उत्प्रेरक सुधार: Difference between revisions
No edit summary |
|||
(19 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Chemical process used in oil refining}} | {{Short description|Chemical process used in oil refining}} | ||
<!-- Deleted image removed: [[File:Catalytic Reformer Unit.jpg|thumb|right|250px|A catalytic reformer unit in a petroleum refinery. © BP p.l.c]] --> | <!-- Deleted image removed: [[File:Catalytic Reformer Unit.jpg|thumb|right|250px|A catalytic reformer unit in a petroleum refinery. © BP p.l.c]] --> | ||
उत्प्रेरक सुधार एक रासायनिक प्रक्रिया है जिसका उपयोग कच्चे तेल (सामान्यतः कम [[ ओकटाइन रेटिंग ]] वाले) से | उत्प्रेरक सुधार एक रासायनिक प्रक्रिया है जिसका उपयोग कच्चे तेल (सामान्यतः कम [[ ओकटाइन रेटिंग ]] वाले) से आसुत [[ पेट्रोल |पेट्रोलियम]] को शोधशाला में [[Index.php?title=पेट्रोलियम नेफ्थास|पेट्रोलियम नेफ्थास]] उच्च-ऑक्टेन तरल उत्पादों में परिवर्तित करने के लिए किया जाता है, जिन्हें सुधारक कहा जाता है, जो उच्च-ऑक्टेन गैसोलीन के लिए प्रीमियम सम्मिश्रण स्टॉक हैं। यह प्रक्रिया निम्न-ऑक्टेन रैखिक [[ हाइड्रोकार्बन ]] को [[ शाखित अल्केन | शाखित अल्केन्स]] और चक्रीय [[ नेफ्थीन ]] में परिवर्तित करती है, तब उच्च-ऑक्टेन [[ सुगंधित हाइड्रोकार्बन ]] का उत्पादन करने के लिए आंशिक रूप से [[ निर्जलित ]] होते हैं। [[ हाइड्रोजन |डिहाइड्रोजनीकरण]] भी महत्वपूर्ण मात्रा में उपोत्पाद [[ हाइड्रोजन गैस ]] का उत्पादन करता है, जिसे हाइड्रोकार्बन जैसी अन्य शोधशाला में प्रक्रियाओं में लाया जाता है। एक पक्ष प्रतिक्रिया [[ हाइड्रोजनोलिसिस ]] है, जो कम मूल्य के हल्के हाइड्रोकार्बन, जैसे [[ मीथेन ]], [[ एटैन ]], प्रोपेन और [[ ब्यूटेनस ]] का उत्पादन करती है। | ||
गैसोलीन सम्मिश्रण स्टॉक के अतिरिक्त, | गैसोलीन सम्मिश्रण स्टॉक के अतिरिक्त, सुधारक सुगंधित थोक रसायनों का मुख्य स्रोत है, जैसे [[ बेंजीन ]], टोल्यूनि, ज़ाइलीन और एथिलबेनज़ीन | जिनके विविध उपयोग सबसे महत्वपूर्ण रूप से प्लास्टिक में रूपांतरण के लिए कच्चे माल के रूप में हैं । चूँकि , सुधारक की बेंजीन सामग्री इसे [[ कासीनजन ]] बनाती है, जिसके कारण सरकारी नियमों को प्रभावी ढंग से इसकी बेंजीन सामग्री को कम करने के लिए आगे की प्रक्रिया की आवश्यकता होती है। | ||
यह प्रक्रिया [[ प्राकृतिक गैस ]], नेफ्था या अन्य पेट्रोलियम-व्युत्पन्न फीडस्टॉक्स से हाइड्रोजन, [[ अमोनिया ]] और [[ मेथनॉल ]] जैसे उत्पादों का उत्पादन करने के लिए औद्योगिक रूप से उपयोग की जाने वाली उत्प्रेरक भाप सुधार प्रक्रिया से | यह प्रक्रिया [[ प्राकृतिक गैस ]], नेफ्था या अन्य पेट्रोलियम-व्युत्पन्न फीडस्टॉक्स से हाइड्रोजन, [[ अमोनिया ]] और [[ मेथनॉल ]] जैसे उत्पादों का उत्पादन करने के लिए औद्योगिक रूप से उपयोग की जाने वाली उत्प्रेरक भाप सुधार प्रक्रिया से अधिक भिन्न है और इसलिए भ्रमित नहीं होना चाहिए, न ही इस प्रक्रिया को विभिन्न अन्य उत्प्रेरक सुधार प्रक्रियाओं के साथ भ्रमित किया जाना है जो ईंधन कोशिकाओं या अन्य उपयोगों के लिए हाइड्रोजन का उत्पादन करने के लिए मेथनॉल या [[ बायोमास |बायोमास]]-व्युत्पन्न फीडस्टॉक्स का उपयोग करते हैं। | ||
ये दो मुख्य वर्ग हैं जिनमें सुधार प्रक्रियाओं के लिए उपयोग किए जाने वाले उत्प्रेरक आते हैं। | ये दो मुख्य वर्ग हैं जिनमें सुधार प्रक्रियाओं के लिए उपयोग किए जाने वाले उत्प्रेरक आते हैं। | ||
Line 14: | Line 14: | ||
# | # | ||
विभिन्न प्रक्रियाओं का उपयोग करने वाले सिनगैस के संश्लेषण के लिए | विभिन्न प्रक्रियाओं का उपयोग करने वाले सिनगैस के संश्लेषण के लिए सबसे अच्छा [[ उत्प्रेरक रंगमंच | उत्प्रेरक]] कई शोधों का विषय रहा है। रोडियम,<ref>{{Cite journal |last1=Horn |first1=R |last2=Williams |first2=K |last3=Degenstein |first3=N |last4=Schmidt |first4=L |date=2006-08-15 |title=रोडियम पर मीथेन के उत्प्रेरक आंशिक ऑक्सीकरण द्वारा सिनगैस: स्थानिक रूप से हल किए गए माप और संख्यात्मक सिमुलेशन से यांत्रिक निष्कर्ष|url=https://linkinghub.elsevier.com/retrieve/pii/S002195170600176X |journal=Journal of Catalysis |language=en |volume=242 |issue=1 |pages=92–102 |doi=10.1016/j.jcat.2006.05.008}}</ref><ref>{{Cite journal |last1=Salazar-Villalpando |first1=Maria D. |last2=Miller |first2=Adam C. |date=March 2011 |title=मीथेन और आइसोटोपिक ऑक्सीजन विनिमय प्रतिक्रियाओं का उत्प्रेरक आंशिक ऑक्सीकरण 18O से अधिक लेबल Rh/Gadolinium doped ceria|url=https://linkinghub.elsevier.com/retrieve/pii/S036031991002255X |journal=International Journal of Hydrogen Energy |language=en |volume=36 |issue=6 |pages=3880–3885 |doi=10.1016/j.ijhydene.2010.11.040}}</ref> रूथेनियम,<ref>{{Cite journal |last1=Ishihara |first1=A |last2=Qian |first2=E |last3=Finahari |first3=I |last4=Sutrisna |first4=I |last5=Kabe |first5=T |date=2005-04-27 |title=निकल भाप सुधार उत्प्रेरक पर रूथेनियम का अतिरिक्त प्रभाव|url=https://linkinghub.elsevier.com/retrieve/pii/S0016236105000852 |journal=Fuel |language=en |pages=S0016236105000852 |doi=10.1016/j.fuel.2005.03.006}}</ref><ref>{{Cite journal |last=Shamsi |first=Abolghasem |date=January 2009 |title=मीथेन का आंशिक ऑक्सीकरण और उत्प्रेरक गतिविधि और चयनात्मकता पर सल्फर का प्रभाव|url=https://linkinghub.elsevier.com/retrieve/pii/S0920586108001430 |journal=Catalysis Today |language=en |volume=139 |issue=4 |pages=268–273 |doi=10.1016/j.cattod.2008.03.033}}</ref> और [[ प्लैटिनम ]],<ref>{{Cite journal |last1=Souza |first1=Mariana M.V.M. |last2=Macedo Neto |first2=Octávio R. |last3=Schmal |first3=Martin |date=March 2006 |title=समर्थित पीटी उत्प्रेरकों पर प्राकृतिक गैस से संश्लेषण गैस उत्पादन|url=https://linkinghub.elsevier.com/retrieve/pii/S1003995306600030 |journal=Journal of Natural Gas Chemistry |language=en |volume=15 |issue=1 |pages=21–27 |doi=10.1016/S1003-9953(06)60003-0}}</ref><ref>{{Cite journal |last1=Salazar-Villalpando |first1=Maria D. |last2=Miller |first2=Adam C. |date=January 2011 |title=मिथेन अपघटन द्वारा हाइड्रोजन उत्पादन और पीटी/CexGd1−xO2 और Pt/CexZr1−xO2 पर मीथेन के उत्प्रेरक आंशिक ऑक्सीकरण|url=https://linkinghub.elsevier.com/retrieve/pii/S1385894710011721 |journal=Chemical Engineering Journal |language=en |volume=166 |issue=2 |pages=738–743 |doi=10.1016/j.cej.2010.11.076}}</ref> साथ ही [[ दुर्ग ]]<ref>{{Cite journal |last1=Ryu |first1=J |last2=Lee |first2=K |last3=Kim |first3=H |last4=Yang |first4=J |last5=Jung |first5=H |date=2008-05-08 |title=मीथेन से सिनगैस में आंशिक ऑक्सीकरण के लिए धातु मोनोलिथ पर पैलेडियम-आधारित उत्प्रेरक का प्रचार|url=https://linkinghub.elsevier.com/retrieve/pii/S0926337307003335 |journal=Applied Catalysis B: Environmental |language=en |volume=80 |issue=3–4 |pages=306–312 |doi=10.1016/j.apcatb.2007.10.010}}</ref> और [[ इरिडियम ]]<ref>{{Cite journal |last1=Richardson |first1=J.T. |last2=Paripatyadar |first2=S.A. |date=May 1990 |title=समर्थित रोडियम के साथ मीथेन का कार्बन डाइऑक्साइड सुधार|url=https://linkinghub.elsevier.com/retrieve/pii/S0166983400821521 |journal=Applied Catalysis |language=en |volume=61 |issue=1 |pages=293–309 |doi=10.1016/S0166-9834(00)82152-1}}</ref> उत्प्रेरक, सभी [[ हाइड्रोजन उत्पादन ]], उत्प्रेरक थर्मल अपघटन, और शुष्क सुधार उत्प्रेरक पर गहन अध्ययन का विषय रहा हैं।<ref>{{Cite journal |last=Barbero |first=J. |date=2003 |title=[कोई शीर्षक नहीं मिला]|url=http://link.springer.com/10.1023/A:1023407609626 |journal=Catalysis Letters |volume=87 |issue=3/4 |pages=211–218 |doi=10.1023/A:1023407609626|s2cid=91889442 }}</ref> नोबल धातु-आधारित उत्प्रेरक बहुत अधिक प्रभावी होते हैं और कार्बन उत्पादन या ऑक्सीकरण द्वारा निष्क्रिय होने के लिए अधिकांश कम संवेदनशील होते हैं, लेकिन क्योंकि वे अधिक मितव्ययी होते हैं (कुल धातुओं की तुलना में 100-150 गुना कम लागत), वे कम बार-बार उपयोग किए जाते हैं<ref>{{Cite journal |last1=Zeppieri |first1=M. |last2=Villa |first2=P.L. |last3=Verdone |first3=N. |last4=Scarsella |first4=M. |last5=De Filippis |first5=P. |date=2010-10-20 |title=निकेल- और रोडियम-आधारित उत्प्रेरकों पर मीथेन भाप सुधार प्रतिक्रिया का काइनेटिक|url=http://dx.doi.org/10.1016/j.apcata.2010.08.017 |journal=Applied Catalysis A: General |volume=387 |issue=1–2 |pages=147–154 |doi=10.1016/j.apcata.2010.08.017 |issn=0926-860X}}</ref> [[ औद्योगीकरण | औद्योगिक]] उपयोगों में, [[ निकल |निकेल]] पर आधारित उत्प्रेरकों का अधिक से अधिक उपयोग किया जाता है। चूँकि,[[ कार्बन ]] कार्बन संचय के कारण उनका लचीलापन कम है। [[ मीथेन सुधार ]] के लिए सबसे महत्वपूर्ण विषय, विशेष रूप से शुष्क सुधार में, गैर-महान [[ धातु उत्प्रेरक ]] के लिए कार्बन जमाव का दमन है।