया जा सकता है। गामा किरणों का प्रयोग भौतिकविदों द्वारा उनकी भेदन क्षमता के लिए प्रयोगात्मक रूप से किया जाता है और कई रेडियो आइसोटोप द्वारा निर्मित होते हैं। उनका उपयोग खाद्य पदार्थों के विकिरण और नसबंदी के लिए बीजों के लिए किया जाता है, और चिकित्सा में वे कभी-कभी विकिरण ऑन्कोलॉजी में उपयोग किए जाते हैं।<ref>[http://www.revisionworld.com/gcse-revision/physics/waves/uses-electromagnetic-waves Uses of Electromagnetic Waves | gcse-revision, physics, waves, uses-electromagnetic-waves | Revision World<!-- Bot generated title -->]</ref> आमतौर पर, गामा किरणों का उपयोग परमाणु चिकित्सा में नैदानिक ​​इमेजिंग के लिए किया जाता है, एक उदाहरण पॉज़िट्रॉन एमिशन टोमोग्राफी है। कॉम्पटन प्रकीर्णन के प्रभाव के माध्यम से गामा किरणों की तरंग दैर्ध्य को उच्च सटीकता के साथ मापा जा सकता है।
हार्ड एक्स-रे के बाद गैमा विकिरण आते हैं, जिन्हें 1900 में पॉल उल्रिक विलार्ड ने खोजा था। ये सबसे ऊर्जावान फोटन होते हैं, जिनकी तरंगदैर्घ्य का कोई परिभाषित निम्न सीमा नहीं होती है। खगोल विज्ञान में इनका महत्व है हाई-ऊर्जा वस्तुओं या क्षेत्रों का अध्ययन करने के लिए, चूंकि इसे केवल पृथ्वी की वायुमंडल के बाहर टेलीस्कोपों के साथ ही किया जा सकता है। गैमा विकिरण को भौतिक वैज्ञानिकों द्वारा उनकी पेनेट्रेशन क्षमता के लिए प्रयोगात्मक रूप से उपयोग किया जाता है और कई रेडियोआयसोटोप्स द्वारा उत्पन्न किया जाता है। यह खाद्य और बीजों के स्टेरिलाइजेशन के लिए किया जाता है, और चिकित्सा में यह कभी-कभी रेडिएशन के माध्यम से कैंसर उपचार में उपयोग किया जाता है।<ref>[http://www.revisionworld.com/gcse-revision/physics/waves/uses-electromagnetic-waves Uses of Electromagnetic Waves | gcse-revision, physics, waves, uses-electromagnetic-waves | Revision World<!-- Bot generated title -->]</ref> सामान्यतः, गामा किरणों का उपयोग परमाणु चिकित्सा में नैदानिक ​​इमेजिंग के लिए किया जाता है, एक उदाहरण पॉज़िट्रॉन एमिशन टोमोग्राफी है। कॉम्पटन प्रकीर्णन के प्रभाव के माध्यम से गामा किरणों की तरंग दैर्ध्य को उच्च समान के साथ मापा जा सकता है।


==यह भी देखें==
==यह भी देखें==
Line 338: Line 339:
* [[वी बैंड]]
* [[वी बैंड]]
* [[डब्ल्यू बैंड]]}}
* [[डब्ल्यू बैंड]]}}


==नोट्स और संदर्भ==
==नोट्स और संदर्भ==
{{Reflist|35em}}
{{Reflist|35em}}
==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==


==बाहरी संबंध==
==बाहरी संबंध==
{{Commons category|Electromagnetic spectrum}}
* [https://web.archive.org/web/20170114181318/http://www.acma.gov.au/webwr/radcomm/frequency_planning/spectrum_plan/arsp-wc.pdf Australian Radiofrequency Spectrum Allocations Chart] (from Australian Communications and Media Authority)
* [https://web.archive.org/web/20170114181318/http://www.acma.gov.au/webwr/radcomm/frequency_planning/spectrum_plan/arsp-wc.pdf Australian Radiofrequency Spectrum Allocations Chart] (from Australian Communications and Media Authority)
* [http://www.ic.gc.ca/epic/site/smt-gst.nsf/vwapj/spectallocation-08.pdf/$FILE/spectallocation-08.pdf Canadian Table of Frequency Allocations] {{Webarchive|url=https://web.archive.org/web/20081209114827/http://www.ic.gc.ca/epic/site/smt-gst.nsf/vwapj/spectallocation-08.pdf/$FILE/spectallocation-08.pdf |date=2008-12-09 }} (from [[Industry Canada]])
* [http://www.ic.gc.ca/epic/site/smt-gst.nsf/vwapj/spectallocation-08.pdf/$FILE/spectallocation-08.pdf Canadian Table of Frequency Allocations] {{Webarchive|url=https://web.archive.org/web/20081209114827/http://www.ic.gc.ca/epic/site/smt-gst.nsf/vwapj/spectallocation-08.pdf/$FILE/spectallocation-08.pdf |date=2008-12-09 }} (from [[Industry Canada]])
Line 356: Line 351:
* [http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf Poster "Electromagnetic Radiation Spectrum"] (992 kB)
* [http://unihedron.com/projects/spectrum/downloads/spectrum_20090210.pdf Poster "Electromagnetic Radiation Spectrum"] (992 kB)


{{Electromagnetic spectrum}}
[[Category:All articles with unsourced statements]]
{{colour topics}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Articles with unsourced statements from November 2015]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Created On 10/09/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:लहरें]]
[[Category:विद्युत चुम्बकीय स्पेक्ट्रम| ]]
[[Category:विद्युत चुम्बकीय स्पेक्ट्रम| ]]
[[Category: लहरें]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/09/2022]]

Latest revision as of 16:01, 26 October 2023

क्लास   तरंगदैर्घ्य
आवृत्ति
ऊर्जा प्रति

फोटोन

आयनीकृत

विकिरण

γ गामा किरणें   1 pm 300 EHz 1.24 MeV
10 pm 30 EHz 124 keV
HX Hard X-rays
100 pm 3 EHz 12.4 keV
SX Soft X-rays
1 nm 300 PHz 1.24 keV
10nm 30 PHz 124 eV
EUV Extreme
ultraviolet
100 nm 3 PHz 12.4 eV
NUV Near ultraviolet,
visible
1 μm 300 THz 1.24 eV
NIR Near infrared
10 μm 30 THz 124 meV
MIR Mid infrared
100 μm 3 THz 12.4 meV
FIR Far infrared
1 mm 300 GHz 1.24 meV
माइक्रोवेव EHF Extremely high
frequency
1 cm 30GHz 124 μeV
SHF Super high
frequency
1 dm 3GHz 12.4 μeV
UHF Ultra high
frequency
1 m 300 MHz 1.24 μeV
रेडियो वेव्स VHF Very high
frequency
10 m 30MHz 124 neV
HF High
frequency
100 m 3MHz 12.4 neV
MF Medium
frequency
1 km 300 kHz 1.24 neV
LF Low
frequency
10km 30kHz 124 peV
VLF Very low
frequency
100km 3kHz 12.4 peV
ULF Ultra low
frequency
1 Mm 300 Hz 1.24 peV
SLF Super low
frequency
10Mm 30Hz 124 feV
ELF Extremely low
frequency
100Mm 3Hz 12.4 feV
Sources: File:Light spectrum.svg[1][2][3]

विद्युतचुंबकीय वर्णक्रम, विद्युतचुंबकीय विकिरण की आवृत्तियों (वर्णक्रम) और उनकी संबंधित तारों और फोटन ऊर्जाओं की श्रेणी है।