उत्प्रेरकों की सतह की बुनियादीता को बढ़ाना और सक्रिय अवयवों के [[ कण आकार ]]को विनियमित करना कार्बन को जमा होने से रोकने के लिए उपयोग की जाने वाली दो तकनीकें हैं। मेटल-सपोर्ट इंटरेक्शन में सुधार, ठोस समाधानों का निर्माण, और प्लाज्मा प्रक्रियाएं केवल कुछ रणनीतियाँ हैं जिन्हें धातु के कणों के आकार को प्रबंधित करने के लिए विकसित किया गया है। एक समर्थन या प्रमोटर के रूप में मूल [[ धातु ऑक्साइड आसंजन |धातु ऑक्साइड आसंजन]] का उपयोग करके उत्प्रेरक की सतह की मूलता में वृद्धि हुई थी।कई लेखकों के काम के परिणामस्वरूप बढ़े हुए उत्प्रेरक और प्रक्रियाओं ने समग्र दक्षता और पर्यावरणीय प्रदर्शन में सुधार किया है।<ref>{{Cite book |url=http://doi.wiley.com/10.1002/9783527610044 |title=विषम उत्प्रेरण की पुस्तिका: ऑनलाइन|date=2008-03-15 |publisher=Wiley-VCH Verlag GmbH & Co. KGaA |isbn=978-3-527-31241-2 |editor-last=Ertl |editor-first=Gerhard |location=Weinheim, Germany |language=en |doi=10.1002/9783527610044 |editor-last2=Knözinger |editor-first2=Helmut |editor-last3=Schüth |editor-first3=Ferdi |editor-last4=Weitkamp |editor-first4=Jens}}</ref><ref>{{Cite journal |last1=Molenbroek |first1=Alfons M. |last2=Helveg |first2=Stig |last3=Topsøe |first3=Henrik |last4=Clausen |first4=Bjerne S. |date=September 2009 |title=विषम उत्प्रेरण में नैनो-कण|url=http://link.springer.com/10.1007/s11244-009-9314-1 |journal=Topics in Catalysis |language=en |volume=52 |issue=10 |pages=1303–1311 |doi=10.1007/s11244-009-9314-1 |s2cid=95513283 |issn=1022-5528}}</ref> | ||
==इतिहास== | ==इतिहास== | ||
1940 के दशक में, व्लादिमीर | 1940 के दशक में, यूनिवर्सल ऑयल प्रोडक्ट्स (यूओपी) के लिए काम करने वाले एक शोध रसायनज्ञ, व्लादिमीर हेन्सेल,ने प्लैटिनम युक्त [[ उत्प्रेरक | उत्प्रेरक]] का उपयोग करके एक उत्प्रेरक सुधार प्रक्रिया विकसित की।<ref>[https://wayback.archive-it.org/all/20080309155146/http://newton.nap.edu/html/biomems/vhaensel.pdf A Biographical Memoir of Vladimir Haensel] written by Stanley Gembiki, published by the National Academy of Sciences in | ||
. | . | ||
2006.</ref> | 2006.</ref> बाद में बाद में 1949 में यूओपी द्वारा लो ऑक्टेन नेफ्थास से उच्च ऑक्टेन गैसोलीन के उत्पादन के लिए हेन्सेल की प्रक्रिया का व्यावसायीकरण किया गया और यूओपी प्रक्रिया को प्लेटफ़ॉर्मिंग प्रक्रिया के रूप में जाना जाने लगा|<ref>[http://www.uop.com/refining/1030.html Platforming described on UOP's website] {{webarchive |url=https://web.archive.org/web/20061230130259/http://www.uop.com/refining/1030.html |date=December 30, 2006 }}</ref> पहली प्लेटफ़ॉर्मिंग इकाई 1949 में [[ सड़क कैंसर ]] के [[ मुस्केगोन ]] में ओल्ड डच शोधशाला कंपनी की शोधशाला में बनाई गई थी। | ||
उसके बाद के वर्षों में, कुछ प्रमुख तेल कंपनियों और अन्य संगठनों द्वारा प्रक्रिया के कई अन्य संस्करण विकसित किए गए | उसके बाद के वर्षों में, कुछ प्रमुख तेल कंपनियों और अन्य संगठनों द्वारा इस प्रक्रिया के कई अन्य संस्करण विकसित किए गए हैं।आज, दुनिया भर में उत्पादित अधिकांश गैसोलीन उत्प्रेरक सुधार प्रक्रिया से प्राप्त होता है। | ||
विकसित किए गए कुछ अन्य उत्प्रेरक सुधार संस्करणों के नाम के लिए, जिनमें से सभी ने प्लैटिनम और/या रेनियम उत्प्रेरक का उपयोग किया: | विकसित किए गए कुछ अन्य उत्प्रेरक सुधार संस्करणों के नाम के लिए, जिनमें से सभी ने प्लैटिनम और/या रेनियम उत्प्रेरक का उपयोग किया: | ||
Line 36: | Line 36: | ||
== रसायन विज्ञान == | == रसायन विज्ञान == | ||
पेट्रोलियम रिफाइनरियों में | पेट्रोलियम रिफाइनरियों में उपयोग की जाने वाली उत्प्रेरक सुधार प्रक्रिया की प्रतिक्रिया रसायन शास्त्र का वर्णन करने से पहले, उत्प्रेरक सुधार फीडस्टॉक्स के रूप में उपयोग किए जाने वाले विशिष्ट नाफ्थाओं पर चर्चा की जाएगी। | ||
=== विशिष्ट नेफ्था फीडस्टॉक्स === | === विशिष्ट नेफ्था फीडस्टॉक्स === | ||
एक [[ पेट्रोलियम ]] | एक [[ पेट्रोलियम ]] में कई इकाई संचालन और इकाई प्रक्रियाएँ सम्मलित होती हैं।शोधशाला में पहली इकाई का संचालन परिष्कृत किए जा रहे पेट्रोलियम कच्चे तेल का निरंतर आसवन है, और यह शोधशाला के गैसोलीन उत्पाद का एक प्रमुख घटक बन जाएगा, जब इसे सल्फर युक्त हाइड्रोकार्बन को हटाने के लिए एक उत्प्रेरक [[ हाइड्रोडेसल्फराइजेशन |हाइड्रोडेसल्फराइजेशन]] के माध्यम से संसाधित किया जाता है और इसके हाइड्रोकार्बन अणुओं को अधिक जटिल अणुओं में सुधारने के लिए एक उत्प्रेरक सुधारक होता है। एक उच्च ऑक्टेन रेटिंग मान। नाफ्था बहुत से विभिन्न हाइड्रोकार्बन यौगिकों का मिश्रण है। इसका प्रारंभिक [[ क्वथनांक ]] लगभग 35 °C और अंतिम क्वथनांक लगभग 200 °C होता है, और इसमें [[ एल्केन ]], नैफ्थीन और सुगंधित हाइड्रोकार्बन होते हैं जिनमें 6 कार्बन परमाणु से लेकर लगभग 10 या 11 कार्बन परमाणु होते हैं। | ||
कच्चे तेल के आसवन से नेफ्था को | कच्चे तेल के आसवन से नेफ्था को अधिकांशतः 6 या उससे कम कार्बन परमाणुओं वाले हाइड्रोकार्बन के हल्के नेफ्था का उत्पादन करने के लिए और 6 से अधिक के साथ हाइड्रोकार्बन के अधिकांश वाले भारी नेफ्था का उत्पादन करने के लिए आसुत किया जाता है। भारी नेफ्था का प्रारंभिक क्वथनांक लगभग 140 से 150 डिग्री सेल्सियस और अंतिम क्वथनांक लगभग 190 से 205 डिग्री सेल्सियस होता है।कच्चे तेल के आसवन से प्राप्त नैफ्था को "स्ट्रेट-रन" नेफ्था कहा जाता है। | ||
यह सीधे चलने वाला भारी | यह सीधे चलने वाला भारी नाफ्था है जिसे आमतौर पर एक उत्प्रेरक सुधारक में संसाधित किया जाता है क्योंकि प्रकाश नाफ्था में 6 या उससे कम कार्बन परमाणुओं वाले अणु होते हैं, जो सुधार होने पर ब्यूटेन और कम आणविक भार वाले हाइड्रोकार्बन में दरार डालते हैं जो उच्च के रूप में उपयोगी नहीं होते हैं- ऑक्टेन गैसोलीन सम्मिश्रण घटक। इसके अतिरिक्त,6 कार्बन परमाणुओं वाले अणुओं में एरोमेटिक्स बनाने की प्रवृत्ति होती है जो अवांछनीय है क्योंकि कई देशों में सरकारी पर्यावरणीय नियम एरोमैटिक्स की मात्रा को सीमित करते हैं जिसमें गैसोलीन सम्मलित हो सकता है।<ref>[http://www.ec.gc.ca/CEPARegistry/regulations/detailReg.cfm?intReg=1 Canadian regulations on benzene in gasoline] {{webarchive|url=https://web.archive.org/web/20041012052626/http://www.ec.gc.ca/CEPARegistry/regulations/detailReg.cfm?intReg=1 |date=2004-10-12 }}</ref><ref>[http://www.ukpia.com/industry_issues/environment_air_quality_health_safety/benzene_in_petrol.aspx United Kingdom regulations on benzene in gasoline] {{webarchive |url=https://web.archive.org/web/20061123043249/http://www.ukpia.com/industry_issues/environment_air_quality_health_safety/benzene_in_petrol.aspx |date=November 23, 2006 }}</ref><ref>[https://www.washingtonpost.com/wp-dyn/content/article/2006/03/01/AR2006030102113.html USA regulations on benzene in gasoline]</ref> दुनिया भर में बहुत सारे पेट्रोलियम कच्चे तेल के स्रोत हैं और प्रत्येक कच्चे तेल की अपनी अनूठी संरचना है। इसके अतिरिक्त, सभी रिफाइनरियां एक ही कच्चे तेल को संसाधित नहीं करती हैं और प्रत्येक रिफाइनरी अपने स्वयं के विशिष्ट प्रारंभिक और अंतिम क्वथनांक के साथ सीधे चलने वाले नाफ्था का उत्पादन करती है। दूसरे शब्दों में, नेफ्था एक विशिष्ट शब्द के अतिरिक्त एक सामान्य शब्द है। | ||
नीचे दी गई तालिका में विभिन्न कच्चे तेलों से प्राप्त उत्प्रेरक सुधार के लिए उपलब्ध कुछ विशिष्ट सीधे चलने वाले भारी नेफ्था फीडस्टॉक्स सूचीबद्ध हैं। यह देखा जा सकता है कि वे पैराफिन, नैफ्थीन और एरोमेटिक्स की सामग्री में काफी भिन्न हैं: | नीचे दी गई तालिका में विभिन्न कच्चे तेलों से प्राप्त उत्प्रेरक सुधार के लिए उपलब्ध कुछ विशिष्ट सीधे चलने वाले भारी नेफ्था फीडस्टॉक्स सूचीबद्ध हैं। यह देखा जा सकता है कि वे पैराफिन, नैफ्थीन और एरोमेटिक्स की सामग्री में काफी भिन्न हैं: | ||
Line 66: | Line 66: | ||
| Aromatics, liquid volume % ||align=center|12||align=center|6||align=center|16||align=center|17 | | Aromatics, liquid volume % ||align=center|12||align=center|6||align=center|16||align=center|17 | ||