विद्युतचुंबकीय वर्णक्रम एक हर्ट्ज से कम आवृत्ति से लेकर 1025 हर्ट्ज से अधिक आवृत्ति तक के विद्युतचुंबकीय तरंगों को सम्मलित करता है, जिसके संबंध में वेवलेंथ हजारों किलोमीटर से अणुक नक्षत्र के आकार के एक भाग तक हो सकती हैं। यह आवृत्ति सीमा अलग-अलग बैंडों में बांटी जाती है, और प्रत्येक आवृत्ति बैंड में विद्युतचुंबकीय तरंगों को अलग-अलग नामों से जाना जाता है; वर्णक्रम के निचले आवृत्ति (लंबी तार की लंबाई) के प्रारंभ से इनके नाम हैं: रेडियो तरंग, माइक्रोवेव्स, इंफ्रारेड, प्रतीक्षित प्रकाश, अल्पाभ प्रकाश, एक्स-रे, और गैमा रे (ऊची आवृत्ति और कम तार की लंबाई वाले भाग में)[4] इन बैंडों में प्रत्येक विद्युतचुंबकीय तरंगों के विभिन्न गुण होते हैं, जैसे कि वे कैसे उत्पन्न होते हैं, पदार्थ के साथ कैसे प्रभावित होते हैं और उनके व्यावहारिक अनुप्रयोग होते हैं। लंबी और छोटी तारों के लिए कोई ज्ञात सीमा नहीं है। अतिसूक्ष्म अल्ट्रा-वियोलेट, सॉफ्ट एक्स-रे, हार्ड एक्स-रे और गैमा रे को आयनिकरण विकिरण के रूप में वर्गीकृत किया जाता है क्योंकि उनके फोटनों में पर्याप्त ऊर्जा होती है जो परमाणुओं को आयनित करने के लिए कार्यक्षम होती है, जिससे रासायनिक प्रतिक्रियाएँ होती हैं। प्रतीक्षित प्रकाश और इससे लंबी तारें गैर-आयनिकरण विकिरण के रूप में वर्गीकृत की जाती हैं क्योंकि इन तारों में इस प्रभाव को उत्पन्न करने के लिए पर्याप्त ऊर्जा नहीं होती है।

विद्युतचुंबकीय तत्वों के सूत्रबद्धता का अध्ययन करने के लिए, विभिन्न आवृत्तियों के तरंगों को अलग करने के लिए विकिरणशास्त्र का उपयोग किया जा सकता है, जिससे तत्वीय आवृत्तियों का एक वर्णक्रम प्राप्त होता है। स्पेक्ट्रोस्कोपी का उपयोग विद्युतचुंबकीय तरंगों के पदार्थ के साथ इंटरैक्शन का अध्ययन करने के लिए किया जाता है।[5]

इतिहास और खोज

मानव सदैव दृश्य प्रकाश और तेज़ ऊष्मा के बारे में जागरूक थे, किन्तु प्राचीन के बहुत से युगों के समय इस बात का ज्ञान नहीं था कि ये प्रभाव एक-दूसरे से जुड़े हुए हैं या किसी अधिक व्यापक सिद्धांत के प्रतिनिधि हैं। प्राचीन यूनानी लोगों ने माना कि प्रकाश सीधे रेखाओं में यात्रा करता है और इसकी कुछ गुणों का अध्ययन किया, जिनमें प्रतिबिंबण और भिगोने भी सम्मलित था। 17वीं सदी की प्रारंभिक से प्रकाश प्रगट के बारे में गहराई से अध्ययन किया गया, जिससे टेलीस्कोप और माइक्रोस्कोप जैसे महत्वपूर्ण उपकरणों की खोज हुई। आइज़ेक न्यूटन ने पहले ही प्रिज्म के साथ सफेद प्रकाश को विभाजित करने के लिए रंगों की सीमा के लिए शब्द वर्णक्रम का उपयोग किया जा सकता था। 1666 से प्रारंभ होकर, न्यूटन ने दिखाया कि ये रंग प्रकाश के स्वाभाविक रूप में उपस्थित हैं और इन्हें सफेद प्रकाश में पुनः संयोजित किया जा सकता है। एक विवाद उठा कि क्या प्रकाश का एक तरंग लक्षण है या क्या यह एक कण लक्षण है, जिसमें रेने डेकार्ट, रॉबर्ट हुक और क्रिस्टियान हायगेंस तार का वर्णन करते हैं और न्यूटन एक कण वर्णन करते हैं। विशेष रूप से हायगेंस के पास प्रतिक्षांक और भिगोने के नियमों का विकसित सिद्धांत था। 1801 के आस-पास, थॉमस यंग ने अपने दो-द्वारी प्रयोग के माध्यम से प्रकाश की तारंगदैर्घ्य को मापा, जिससे यह स्पष्ट रूप से सिद्ध हुआ कि प्रकाश एक तरंग है।

1800 में, विलियम हर्शल ने अवरक्त विकिरण की खोज की।[6] उन्होंने प्रिज्म द्वारा विभाजित प्रकाश में थर्मामीटर को ले जाकर विभिन्न रंगों के तापमान का अध्ययन किया। उन्हें ध्यान गया कि सबसे उच्च तापमान लाल से परे होता था। उन्होंने सिद्धांत बनाया कि यह तापमान परिवर्तन "कैलोरिफिक रेज़", एक प्रकार की प्रकाश रेखा के कारण हो सकता है जो दिखाई नहीं देती है। अगले साल, जोहान रिटर, वर्णक्रम के दूसरे छोर पर काम करते हुए, ध्यान दिया कि उन्हें "रासायनिक रेज़" (दृश्य नहीं होने वाली प्रकाश रेखाएं जो कुछ रासायनिक प्रतिक्रियाओं को प्रेरित करती हैं) का पता चला। इनका व्यवहार दृश्यता वाली बैंगनी प्रकाश रेखाओं के आस-पास के सामान्य था, किन्तु वर्णक्रम में उनसे परे थे।[7] बाद में इन्हें अल्ट्रावायलेट विकिरण के नाम से पुनर्नामित किया गया।

विद्युतचुंबकीयता का अध्ययन 1820 में हांस क्रिस्चियन ओर्स्टेड द्वारा प्रारंभ हुआ जब उन्होंने खोजा कि विद्युत्क्रम चुंबकीय क्षेत्र उत्पन्न करते हैं (ओर्स्टेड का कानून)। प्रकाश को विद्युतचुंबकीयता से पहली बार 1845 में जोड़ा गया था, जब माइकल फैराडे ने देखा कि एक पारदर्शी पदार्थ से गुजरता हुआ प्रकाश एक चुंबकीय क्षेत्र के प्रतिक्रिया का सामरिक होता है (फैराडे प्रभाव देखें)। 1860 के दशक में, जेम्स क्लर्क मैक्सवेल ने विद्युत चुम्बकीय क्षेत्र के लिए चार आंशिक अंतर समीकरण (मैक्सवेल के समीकरण) विकसित किए। इनमें से दो समीकरणों ने क्षेत्र में तरंगों की संभावना और व्यवहार की भविष्यवाणी की थी। इन सिद्धांती तरंगों की गति का विश्लेषण करते हुए, मैक्सवेल ने यह जान लिया कि वे प्रकाश की ज्ञात गति के निकटी गति पर चलते हैं। इस अद्भुत संयोग में मैक्सवेल को यह निष्कर्ष निकालने पर मजबूर किया कि प्रकाश स्वयं एक प्रकार की विद्युतचुंबकीय तरंग है। मैक्सवेल के सिद्धांतों ने विद्युतचुंबकीय तरंगों की एक अनंत श्रेणी की संभावना की पूर्वभासित की, जो सभी प्रकाश की गति पर चलती हैं। यह पूरे विद्युतचुंबकीय विस्तार के अस्तित्व के पहले संकेत था।