|} | |} | ||
कुछ | कुछ शोधशाला में नेफ्था में [[ ओलेफिन्स ]]सम्मलित हैं, जैसे कई शोधशालाओ में उपयोग होने वाले द्रव उत्प्रेरक [[ विलंबित कोकर | विलंबित कोकर]] प्रक्रियाओं से प्राप्त नेफ्थास। कुछ शोधशाला हाइड्रोडीसल्फराइजेशन भी कर सकती हैं और उन नेफ्थाओं को उत्प्रेरित रूप से सुधार सकती हैं। चूँकि, अधिकांश भाग के लिए, उत्प्रेरक सुधार मुख्य रूप से सीधे चलने वाले भारी नाफ्थास पर उपयोग किया जाता है, जैसे उपरोक्त तालिका में कच्चे तेल के आसवन से प्राप्त होता है। | ||
=== प्रतिक्रिया रसायन === | === प्रतिक्रिया रसायन === | ||
उत्प्रेरक सुधार प्रक्रिया में कई रासायनिक प्रतिक्रियाएं होती हैं, जो सभी उत्प्रेरक और हाइड्रोजन के उच्च [[ आंशिक दबाव ]] की उपस्थिति में होती | उत्प्रेरक सुधार प्रक्रिया में होने वाली कई रासायनिक प्रतिक्रियाएं होती हैं, जो सभी उत्प्रेरक और हाइड्रोजन के उच्च [[ आंशिक दबाव |आंशिक दबाव]] की उपस्थिति में होती हैं| उत्प्रेरक सुधार के प्रकार या संस्करण के साथ-साथ वांछित प्रतिक्रिया गंभीरता के आधार पर, प्रतिक्रिया की स्थिति लगभग 495 से 525 डिग्री सेल्सियस के तापमान और लगभग 5 से 45 एटीएम के दबाव से होती है।<ref>[http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html#3 OSHA Technical Manual, Section IV, Chapter 2, ''Petroleum refining Processes''] (A publication of the [[Occupational Safety and Health Administration]])</ref><ref name=":0">{{Cite journal|last1=Arani|first1=H. M.|last2=Shirvani|first2=M.|last3=Safdarian|first3=K.|last4=Dorostkar|first4=E.|date=December 2009|title=उत्प्रेरक नेफ्था सुधार के गतिज मॉडल के लिए लंपिंग प्रक्रिया|journal=Brazilian Journal of Chemical Engineering|volume=26|issue=4|pages=723–732|doi=10.1590/S0104-66322009000400011|issn=0104-6632|doi-access=free}}</ref> | ||
सामान्यतः प्रयोग किए जाने वाले उत्प्रेरक सुधार उत्प्रेरक में प्लैटिनम और/या रेनियम जैसी उत्कृष्ट धातुएं होती हैं, जो सल्फर और [[ नाइट्रोजन ]] यौगिकों द्वारा [[ उत्प्रेरक विषाक्तता ]] के लिए अतिसंवेदनशील होती हैं। इसलिए, एक उत्प्रेरक सुधारक | सामान्यतः प्रयोग किए जाने वाले उत्प्रेरक सुधार उत्प्रेरक में प्लैटिनम और/या रेनियम जैसी उत्कृष्ट धातुएं होती हैं, जो सल्फर और [[ नाइट्रोजन ]] यौगिकों द्वारा [[ उत्प्रेरक विषाक्तता ]] के लिए अतिसंवेदनशील होती हैं। इसलिए, एक उत्प्रेरक सुधारक के लिए नाफ्था फीडस्टॉक हमेशा एक हाइड्रोडीसल्फराइजेशन इकाई में पूर्व-संसाधित होता है जो सल्फर और नाइट्रोजन यौगिकों दोनों को हटा देता है।अधिकांश उत्प्रेरकों को 1 पीपीएम से कम सल्फर और नाइट्रोजन सामग्री दोनों की आवश्यकता होती है। | ||
चार प्रमुख उत्प्रेरक सुधार प्रतिक्रियाएं हैं:रेफरी नाम = गैरी>{{cite book|author1= | चार प्रमुख उत्प्रेरक सुधार प्रतिक्रियाएं हैं: रेफरी नाम = गैरी>{{cite book|author1=गैरी, जे.एच. |author2=हैंडवर्क, जी.ई.|title=पेट्रोलियम शोधन प्रौद्योगिकी और अर्थशास्त्र|edition=दूसरा|publisher=मार्सेल डेकर, इंक|year=1984|isbn=0-8247-7150-8}}संदर्भ | ||
:1: नैफ्थीन का [[ निर्जलीकरण ]] उन्हें एरोमेटिक्स में परिवर्तित करता है , जैसा कि [[ मिथाइलसाइक्लोहेक्सेन ]] | :1: नैफ्थीन का [[ निर्जलीकरण ]] उन्हें एरोमेटिक्स में परिवर्तित करता है , जैसा कि [[ मिथाइलसाइक्लोहेक्सेन ]] से टोल्यूनि (एक सुगंधित) में रूपांतरण को उदाहरण के रूप में नीचे दिखाया गया है: | ||
[[File:Methylcyclohexanetotoluene.svg|center]]:2: [[ ओकटाइन ]] के 2,5-डाइमिथाइलहेक्सेन ( | [[File:Methylcyclohexanetotoluene.svg|center]]:2: [[ ओकटाइन ]] के 2,5-डाइमिथाइलहेक्सेन ([[ आइसोपैराफिन ]]) में रूपांतरण को उदाहरण के रूप में आइसोपैराफिन के लिए सामान्य पैराफिन का [[ आइसोमराइज़ेशन ]], जैसा कि नीचे दिखाया गया है: | ||
[[File:Paraffintoisoparaffin.svg|center]]:3: पैराफिन का एरोमेटिक्स ( | [[File:Paraffintoisoparaffin.svg|center]]:3: पैराफिन का एरोमेटिक्स (सामान्यतः डीहाइड्रोसाइक्लाइज़ेशन कहा जाता है) के लिए डिहाइड्रोजनीकरण और [[ गंध ]], जैसा कि [[ हेपटैन ]] से टोल्यूनि के रूपांतरण को उदाहरण के रूप में दिखाया गया है: | ||
[[Image:Dehydrocyclization reaction of heptane to toluene.svg|center|400px]]:4: पैराफिन का छोटे अणुओं में हाइड्रोक्रैकिंग, जैसा कि सामान्य हेप्टेन के [[ आइसोपेंटेन ]] और ईथेन में क्रैकिंग द्वारा उदाहरण के रूप में नीचे दिखाया गया है: | [[Image:Dehydrocyclization reaction of heptane to toluene.svg|center|400px]]:4: पैराफिन का छोटे अणुओं में हाइड्रोक्रैकिंग, जैसा कि सामान्य हेप्टेन के [[ आइसोपेंटेन ]] और ईथेन में क्रैकिंग द्वारा उदाहरण के रूप में नीचे दिखाया गया है: | ||
[[Image:CatReformerEq4.png|center]] | [[Image:CatReformerEq4.png|center]]सुधार प्रतिक्रियाओं के उपरांत, अभिकारकों की कार्बन संख्या अपरिवर्तित रहती है, हाइड्रोकार्बन प्रतिक्रियाओं को छोड़कर जो हाइड्रोकार्बन अणु को कम कार्बन परमाणुओं वाले अणुओं में तोड़ते हैं।<ref name=":0" />पैराफिन का हाइड्रोकार्बन उपरोक्त चार प्रमुख सुधारात्मक प्रतिक्रियाओं में से एकमात्र है जो हाइड्रोजन का उपभोग करता है।सामान्य पैराफिन का समावयवीकरण हाइड्रोजन का उपभोग या उत्पादन नहीं करता है।चूँकि, नेफ्थेन के डिहाइड्रोजनेशन और पैराफिन के डीहाइड्रोसाइक्लाइज़ेशन दोनों ही हाइड्रोजन का उत्पादन करते हैं।पेट्रोलियम नेफ्थास के उत्प्रेरक सुधार में हाइड्रोजन का समग्र शुद्ध उत्पादन लगभग 50 से 200 घन मीटर हाइड्रोजन गैस (0 डिग्री सेल्सियस और 1 एटीएम पर) प्रति घन मीटर तरल नाफ्था फीडस्टॉक से होता है। संयुक्त राज्य अमेरिका की प्रथागत इकाइयों में, जो तरल नेफ्था फीडस्टॉक के प्रति [[ बैरल (इकाई) ]] 300 से 1200 क्यूबिक फीट हाइड्रोजन गैस (60 डिग्री फ़ारेनहाइट और 1 एटीएम पर) के बराबर है।<ref>[http://www.freepatentsonline.com/5011805.html US Patent 5011805, ''Dehydrogenation, dehydrocyclization and reforming catalyst''] (Inventor: Ralph Dessau, Assignee: Mobil Oil Corporation)</ref> कई पेट्रोलियम रिफाइनरियों में, उत्प्रेरक सुधार में उत्पादित शुद्ध हाइड्रोजन रिफाइनरी में कहीं और उपयोग किए जाने वाले हाइड्रोजन के एक महत्वपूर्ण हिस्से की आपूर्ति करता है (उदाहरण के लिए, हाइड्रोडेसल्फराइजेशन प्रक्रियाओं में)। उत्प्रेरक पर बनने वाले किसी भी बहुलक को हाइड्रोजनोलाइज करने के लिए भी हाइड्रोजन आवश्यक है। | ||
व्यवहार में, नेफ्था फीडस्टॉक में नैफ्थीन की मात्रा जितनी अधिक होगी, रिफॉर्मेट की गुणवत्ता उतनी ही बेहतर होगी और हाइड्रोजन का उत्पादन उतना ही अधिक होगा। सुधार के लिए सबसे अच्छा नेफ्था युक्त कच्चे तेल | व्यवहार में, नेफ्था फीडस्टॉक में नैफ्थीन की मात्रा जितनी अधिक होगी, रिफॉर्मेट की गुणवत्ता उतनी ही बेहतर होगी और हाइड्रोजन का उत्पादन उतना ही अधिक होगा। सुधार के लिए सबसे अच्छा नेफ्था युक्त कच्चे तेल सामान्यतः पश्चिमी अफ्रीका या उत्तरी सागर से होते हैं, जैसे कि [[ बोनी लाइट ऑयल ]] या ट्रोल गैस क्षेत्र। | ||
=== लंपिंग तकनीक का उपयोग करके मॉडल प्रतिक्रियाएं === | === लंपिंग तकनीक का उपयोग करके मॉडल प्रतिक्रियाएं === | ||
उत्प्रेरक सुधार प्रक्रिया फीडस्टॉक, | उत्प्रेरक सुधार प्रक्रिया फीडस्टॉक, अनुपयोगी प्रतिक्रियाओं और उच्च तापमान सीमा में बहुत सारे घटकों के कारण, उत्प्रेरक सुधारक रिएक्टरों के डिजाइन और अनुकरण जटिलताओं के साथ हैं। लम्पिंग तकनीक का उपयोग जटिलताओं को कम करने के लिए बड़े पैमाने पर किया जाता है जिससे सुधार प्रणाली और गतिज दर मापदंडों का ठीक से वर्णन करने वाले गांठ और प्रतिक्रिया मार्ग फीडस्टॉक संरचना पर निर्भर न हों।<ref name=":0" />हाल के कार्यों में से एक में, नेफ्था को 15 प्रतिक्रियाओं के साथ 17 हाइड्रोकार्बन अंशों के संदर्भ में माना जाता है जिसमें C<sub>1</sub> को C<sub>5</sub> हाइड्रोकार्बन को हल्के पैराफिन के रूप में निर्दिष्ट किया जाता है और C<sub>6</sub> को C<sub>8+</sub> नेफ्था कट को [[ आइसोपैराफिन्स ]], सामान्य पैराफिन, नेफ्थीन और एरोमेटिक्स के रूप में जाना जाता है।<ref name=":0" />उत्प्रेरक नेफ्था सुधार में प्रतिक्रियाएं प्राथमिक हैं और प्रत्येक प्रतिक्रिया की दर का वर्णन करने के लिए हौजेन-वाटसन लैंगमुइर-हिंशेलवुड प्रकार की प्रतिक्रिया दर अभिव्यक्तियों का उपयोग किया जाता है| इस प्रकार के दर समीकरण स्पष्ट रूप से उत्प्रेरक के साथ रासायनिक प्रजातियों की बातचीत के लिए उत्तरदायी होते हैं और इसमें भाजक होते हैं जिसमें प्रतिक्रियाशील प्रजातियों के सोखने की विशेषताएँ प्रस्तुत की जाती हैं।<ref name=":0" /> | ||
== प्रक्रिया विवरण == | == प्रक्रिया विवरण == | ||