मैक्सवेल के सिद्धांतों के अनुसार पूर्वाभासित तरंगों में इंफ्रारेड की समानता में बहुत कम आवृत्तियों वाली तरंगें सम्मलित थीं, जो सिद्धांत के अनुसार साधारण विद्युतीय सर्किट के विलंबित आवर्तीयों द्वारा उत्पन्न हो सकती थीं। मैक्सवेल के सिद्धांतों को सिद्ध करने और ऐसे बहुत कम आवृत्ति विद्युतचुंबकीय विकिरण की पहचान करने का प्रयास करते हुए, 1886 में भौतिकशास्त्री हाइनरिच हर्ट्ज ने एक यंत्र बनाया जिससे वे वर्तमान में "रेडियो तरंग" कहलाने वाली तरंगों को उत्पन्न करने और पहचानने कर सकें। हर्ट्ज ने ये तरंग पाए और उनकी आवृत्ति का माप करके और उसे उनकी आवृत्ति से गुणा करके (गुणा करके उसे उनकी आवृत्ति से गुणा करके) इसे सिद्ध किया कि वे प्रकाश की गति पर चलती हैं।हर्ट्ज ने यह भी सिद्ध किया कि नयी विकिरण को विभिन्न अधिकारी द्रव्यों द्वारा प्रतिबिंबित और विकर्णित किया जा सकता है, उसी प्रकार जैसे प्रकाश। उदाहरण के लिए, हर्ट्ज ने पेड़ के रेजिन के लेंस का उपयोग करके इन तरंगों को समाधानित किया। एक बाद में प्रयोग में, हर्ट्ज ने समान रूप से माइक्रोवेव्स को उत्पन्न किया और उनकी गुणधर्मों को मापा। इन नए प्रकार की तरंगों ने वायरलेस टेलीग्राफ और रेडियो जैसे आविष्कारों के लिए मार्ग प्रशस्त किया।

1895 में, विल्हेल्म रेंटजेन ने एक ऊचा वोल्टेज प्रभावित खाली ट्यूब के साथ एक प्रयोग के समय एक नई प्रकार की विकिरण को पहचाना। उन्होंने इसे "एक्स-रे" कहा और पाया कि वे मानव शरीर के भागों से गुजर सकती हैं, किन्तु हड्डियों जैसे अधिक घन पदार्थ द्वारा प्रतिबिंबित या रोकी जा सकती हैं। जल्द ही, इस रेडियोग्राफी के लिए कई उपयोग पाए गए थे।

विद्युतचुंबकीय विस्तार के अंतिम की जगह गैमा किरणों की खोज से भरी गई। 1900 में, पॉल विलार्ड रेडियम की किरणीय प्रक्षेपणों का अध्ययन कर रहे थे जब उन्होंने एक नई प्रकार की विकिरण की पहचान की जो पहले में उन्हें पताकर लगी कि इसमें ज्ञात एल्फा और बीटा कणों के समान कण होते हैं, किन्तु इन तक प्रवेशन क्षमता के साथ इन दोनों से बहुत अधिक प्रभावी होते हैं। चूंकि, 1910 में, ब्रिटिश भौतिक विज्ञानी विलियम हेनरी ब्रैग ने सिद्ध किया कि गैमा किरणें तरंगीय विकिरण हैं, न कि कण हैं, और 1914 में, अर्नेस्ट रदरफर्ड (जिन्होंने उन्हें 1903 में गैमा किरणें नामित किया जब उन्होंने यह जान लिया कि वे चार्जयुक्त एल्फा और बीटा कणों से मूलत: अलग हैं) और एडवर्ड आंद्रेड ने उनकी आवृत्तियों को मापा और पाया कि गैमा किरणें एक्स-रे के समान होती हैं, किन्तु उनसे छोटी आवृत्तियाँ होती हैं।

1901 में मैक्स प्लांक द्वारा प्रकाश केवल विशिष्ट "क्वांटा", जिन्हें अब फोटन कहा जाता है, में ही अवशोषित होता है, जिससे स्पष्ट हो गया कि प्रकाश में कण का स्वभाव होता है। इस विचार को अल्बर्ट आइंस्टीन ने 1905 में स्पष्ट किया, किन्तु प्लांक और कई अन्य समकालीन वैज्ञानिकों ने इसे स्वीकार नहीं किया। विज्ञान का आधुनिक स्थान यह है कि वैद्युतचुंबकीय विकिरण के एक साथ तरंग और कण का स्वभाव होता है, अर्थात तरंग-कण द्वैध्य। इस स्थिति से उत्पन्न विरोधाभासों पर वैज्ञानिकों और दर्शनिकों के बीच अब भी विचार-विमर्श जारी हैं।

रेंज

विद्युतचुंबकीय तरंगे सामान्यतः तीन भौतिक गुणों द्वारा वर्णित की जाती हैं: आवृत्ति f, तरंगदैर्घ्य λ, या फोटन ऊर्जा E। खगोलविज्ञान में पाए जाने वाले आवृत्तियां 2.4×1023 हर्ट्ज (1 गीवी गैमा किरण) से आरम्भ होती हैं और आईनाइज्ड अंतरगलक तत्व के स्थानीय प्लाज्मा आवृत्ति (~1 किलोहर्ट्ज) तक पहुंचती हैं,[5] तरंगदैर्घ्य तरंग आवृत्ति के प्रतिक के रूप में होता है, इसलिए गैमा किरण के बहुत छोटे तरंगदैर्घ्य होते हैं जो परमाणु के आयाम के भाग होते हैं, चूँकि वर्णक्रम के विपरीत छोर पर तरंगदैर्घ्य अनंत लंबा हो सकता है। फोटन ऊर्जा तरंग आवृत्ति के प्रत्युत अनुपात में सीधी रूप से होती है, इसलिए गैमा किरण फोटनों की सबसे अधिक ऊर्जा होती है (अधिकतर एक अरब इलेक्ट्रॉन वोल्ट), चूँकि रेडियो किरण फोटनों की बहुत कम ऊर्जा होती है (अधिकतर एक फेम्टोइलेक्ट्रॉन वोल्ट)। इन संबंधों को निम्नलिखित समीकरणों द्वारा दर्शाया गया है:

यहाँ:

  • c = 299792458 m/s निर्वात में प्रकाश की गति है
  • h = 6.62607015×10−34 J·s = 4.13566733(10)×10−15 eV·s इलेक्ट्रॉन वोल्ट-सेकंड है, जो प्लांक संदूल है।[8]

जब विद्युतचुंबकीय तरंगे किसी पदार्थ के साथ माध्यम में यात्रा करती हैं, तो उनका तरंगदैर्घ्य कम हो जाता है। विद्युतचुंबकीय विकिरण के तरंगदैर्घ्य, चाहे वे किसी भी माध्यम में यात्रा कर रहे हों, सामान्यतः वैक्यूम तरंगदैर्घ्य के आधार पर दिए जाते हैं, चूंकि यह सदैव स्पष्ट रूप से उल्लिखित नहीं होता है।

सामान्य रूप से, विद्युतचुंबकीय विकिरण को तरंगदैर्घ्य के आधार पर वर्गीकृत किया जाता है जिसमें रेडियो किरण, माइक्रोवेव, इन्फ्रारेड, प्रतीक्षामान बत्ती, अल्ट्रावायलेट, एक्स-रे और गैमा रे सम्मिलित होती हैं। विद्युतचुंबकीय विकिरण का व्यवहार इसके तरंगदैर्घ्य पर निर्भर करता है। जब विद्युतचुंबकीय विकिरण एकल परमाणु और अणुओं के साथ संवेदनशीलता करती है, तो उसका व्यवहार उस प्रति के क्वांटम (फोटन) के ऊर्जा की मात्रा पर भी निर्भर करता है।

स्पेक्ट्रोस्कोपी एक ऐसी विधि है जो वैक्यूम में 400 नैनोमीटर से 700 नैनोमीटर के सीने में दिखाई देने वाली प्रकाशमान तरंगदैर्घ्य श्रेणी से अधिक व्याप्ति के विद्युतचुंबकीय विकिरण का पता लगा सकती है। एक साधारण प्रयोगशाला में उपयोग होने वाला स्पेक्ट्रोस्कोप 2 नैनोमीटर से 2500 नैनोमीटर तक के तरंगदैर्घ्य को पकड़ सकता है।[citation needed] इस प्रकार के उपकरण से वस्तुओं, गैसों या यहाँ तक कि तारों के भौतिक गुणों के बारे में विस्तृत जानकारी प्राप्त की जा सकती है। स्पेक्ट्रोस्कोप खगोलविज्ञान में व्यापक रूप से प्रयोग होता है। उदाहरण के लिए, कई हाइड्रोजन परमाणु एक रेडियो किरण फोटन उत्पन्न करते हैं जिसका तरंगदैर्घ्य 21.12 सेमी होता है। इसके अतिरिक्त, कुछ तारामंडलीय नेबुला के अध्ययन में 30 हर्ट्ज और इससे नीचे की आवृत्तियां उत्पन्न की जा सकती हैं[9] और 2.9×1027 हर्ट्ज तक की आवृत्तियां खगोलवैज्ञानिक स्रोतों से पहचानी गई हैं।[10]


क्षेत्र

विद्युतचुंबकीय स्पंद (विद्युतीय तत्वक्रम)।
विद्युतचुंबकीय स्पंद का एक आरेख, जिसमें विभिन्न गुणधर्मों का प्रदर्शन फ्रीक्वेंसी और तरंगदैर्घ्य के सार्वभौमिक संदर्भ में दिखाया गया है।

विद्युतचुंबकीय विकिरण के प्रकार व्यापक रूप से निम्नलिखित वर्गों (क्षेत्र, बैंड या प्रकार) में वर्गीकृत किए जाते हैं:[5]

  1. गामा विकिरण
  2. एक्स-रे विकिरण
  3. पराबैंगनी विकिरण
  4. दृश्य प्रकाश
  5. अवरक्त विकिरण
  6. माइक्रोवेव विकिरण
  7. रेडियो तरंगें

यह वर्गीकरण तरंगदैर्घ्य के बढ़ते क्रम के साथ होता है, जो विकिरण के प्रकार की विशेषता है।[5]

विद्युतचुंबकीय वर्णक्रम के बैंड के बीच कोई त्रुटिहीन परिभाषित सीमाएं नहीं हैं; बल्कि वे एक दूसरे में फीके पड़ जाते हैं जैसे इंद्रधनुष में बैंड (जो दृश्य प्रकाश का उप-वर्णक्रम है)। प्रत्येक आवृत्ति और तरंग दैर्ध्य (या प्रत्येक बैंड में) के विकिरण में वर्णक्रम के दो क्षेत्रों के गुणों का मिश्रण होता है जो इसे बाध्य करते हैं। उदाहरण के लिए, लाल प्रकाश इन्फ्रारेड विकिरण जैसा दिखता है जिसमें यह कुछ रासायनिक बंधनों को उत्तेजित और ऊर्जा जोड़ सकता है और वास्तव में प्रकाश संश्लेषण और दृश्य प्रणाली के कामकाज के लिए जिम्मेदार रासायनिक तंत्र को शक्ति देने के लिए ऐसा करना चाहिए।

एक्स-रे और गामा किरणों के बीच का अंतर आंशिक रूप से स्रोतों पर आधारित होता है: परमाणु क्षय या अन्य परमाणु और उप-परमाणु/कण प्रक्रिया से उत्पन्न फोटॉन को सदैव गामा किरण कहा जाता है, चूँकि एक्स-रे अत्यधिक ऊर्जावान आंतरिक परमाणु इलेक्ट्रॉनों से जुड़े इलेक्ट्रॉनिक संक्रमणों से उत्पन्न होते हैं। .[11][12][13] सामान्यतः, परमाणु संक्रमण इलेक्ट्रॉनिक संक्रमणों की समानता में बहुत अधिक ऊर्जावान होते हैं, इसलिए गामा किरणें एक्स-रे की समानता में अधिक ऊर्जावान होती हैं, किन्तु अपवाद उपस्थित हैं। इलेक्ट्रॉनिक संक्रमणों के अनुरूप, म्यूओनिक परमाणु संक्रमणों को एक्स-किरणों का उत्पादन करने के लिए भी कहा जाता है, के होने पर भी उनकी ऊर्जा अधिक हो सकती है 6 megaelectronvolts (0.96 pJ),[14] चूँकि कई हैं (77 से कम होने के लिए जाना जाता है 10 keV (1.6 fJ)) कम ऊर्जा वाले परमाणु संक्रमण (उदा., the 7.6 eV (1.22 aJ) थोरियम के समस्थानिकों का परमाणु संक्रमण|थोरियम-229m), और, कुछ म्यूओनिक एक्स-रे की समानता में दस लाख गुना कम ऊर्जावान होने के अतिरिक्त, उत्सर्जित फोटॉनों को उनके परमाणु मूल के कारण अभी भी गामा किरण कहा जाता है।[15]

कायिकी से आने वाले विद्युतचुंबकीय विकिरण को सदैव "गामा रे" विकिरण कहा जाना ही एकमात्र रूढ़िवाद है, चूंकि। कई खगोलीय गामा रे स्रोत (जैसे गामा रे विस्फोट) का ज्ञात है कि वे परमाणुओं के मूल्य से अधिक ऊर्जाशील (उच्चता और तरंगदैर्घ्य दोनों में) हैं, इसलिए नाभिकीय मूल का नहीं हो सकते। अधिकांशतः, उच्च ऊर्जा भौतिकी और चिकित्सा रेडियोथेरेपी में, बहुत उच्च ऊर्जा वाले विद्युतचुंबकीय विकिरण (10 MeV से अधिक क्षेत्र में) — जो किसी भी परमाणुओं के गामा रे से भी अधिक ऊर्जाशील होता है — को "एक्स-रे" या "गामा रे" कहने की अतिरिक्त "उच्च-ऊर्जा फोटोन" के सामान्य शब्द से पुकारा जाता है।

वह क्षेत्र जहां एक विशेष देखी गई विकिरण स्थित होती है, संदर्भ-आधारित होता है (प्रकाश के लिए डॉप्लर शिफ्ट के कारण), इसलिए एक अवलोकन कर्ता के लिए विद्युतचुंबकीय विकिरण जो एक तरंगस्पंद के एक क्षेत्र में होगी, पहले के संबंध में दृश्यमान हो सकती है जो विद्युतीय रफ्तार के समानांतर चल रहे अवलोकन कर्ता के लिए वर्णक्रम के दूसरे में होगी। उदाहरण के लिए, ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि को विचार करें। यह जब पदार्थ और विकिरण अलग हो गए, इयों के नीचे के स्थिति में हाइड्रोजन परमाणुओं के द्वारा उत्पन्न हुआ था।ये फोटन लाइमन श्रृंखला के संक्रमणों से थे, जिससे इन्हें विद्युतचुंबकीय स्पंद के अल्पावरोही (अल्ट्रावायलेट) में रखा जाता है। अब इस विकिरण कोस्मोलॉजिकल लाल स्थिरता के कारण माइक्रोवेव स्पंद के में आ गया है, जो धीमी गति से (प्रकाश की समानता में धीमी रफ्तार से) गति कर रहे अवलोकन कर्ताओं के संबंध में ब्रह्मांड की समानता में हैं।