सबसे अधिक | सबसे अधिक उपयोग की जाने वाली उत्प्रेरक सुधार इकाई में तीन [[ रासायनिक रिएक्टर | रासायनिक प्रतिघातक]] होते हैं, जिनमें से प्रत्येक में उत्प्रेरक का एक निश्चित बिस्तर होता है, और सभी उत्प्रेरक को नियमित उत्प्रेरक पुनर्जनन समाप्ति के दौरान सीटू रसायन विज्ञान और रासायनिक इंजीनियरिंग में पुनर्जीवित किया जाता है, जो प्रत्येक 6 से 24 महीनों में लगभग एक बार होता है। ऐसी इकाई को अर्ध-पुनर्योजी उत्प्रेरक सुधारक (एसआरआर) के रूप में जाना जाता है। | ||
कुछ उत्प्रेरक सुधार इकाइयों में एक अतिरिक्त स्पेयर या स्विंग | कुछ उत्प्रेरक सुधार इकाइयों में एक अतिरिक्त स्पेयर या स्विंग प्रतिघातक होता है और प्रत्येक प्रतिघातक को भिन्न - भिन्न किया जा सकता है ताकि किसी एक प्रतिघातक को सीटू पुनर्जनन में किया जा सके जबकि अन्य रिएक्टर प्रचालन में हों। जब उस प्रतिघातक को फिर से बनाया जाता है, तो यह दूसरे प्रतिघातक को बदल देता है, जो बदले में भिन्न हो जाता है ताकि इसे फिर से बनाया जा सके। ऐसी इकाइयाँ, जिन्हें चक्रीय उत्प्रेरक सुधारक कहा जाता है, बहुत सामान्य नहीं हैं। चक्रीय उत्प्रेरक सुधारक आवश्यक समाप्ति के बीच की अवधि को बढ़ाने का काम करते हैं। | ||
नवीनतम और सबसे आधुनिक प्रकार के उत्प्रेरक सुधारकों को निरंतर उत्प्रेरक पुनर्जनन (सीसीआर) सुधारक कहा जाता है। इस तरह की इकाइयों को एक विशेष पुनर्योजी में उत्प्रेरक के हिस्से के निरंतर इन-सीटू पुनर्जनन द्वारा परिभाषित किया जाता है, और पुन: उत्पन्न उत्प्रेरक को ऑपरेटिंग | नवीनतम और सबसे आधुनिक प्रकार के उत्प्रेरक सुधारकों को निरंतर उत्प्रेरक पुनर्जनन (सीसीआर) सुधारक कहा जाता है। इस तरह की इकाइयों को एक विशेष पुनर्योजी में उत्प्रेरक के हिस्से के निरंतर इन-सीटू पुनर्जनन द्वारा परिभाषित किया जाता है, और पुन: उत्पन्न उत्प्रेरक को ऑपरेटिंग प्रतिघातको के निरंतर जोड़ द्वारा परिभाषित किया जाता है। 2006 तक, दो सीसीआर संस्करण उपलब्ध थे: यूओपी की सीसीआर प्लेटफ़ॉर्मर प्रक्रिया<ref>{{cite web |url=http://www.uop.com/objects/CCR%20Platforming.pdf |title=सीसीआर प्लेटफार्मिंग|website=uop.com |year=2004 |archive-url=https://web.archive.org/web/20061109201249/http://www.uop.com/objects/CCR%20Platforming.pdf |archive-date=November 9, 2006 |url-status=dead}}</ref> और एक्सेंस की ऑक्टेनाइजिंग प्रक्रिया।<ref>[http://www.axens.net/upload/news/fichier/ptq_q1_06_octanizing_reformer_options.pdf Octanizing Options] {{Webarchive|url=https://web.archive.org/web/20080309155146/http://www.axens.net/upload/news/fichier/ptq_q1_06_octanizing_reformer_options.pdf |date=2008-03-09 }} (Axens website)</ref> सीसीआर इकाइयों की स्थापना और उपयोग तेजी से बढ़ रहा है। | ||
प्रारंभिक उत्प्रेरक सुधार इकाइयों में से कई (1950 और 1960 के दशक में) गैर-पुनर्योजी थे कि वे स्वस्थानी उत्प्रेरक पुनर्जनन में प्रदर्शन नहीं करते थे। इसके अतिरिक्त, जब आवश्यक हो, पुराने उत्प्रेरक को नए उत्प्रेरक द्वारा बदल दिया गया था और वृद्ध उत्प्रेरक को उत्प्रेरक निर्माताओं को या तो पुनर्जीवित करने के लिए या वृद्ध उत्प्रेरक की प्लैटिनम सामग्री को पुनर्प्राप्त करने के लिए भेज दिया गया था। बहुत कम, यदि कोई हो, वर्तमान में प्रचालन में उत्प्रेरक सुधारक गैर-पुनर्योजी हैं।{{citation needed|date=May 2014}} नीचे दिया गया प्रक्रिया प्रवाह आरेख एक विशिष्ट अर्ध-पुनर्योजी उत्प्रेरक सुधार इकाई को दर्शाता है। | प्रारंभिक उत्प्रेरक सुधार इकाइयों में से कई (1950 और 1960 के दशक में) गैर-पुनर्योजी थे कि वे स्वस्थानी उत्प्रेरक पुनर्जनन में प्रदर्शन नहीं करते थे। इसके अतिरिक्त, जब आवश्यक हो, पुराने उत्प्रेरक को नए उत्प्रेरक द्वारा बदल दिया गया था और वृद्ध उत्प्रेरक को उत्प्रेरक निर्माताओं को या तो पुनर्जीवित करने के लिए या वृद्ध उत्प्रेरक की प्लैटिनम सामग्री को पुनर्प्राप्त करने के लिए भेज दिया गया था। बहुत कम, यदि कोई हो, वर्तमान में प्रचालन में उत्प्रेरक सुधारक गैर-पुनर्योजी हैं।{{citation needed|date=May 2014}} नीचे दिया गया प्रक्रिया प्रवाह आरेख एक विशिष्ट अर्ध-पुनर्योजी उत्प्रेरक सुधार इकाई को दर्शाता है। | ||