नामों का औचित्य

विद्युत चुम्बकीय विकिरण वर्णक्रम में विभिन्न तरीकों से पदार्थ के साथ परस्पर क्रिया करता है। इस प्रकार की अंतःक्रियाएं इतनी भिन्न हैं कि वर्णक्रम के विभिन्न भागों में ऐतिहासिक रूप से अलग-अलग नाम लागू किए गए हैं, जैसे कि ये विभिन्न प्रकार के विकिरण थे। इस प्रकार, चूंकि ये विभिन्न प्रकार के विद्युत चुम्बकीय विकिरण आवृत्तियों और तरंग दैर्ध्य के मात्रात्मक रूप से निरंतर वर्णक्रम बनाते हैं, इन गुणात्मक अंतःक्रियात्मक अंतरों से संबंधित व्यावहारिक कारणों से वर्णक्रम विभाजित रहता है।

पदार्थ के साथ विद्युत चुम्बकीय विकिरण की बातचीत
वर्णक्रम का क्षेत्र पदार्थ के साथ मुख्य अन्योन्यक्रियाएँ
रेडियो थोक सामग्री (प्लाज्मा दोलन) में आवेश वाहकों का सामूहिक दोलन। एक उदाहरण ऐन्टेना में इलेक्ट्रॉनों की दोलनशील यात्रा होगी।
दूरअवरक्त के माध्यम से माइक्रोवेव प्लाज्मा दोलन, आणविक रोटेशन
अवरक्त के निकट आणविक कंपन, प्लाज्मा दोलन (केवल धातुओं में)
दृश्यमान आणविक इलेक्ट्रॉन उत्तेजना (मानव रेटिना में पाए जाने वाले वर्णक अणुओं सहित), प्लाज्मा दोलन (केवल धातुओं में)
पराबैंगनी इलेक्ट्रॉनों की अस्वीकृति (फोटोइलेक्ट्रिक प्रभाव) सहित आणविक और परमाणु वैलेंस इलेक्ट्रॉनों का उत्तेजना
एक्स-किरणें कोर एटॉमिक इलेक्ट्रॉनों का एक्साइटमेंट और इजेक्शन,, कॉम्प्टन स्कैटरिंग (कम परमाणु संख्या के लिए)
गामा किरणें भारी तत्वों में कोर इलेक्ट्रॉनों का ऊर्जावान इजेक्शन, कॉम्पटन स्कैटरिंग (सभी परमाणु संख्याओं के लिए), परमाणु नाभिक का उत्तेजना, नाभिक के पृथक्करण सहित
उच्च ऊर्जा गामा किरणें कण-प्रतिपक्ष जोड़े का निर्माण। बहुत उच्च ऊर्जा पर एक एकल फोटॉन पदार्थ के साथ परस्पर क्रिया करने पर उच्च-ऊर्जा कणों और प्रतिकणों की बौछार कर सकता है।

विकिरण के प्रकार

रेडियो तरंगें

रेडियो तरंगें एंटेना द्वारा उत्सर्जित और प्राप्त की जाती हैं, जिसमें धातु की छड़ गुंजयमान यंत्र जैसे कंडक्टर होते हैं। रेडियो तरंगों की कृत्रिम पीढ़ी में, एक इलेक्ट्रॉनिक उपकरण जिसे ट्रांसमीटर कहा जाता है, एक एसी विद्युत प्रवाह उत्पन्न करता है जिसे एंटीना पर लागू किया जाता है। एंटीना में दोलन करने वाले इलेक्ट्रॉन दोलनशील विद्युत और चुंबकीय क्षेत्र उत्पन्न करते हैं जो एंटीना से रेडियो तरंगों के रूप में विकीर्ण होते हैं। रेडियो तरंगों के स्वागत में, एक रेडियो तरंग युगल के दोलन विद्युत और चुंबकीय क्षेत्र एक एंटीना में इलेक्ट्रॉनों के लिए, उन्हें आगे और पीछे धकेलते हैं, एक रेडियो रिसीवर पर लागू दोलन धाराओं का निर्माण करते हैं। आयनमंडल में आवेशित कणों की परतों को छोड़कर पृथ्वी का वातावरण मुख्य रूप से रेडियो तरंगों के लिए पारदर्शी है, जो कुछ आवृत्तियों को प्रतिबिंबित कर सकते हैं।

रेडियो प्रसारण, टेलीविजन, दो तरफा रेडियो, मोबाइल फोन, संचार उपग्रह और वायरलेस नेटवर्किंग जैसी रेडियो संचार प्रणालियों में दूरियों में सूचना प्रसारित करने के लिए रेडियो तरंगों का अत्यधिक व्यापक रूप से उपयोग किया जाता है। एक रेडियो संचार प्रणाली में, एक रेडियो फ्रीक्वेंसी करंट को एक ट्रांसमीटर में एक सूचना-संकेत सिग्नल के साथ या तो आयाम, आवृत्ति या चरण को बदलकर और एक एंटीना पर लागू किया जाता है। रेडियो तरंगें सूचना को पूरे अंतरिक्ष में एक रिसीवर तक ले जाती हैं, जहां उन्हें एक एंटीना द्वारा प्राप्त किया जाता है और रिसीवर में डिमॉड्यूलेशन द्वारा निकाली गई जानकारी। रेडियो तरंगों का उपयोग ग्लोबल पोजिशनिंग सिस्टम (जीपीएस) और नेविगेशनल बीकन जैसी प्रणालियों में नेविगेशन के लिए और रेडियोलोकेशन और रडार में दूर की वस्तुओं का पता लगाने के लिए भी किया जाता है। उनका उपयोग रिमोट कंट्रोल और औद्योगिक ताप के लिए भी किया जाता है।

रेडियो वर्णक्रम के उपयोग को सरकारों द्वारा कड़ाई से विनियमित किया जाता है, अंतर्राष्ट्रीय दूरसंचार संघ (ITU) द्वारा समन्वित किया जाता है जो विभिन्न उपयोगों के लिए विभिन्न उपयोगकर्ताओं को आवृत्तियों का आवंटन करता है।

माइक्रोवेव

विद्युतचुंबकीय विकिरण के विभिन्न तरंगदैर्घ्यों के लिए पृथ्वी की वायुमंडलीय अस्पष्टता का आँकड़ा। यह सतह से अंतरिक्ष तक की अस्पष्टता है, त्रोपोस्फियर के भीतर लॉन्गवेव रेडियो प्रसारण के लिए वायुमंडल स्पष्ट है, किन्तु आयनमंडल के कारण अंतरिक्ष के लिए अस्पष्ट है।
पृथ्वी से पृथ्वी प्रसारण के लिए वायुमंडलीय अस्पष्टता का आँकड़ा, जिसमें कुछ प्रतिध्वनियों के लिए जिम्मेदार मोलेक्यूल दिखाए गए हैं।

माइक्रोवेव सुपर-हाई फ़्रीक्वेंसी और अत्यधिक हाई फ़्रीक्वेंसी बैंड में अधिकतर 10 सेंटीमीटर से लेकर एक मिलीमीटर तक शॉर्ट वेवलेंथ की रेडियो तरंगें हैं। माइक्रोवेव ऊर्जा का उत्पादन क्लिस्ट्रॉन और मैग्नेट्रोन ट्यूबों के साथ, और सॉलिड-स्टेट इलेक्ट्रॉनिक्स उपकरणों जैसे गन डायोड और IMPATT डायोड के साथ किया जाता है। यद्यपि वे छोटे एंटेना द्वारा उत्सर्जित और अवशोषित होते हैं, वे ध्रुवीय अणुओं द्वारा भी अवशोषित होते हैं, कंपन और घूर्णी मोड से जुड़ते हैं, जिसके परिणामस्वरूप थोक ताप होता है। इन्फ्रारेड और प्रकाश जैसी उच्च आवृत्ति तरंगों के विपरीत, जो मुख्य रूप से सतहों पर अवशोषित होती हैं, माइक्रोवेव सामग्री में प्रवेश कर सकते हैं और सतह के नीचे अपनी ऊर्जा जमा कर सकते हैं। इस प्रभाव का उपयोग माइक्रोवेव ओवन में भोजन को गर्म करने के लिए, और औद्योगिक हीटिंग और मेडिकल डायथर्मी के लिए किया जाता है। माइक्रोवेव रडार में उपयोग की जाने वाली मुख्य तरंग दैर्ध्य हैं, और उपग्रह संचार, और वायरलेस नेटवर्किंग तकनीकों जैसे वाई-फाई के लिए उपयोग की जाती हैं। तांबे के केबल (ट्रांसमिशन लाइन) जिनका उपयोग कम आवृत्ति वाली रेडियो तरंगों को एंटेना तक ले जाने के लिए किया जाता है, माइक्रोवेव आवृत्तियों पर अत्यधिक बिजली की हानि होती है, और उन्हें ले जाने के लिए वेवगाइड नामक धातु के पाइप का उपयोग किया जाता है। चूंकि बैंड के निचले सिरे पर वातावरण मुख्य रूप से पारदर्शी होता है, बैंड के ऊपरी छोर पर वायुमंडलीय गैसों द्वारा माइक्रोवेव का अवशोषण व्यावहारिक प्रसार दूरी को कुछ किलोमीटर तक सीमित कर देता है।

टेराहर्ट्ज़ विकिरण या उप-मिलीमीटर विकिरण माइक्रोवेव और दूर अवरक्त के बीच अधिकतर 100 गीगाहर्ट्ज़ से 30 टेराहर्ट्ज़ (THz) के वर्णक्रम का एक क्षेत्र है जिसे किसी भी बैंड से संबंधित माना जा सकता है। कुछ समय पहले तक, रेंज का संभवतः ही कभी अध्ययन किया गया था और तथाकथित टेराहर्ट्ज़ गैप में माइक्रोवेव ऊर्जा के लिए कुछ स्रोत उपस्थित थे, किन्तु इमेजिंग और संचार जैसे अनुप्रयोग अब दिखाई दे रहे हैं। वैज्ञानिक सशस्त्र बलों में टेराहर्ट्ज तकनीक को भी लागू करना चाह रहे हैं, जहां उच्च आवृत्ति तरंगों को दुश्मन सैनिकों पर उनके इलेक्ट्रॉनिक उपकरणों को अक्षम करने के लिए निर्देशित किया जा सकता है।[16] टेराहर्ट्ज़ विकिरण वायुमंडलीय गैसों द्वारा दृढ़ता से अवशोषित होता है, जिससे यह आवृत्ति रेंज लंबी दूरी के संचार के लिए प्रयोगहीन हो जाती है।

इन्फ्रारेड विकिरण

विद्युतचुंबकीय वर्णक्रम का अवरक्त भाग अधिकतर 300 गीगाहर्ट्ज़ से 400 THz (1 मिमी - 750 एनएम) की सीमा को कवर करता है। इसे तीन भागों में विभाजित किया जा सकता है:[5]* दूर-अवरक्त, 300 गीगाहर्ट्ज़ से 30 THz (1 मिमी - 10 माइक्रोन) तक। इस श्रेणी के निचले को माइक्रोवेव या टेराहर्ट्ज तरंगें भी कहा जा सकता है। यह विकिरण सामान्यतः गैस-चरण अणुओं में तथाकथित घूर्णी मोड द्वारा, तरल पदार्थों में आणविक गतियों द्वारा और ठोस में फोनोन द्वारा अवशोषित किया जाता है। पृथ्वी के वायुमंडल में पानी इस श्रेणी में इतनी दृढ़ता से अवशोषित होता है कि यह वातावरण को अपारदर्शी बना देता है। चूंकि, अपारदर्शी सीमा के भीतर कुछ तरंगदैर्ध्य श्रेणियां (खिड़कियां) हैं जो आंशिक संचरण की अनुमति देती हैं, और खगोल विज्ञान के लिए उपयोग की जा सकती हैं। अधिकतर 200 माइक्रोन से लेकर कुछ मिमी तक की तरंग दैर्ध्य रेंज को अधिकांशतः सबमिलिमीटर खगोल विज्ञान के रूप में जाना जाता है, जो 200 माइक्रोन से कम तरंग दैर्ध्य के लिए दूर अवरक्त को आरक्षित करता है।

  • मध्य-अवरक्त, 30 से 120 THz (10-2.5 माइक्रोन) तक। गर्म वस्तुएं (ब्लैक-बॉडी रेडिएटर) इस सीमा में दृढ़ता से विकिरण कर सकती हैं, और सामान्य शरीर के तापमान पर मानव त्वचा इस क्षेत्र के निचले सिरे पर दृढ़ता से विकिरण करती है। यह विकिरण आणविक कंपनों द्वारा अवशोषित होता है, जहां एक अणु में विभिन्न परमाणु अपने संतुलन की स्थिति के आसपास कंपन करते हैं। इस श्रेणी को कभी-कभी 'फिंगरप्रिंट क्षेत्र' कहा जाता है, क्योंकि किसी यौगिक का मध्य-अवरक्त अवशोषण वर्णक्रम उस यौगिक के लिए बहुत विशिष्ट होता है।
  • निकट-अवरक्त, 120 से 400 THz (2,500-750 एनएम) तक। भौतिक प्रक्रियाएं जो इस श्रेणी के लिए प्रासंगिक हैं वे दृश्य प्रकाश के समान हैं। इस क्षेत्र में उच्चतम आवृत्तियों को सीधे कुछ प्रकार की फोटोग्राफिक फिल्म द्वारा और इन्फ्रारेड फोटोग्राफी और वीडियोग्राफी के लिए कई प्रकार के ठोस राज्य छवि सेंसर द्वारा पता लगाया जा सकता है।

दृश्यमान प्रकाश

आवृत्ति में इन्फ्रारेड से ऊपर दृश्य प्रकाश आता है। सूर्य दृश्य क्षेत्र में अपनी चरम शक्ति का उत्सर्जन करता है, चूंकि सभी तरंग दैर्ध्य के माध्यम से संपूर्ण उत्सर्जन शक्ति वर्णक्रम को एकीकृत करने से पता चलता है कि सूर्य दृश्य प्रकाश की समानता में थोड़ा अधिक अवरक्त उत्सर्जित करता है।[17] परिभाषा के अनुसार, दृश्य प्रकाश EM वर्णक्रम का भाग है, जिसके लिए ल्यूमिनोसिटी फ़ंक्शन सबसे संवेदनशील है। दृश्यमान प्रकाश (और निकट-अवरक्त प्रकाश) सामान्यतः अणुओं और परमाणुओं में इलेक्ट्रॉनों द्वारा अवशोषित और उत्सर्जित होता है जो एक ऊर्जा स्तर से दूसरे में जाते हैं। यह क्रिया उन रासायनिक तंत्रों को अनुमति देती है जो मानव दृष्टि और पौधे प्रकाश संश्लेषण के अंतर्गत आते हैं। मानव दृश्य प्रणाली को उत्तेजित करने वाला प्रकाश विद्युत चुम्बकीय वर्णक्रम का एक बहुत छोटा भाग है। एक इंद्रधनुष विद्युत चुम्बकीय वर्णक्रम के ऑप्टिकल (दृश्यमान) भाग को दर्शाता है; इन्फ्रारेड (यदि इसे देखा जा सकता है) इंद्रधनुष के लाल पक्ष के ठीक आगे स्थित होगा, चूँकि पराबैंगनी विपरीत वायलेट छोर से ठीक आगे दिखाई देगा।

380 नैनोमीटर और 760 एनएम (400-790 टेराहर्ट्ज) के बीच तरंगदैर्घ्य वाले विद्युतचुंबकीय विकिरण का मानव आंख द्वारा पता लगाया जाता है और इसे दृश्य प्रकाश के रूप में माना जाता है। अन्य तरंग दैर्ध्य, विशेष रूप से निकट अवरक्त (760 एनएम से अधिक) और पराबैंगनी (380 एनएम से कम) को भी कभी-कभी प्रकाश के रूप में संदर्भित किया जाता है, खासकर जब मनुष्यों के लिए दृश्यता प्रासंगिक नहीं होती है। श्वेत प्रकाश दृश्य वर्णक्रम में विभिन्न तरंग दैर्ध्य की रोशनी का एक संयोजन है। एक प्रिज्म के माध्यम से सफेद प्रकाश को पार करने से यह 400 एनएम और 780 एनएम के बीच दृश्यमान वर्णक्रम में देखे गए प्रकाश के कई रंगों में विभाजित हो जाता है।

यदि ईएम वर्णक्रम के दृश्य क्षेत्र में आवृत्ति वाली विकिरण किसी वस्तु, जैसे, फल के कटोरे से परावर्तित होती है, और फिर आंखों से टकराती है, तो इसका परिणाम दृश्य की दृश्य धारणा में होता है। मस्तिष्क की दृश्य प्रणाली विभिन्न रंगों और रंगों में परावर्तित आवृत्तियों की भीड़ को संसाधित करती है, और इस अपर्याप्त रूप से समझी जाने वाली मनो-शारीरिक घटना के माध्यम से, अधिकांश लोग एक कटोरी फल का अनुभव करते हैं।

अधिकांश तरंग दैर्ध्य पर, चूंकि, विद्युत चुम्बकीय विकिरण द्वारा की गई जानकारी को सीधे मानव इंद्रियों द्वारा नहीं पहचाना जाता है। प्राकृतिक स्रोत पूरे वर्णक्रम में ईएम विकिरण उत्पन्न करते हैं, और प्रौद्योगिकी तरंग दैर्ध्य की एक विस्तृत श्रृंखला में भी हेरफेर कर सकती है। ऑप्टिकल फाइबर प्रकाश को प्रसारित करता है, चूंकि आवश्यक नहीं कि वर्णक्रम के दृश्य भाग में (यह सामान्यतः अवरक्त होता है), जानकारी ले सकता है। मॉडुलन रेडियो तरंगों के साथ प्रयोग के समान है।

पराबैंगनी विकिरण

पृथ्वी के ओजोन के साथ ऊचाई के संबंध में UV के प्रवेश की मात्रा।

आवृत्ति में अगला पराबैंगनी (यूवी) आता है। यूवी किरणों की तरंग दैर्ध्य दृश्यमान वर्णक्रम के बैंगनी सिरे से छोटी होती है किन्तु एक्स-रे से लंबी होती है।

यूवी सबसे लंबी तरंग दैर्ध्य विकिरण है जिसके फोटॉन आयनीकरण परमाणुओं के लिए पर्याप्त ऊर्जावान हैं, उनसे इलेक्ट्रॉनों को अलग करते हैं, और इस प्रकार रासायनिक प्रतिक्रियाएं उत्पन्न करते हैं। लघु तरंग दैर्ध्य यूवी और इसके ऊपर कम तरंग दैर्ध्य विकिरण (एक्स-रे और गामा किरण) को आयनकारी विकिरण कहा जाता है, और उनके संपर्क में रहने वाले ऊतकों को हानि पहुंचा सकता है, जिससे उन्हें स्वास्थ्य के लिए खतरा हो सकता है। यूवी भी कई पदार्थों को दृश्य प्रकाश के साथ चमकने का कारण बन सकता है; इसे प्रतिदीप्ति कहते हैं।

यूवी की मध्य सीमा पर, यूवी किरणें आयनित नहीं हो सकती हैं, किन्तु रासायनिक बंधनों को तोड़ सकती हैं, जिससे अणु असामान्य रूप से प्रतिक्रियाशील हो जाते हैं। उदाहरण के लिए, सनबर्न मानव त्वचा कोशिका (जीव विज्ञान) पर मध्यम श्रेणी के यूवी विकिरण के विघटनकारी प्रभावों के कारण होता है, जो त्वचा कैंसर का मुख्य कारण है। मध्यम श्रेणी में यूवी किरणें थाइमिन डिमर बनाने वाली कोशिकाओं में जटिल डीएनए अणुओं को अपूरणीय रूप से हानि पहुंचा सकती हैं, जिससे यह एक बहुत ही शक्तिशाली उत्परिवर्तजन बन जाता है।

सूर्य महत्वपूर्ण यूवी विकिरण (अपनी कुल शक्ति का अधिकतर 10%) उत्सर्जित करता है, जिसमें अत्यंत कम तरंग दैर्ध्य यूवी सम्मलित है जो संभावित रूप से भूमि पर अधिकांश जीवन को नष्ट कर सकता है (समुद्र का पानी वहां जीवन के लिए कुछ सुरक्षा प्रदान करेगा)। चूंकि, सूर्य की अधिकांश हानिकारक यूवी तरंग दैर्ध्य सतह पर पहुंचने से पहले वायुमंडल द्वारा अवशोषित कर ली जाती हैं। यूवी की उच्च ऊर्जा (सबसे छोटी तरंग दैर्ध्य) रेंज (जिसे वैक्यूम यूवी कहा जाता है) नाइट्रोजन द्वारा और लंबी तरंग दैर्ध्य पर, हवा में साधारण डायटोमिक ऑक्सीजन द्वारा अवशोषित की जाती है। ऊर्जा की मध्य-श्रेणी में अधिकांश यूवी ओजोन परत द्वारा अवरुद्ध होती है, जो महत्वपूर्ण 200–315 एनएम रेंज में दृढ़ता से अवशोषित होती है, जिसका निचला ऊर्जा भाग हवा में सामान्य डाइअॉॉक्सिन को अवशोषित करने के लिए बहुत लंबा होता है। यह यूवी में समुद्र के स्तर पर 3% से कम सूरज की रोशनी छोड़ता है, यह सब कम ऊर्जा पर शेष रहता है। शेष यूवी-ए है, कुछ यूवी-बी के साथ। 315 एनएम और दृश्य प्रकाश (यूवी-ए कहा जाता है) के बीच यूवी की सबसे कम ऊर्जा सीमा वातावरण द्वारा अच्छी प्रकार से अवरुद्ध नहीं होती है, किन्तु सनबर्न का कारण नहीं बनती है और कम जैविक क्षति होती है। चूंकि, यह हानिरहित नहीं है और ऑक्सीजन रेडिकल्स, म्यूटेशन और त्वचा को हानि पहुंचाता है।

एक्स-रे

यूवी के बाद एक्स-रे आते हैं, जो यूवी के ऊपरी सीमाओं की प्रकार आयनीकरण करते हैं। चूंकि, उनकी ऊर्जा अधिक होने के कारण, एक्स-रे संक्रमण प्रभाव के माध्यम से भी पदार्थ के साथ परस्पराक्रमण कर सकते हैं। हार्ड एक्स-रे सॉफ्ट एक्स-रे से छोटी तरंगदैर्घ्य रखते हैं और क्योंकि वे कम अवशोषण के साथ कई पदार्थों से गुजर सकते हैं, इसलिए वे कम वस्तुओं के 'मोटाई' से कम वस्तुओं को 'देखने' के लिए उपयोग किए जा सकते हैं, जो कुछ मीटर पानी के समान होता है। एक महत्वपूर्ण उपयोग उपचार में चिकित्सा में एक्स-रे छवि लेना है (रेडियोग्राफी के रूप में जाना जाता है)। एक्स-रे ऊर्जा के रूप में प्रोब्स के रूप में उच्च-ऊर्जा भौतिकी में उपयोगी होते हैं। खगोलज्ञान में, न्यूट्रॉन स्टार्स और ब्लैक होल के चक्रणी ताराएँ एक्स-रे उत्पन्न करती हैं, जो इन घटनाओं का अध्ययन करने को संभव बनाते हैं। तारामंडल में तारा कोरोना द्वारा एक्स-रे उत्पन्न होते हैं और कुछ प्रकार के नेब्यूला द्वारा मजबूत एक्स-रे उत्पन्न होते हैं। चूंकि, खगोलीय एक्स-रे देखने के लिए एक्स-रे दूरबीन को पृथ्वी के बाहर स्थापित किया जाना चाहिए, क्योंकि पृथ्वी की वायुमंडल की गहराई एक्स-रे के प्रति अस्पष्ट होती है (जो 1000 ग्राम/सेमी2 के एरियल घनत्व के समान है), जो पानी की 10 मीटर मोटाई के समकक्ष होता है।[18] यह एक ऐसी मात्रा है जो अधिकतर सभी खगोलीय एक्स-रे (और खगोलीय गैमा रे—नीचे देखें) को रोकने के लिए पर्याप्त है।

गामा किरणें

हार्ड एक्स-रे के बाद गैमा विकिरण आते हैं, जिन्हें 1900 में पॉल उल्रिक विलार्ड ने खोजा था। ये सबसे ऊर्जावान फोटन होते हैं, जिनकी तरंगदैर्घ्य का कोई परिभाषित निम्न सीमा नहीं होती है। खगोल विज्ञान में इनका महत्व है हाई-ऊर्जा वस्तुओं या क्षेत्रों का अध्ययन करने के लिए, चूंकि इसे केवल पृथ्वी की वायुमंडल के बाहर टेलीस्कोपों के साथ ही किया जा सकता है। गैमा विकिरण को भौतिक वैज्ञानिकों द्वारा उनकी पेनेट्रेशन क्षमता के लिए प्रयोगात्मक रूप से उपयोग किया जाता है और कई रेडियोआयसोटोप्स द्वारा उत्पन्न किया जाता है। यह खाद्य और बीजों के स्टेरिलाइजेशन के लिए किया जाता है, और चिकित्सा में यह कभी-कभी रेडिएशन के माध्यम से कैंसर उपचार में उपयोग किया जाता है।[19] सामान्यतः, गामा किरणों का उपयोग परमाणु चिकित्सा में नैदानिक ​​इमेजिंग के लिए किया जाता है, एक उदाहरण पॉज़िट्रॉन एमिशन टोमोग्राफी है। कॉम्पटन प्रकीर्णन के प्रभाव के माध्यम से गामा किरणों की तरंग दैर्ध्य को उच्च समान के साथ मापा जा सकता है।

यह भी देखें

नोट्स और संदर्भ

  1. What is Light? Archived December 5, 2013, at the Wayback MachineUC Davis lecture slides
  2. Elert, Glenn. "The Electromagnetic Spectrum". The Physics Hypertextbook. Retrieved 2022-01-21.
  3. Stimac, Tomislav. "Definition of frequency bands (VLF, ELF... etc.)". vlf.it. Retrieved 2022-01-21.
  4. Bakshi, U. A.; Godse, A. P. (2009). Basic Electronics Engineering. Technical Publications. pp. 8–10. ISBN 978-81-8431-580-6.
  5. 5.0 5.1 5.2 5.3 5.4 Mehta, Akul (25 August 2011). "Introduction to the Electromagnetic Spectrum and Spectroscopy". Pharmaxchange.info. Retrieved 2011-11-08.
  6. "Herschel Discovers Infrared Light". Cool Cosmos Classroom activities. Archived from the original on 2012-02-25. Retrieved 4 March 2013. He directed sunlight through a glass prism to create a spectrum […] and then measured the temperature of each colour. […] He found that the temperatures of the colours increased from the violet to the red part of the spectrum. […] Herschel decided to measure the temperature just beyond the red of the spectrum in a region where no sunlight was visible. To his surprise, he found that this region had the highest temperature of all.
  7. Davidson, Michael W. "Johann Wilhelm Ritter (1776–1810)". The Florida State University. Retrieved 5 March 2013. Ritter […] hypothesized that there must also be invisible radiation beyond the violet end of the spectrum and commenced experiments to confirm his speculation. He began working with silver chloride, a substance decomposed by light, measuring the speed at which different colours of light broke it down. […] Ritter […] demonstrated that the fastest rate of decomposition occurred with radiation that could not be seen, but that existed in a region beyond the violet. Ritter initially referred to the new type of radiation as chemical rays, but the title of ultraviolet radiation eventually became the preferred term.
  8. Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (PDF). Reviews of Modern Physics. 80 (2): 633–730. arXiv:0801.0028. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633. Archived from the original (PDF) on 2017-10-01. Direct link to value.
  9. Condon, J. J.; Ransom, S. M. "Essential Radio Astronomy: Pulsar Properties". National Radio Astronomy Observatory. Archived from the original on 2011-05-04. Retrieved 2008-01-05.
  10. Abdo, A. A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D. G.; Delay, R. S.; Dingus, B. L.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Gebauer, I.; Gonzalez, M. M.; Goodman, J. A.; Hays, E.; Hoffman, C. M.; Kolterman, B. E.; Kelley, L. A.; Lansdell, C. P.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Moskalenko, I. V.; Nemethy, P.; Noyes, D.; Ryan, J. M.; Samuelson, F. W.; Saz Parkinson, P. M.; et al. (2007). "Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy". The Astrophysical Journal. 658 (1): L33–L36. arXiv:astro-ph/0611691. Bibcode:2007ApJ...658L..33A. doi:10.1086/513696. S2CID 17886934.
  11. Feynman, Richard; Leighton, Robert; Sands, Matthew (1963). The Feynman Lectures on Physics, Vol.1. USA: Addison-Wesley. pp. 2–5. ISBN 978-0-201-02116-5.
  12. L'Annunziata, Michael; Baradei, Mohammad (2003). Handbook of Radioactivity Analysis. Academic Press. p. 58. ISBN 978-0-12-436603-9.
  13. Grupen, Claus; Cowan, G.; Eidelman, S. D.; Stroh, T. (2005). Astroparticle Physics. Springer. p. 109. ISBN 978-3-540-25312-9.
  14. Corrections to muonic X-rays and a possible proton halo slac-pub-0335 (1967)
  15. "Gamma-Rays". Hyperphysics.phy-astr.gsu.edu. Retrieved 2010-10-16.
  16. "Advanced weapon systems using lethal Short-pulse terahertz radiation from high-intensity-laser-produced plasmas". India Daily. March 6, 2005. Archived from the original on 6 January 2010. Retrieved 2010-09-27.
  17. "Reference Solar Spectral Irradiance: Air Mass 1.5". Retrieved 2009-11-12.
  18. Koontz, Steve (26 June 2012) Designing Spacecraft and Mission Operations Plans to Meet Flight Crew Radiation Dose. NASA/MIT Workshop. See pages I-7 (atmosphere) and I-23 (for water).
  19. Uses of Electromagnetic Waves | gcse-revision, physics, waves, uses-electromagnetic-waves | Revision World

बाहरी संबंध