[[Image:CatReformer.png|frame|center|पेट्रोलियम रिफाइनरी में एक विशिष्ट अर्ध-पुनर्योजी उत्प्रेरक सुधारक इकाई का योजनाबद्ध आरेख]]तरल फ़ीड (आरेख में नीचे बाईं ओर) प्रतिक्रिया दबाव (5-45 एटीएम) तक पंप किया जाता है और हाइड्रोजन | [[Image:CatReformer.png|frame|center|पेट्रोलियम रिफाइनरी में एक विशिष्ट अर्ध-पुनर्योजी उत्प्रेरक सुधारक इकाई का योजनाबद्ध आरेख]]तरल फ़ीड (आरेख में नीचे बाईं ओर) प्रतिक्रिया दबाव (5-45 एटीएम) तक पंप किया जाता है और हाइड्रोजन युक्त रीसायकल गैस की एक धारा से जुड़ जाता है। परिणामी तरल-गैस मिश्रण को [[ उष्मा का आदान प्रदान करने वाला | उष्मा का आदान प्रदान]] के माध्यम से प्रवाहित करके पहले से गरम किया जाता है। वाष्पीकृत अभिकारकों के पहले रिएक्टर में प्रवेश करने से पहले पहले से गरम फ़ीड मिश्रण को पूरी तरह से वाष्पीकृत और प्रतिक्रिया तापमान (495-520 डिग्री सेल्सियस) तक गर्म किया जाता है। जैसा कि रिएक्टर में उत्प्रेरक के निश्चित बिस्तर के माध्यम से वाष्पीकृत अभिकारक प्रवाहित होते हैं, प्रमुख प्रतिक्रिया नैफ्थेन का एरोमेटिक्स का निर्जलीकरण है जो अत्यधिक [[ एन्दोठेर्मिक |एंडोथर्मिक]] है और रिएक्टर के प्रवेश और बाहर निकलने के बीच एक बड़े तापमान में कमी का परिणाम है। आवश्यक प्रतिक्रिया तापमान और प्रतिक्रिया की दर को बनाए रखने के लिए, दूसरे रिएक्टर के माध्यम से प्रवाहित होने से पहले वाष्पीकृत धारा को दूसरे फायर किए गए हीटर में फिर से गरम किया जाता है। दूसरे रिएक्टर में तापमान फिर से कम हो जाता है और तीसरे रिएक्टर से बहने से पहले वाष्पीकृत धारा को तीसरे फायर किए गए हीटर में फिर से गर्म करना चाहिए। जैसे ही वाष्पीकृत धारा तीन रिएक्टरों के माध्यम से आगे बढ़ती है, प्रतिक्रिया की दर कम हो जाती है और इसलिए रिएक्टर बड़े हो जाते हैं। इसी समय, रिएक्टरों के बीच आवश्यक पुनः ताप की मात्रा कम हो जाती है।अधिकांश उत्प्रेरक सुधार इकाई के वांछित प्रदर्शन को प्रदान करने के लिए तीन रिएक्टरों की आवश्यकता होती है | ||
कुछ प्रतिष्ठान तीन | कुछ प्रतिष्ठान तीन भिन्न -भिन्न फायर किए गए हीटरों का उपयोग करते हैं जैसा कि योजनाबद्ध आरेख में दिखाया गया है और कुछ इंस्टॉलेशन तीन भिन्न -भिन्न हीटिंग कॉइल के साथ एक सिंगल फायर किए गए हीटर का उपयोग करते हैं। | ||
तीसरे रिएक्टर से गर्म प्रतिक्रिया उत्पादों को हीट एक्सचेंजर के माध्यम से प्रवाहित करके आंशिक रूप से ठंडा किया जाता है, जहां पहले रिएक्टर को फ़ीड | तीसरे रिएक्टर से गर्म प्रतिक्रिया उत्पादों को हीट एक्सचेंजर के माध्यम से प्रवाहित करके आंशिक रूप से ठंडा किया जाता है, जहां पहले रिएक्टर को फ़ीड करके गरम किया जाता है और फिर दबाव नियंत्रक (पीसी) के माध्यम से गैस विभाजक में प्रवाहित होने से पहले पानी ठंडा हीट एक्सचेंजर के माध्यम से प्रवाहित होता है। | ||
गैस विभाजक पोत से अधिकांश हाइड्रोजन-समृद्ध गैस रीसायकल हाइड्रोजन [[ गैस कंप्रेसर ]] के चूषण में लौट आती है और सुधार प्रतिक्रियाओं से हाइड्रोजन-समृद्ध गैस का शुद्ध उत्पादन अन्य रिफाइनरी प्रक्रियाओं में उपयोग के लिए निर्यात किया जाता है जो हाइड्रोजन का उपभोग करते हैं (जैसे कि हाइड्रोडेसल्फराइजेशन इकाइयां और/या हाइड्रोक्रैकिंग)। | गैस विभाजक पोत से अधिकांश हाइड्रोजन-समृद्ध गैस रीसायकल हाइड्रोजन [[ गैस कंप्रेसर ]] के चूषण में लौट आती है और सुधार प्रतिक्रियाओं से हाइड्रोजन-समृद्ध गैस का शुद्ध उत्पादन अन्य रिफाइनरी प्रक्रियाओं में उपयोग के लिए निर्यात किया जाता है जो हाइड्रोजन का उपभोग करते हैं (जैसे कि हाइड्रोडेसल्फराइजेशन इकाइयां और/या हाइड्रोक्रैकिंग)। | ||
गैस विभाजक पोत से तरल को एक [[ भिन्नात्मक स्तंभ ]] में भेजा जाता है जिसे | गैस विभाजक पोत से तरल को एक [[ भिन्नात्मक स्तंभ ]] में भेजा जाता है जिसे सामान्यतः स्टेबलाइजर कहा जाता है। स्टेबलाइजर से उपरि गैस उत्पाद में हाइड्रोकार्बन प्रतिक्रियाओं द्वारा उत्पादित प्रतिफल मीथेन, ईथेन, प्रोपेन और ब्यूटेन गैसें होती हैं, जैसा कि एक उत्प्रेरक सुधारक की प्रतिक्रिया रसायन विज्ञान की उपरोक्त चर्चा में बताया गया है, और इसमें हाइड्रोजन की कुछ छोटी मात्रा भी हो सकती है। प्रोपेन और ब्यूटेन को हटाने और पुनर्प्राप्त करने के लिए उस गैस बंद को रिफाइनरी के केंद्रीय गैस प्रसंस्करण संयंत्र में भेजा जाता है। इस तरह के प्रसंस्करण के बाद अवशिष्ट गैस रिफाइनरी की ईंधन गैस प्रणाली का हिस्सा बन जाती है। | ||
स्टेबलाइजर | स्टेबलाइजर के नीचे उत्पाद हाई-ऑक्टेन लिक्विड रिफॉर्मेट है जो रिफाइनरी के उत्पाद गैसोलीन का एक घटक बन जाएगा। रिफॉर्मेट को सीधे गैसोलीन पोखर में मिश्रित किया जा सकता है लेकिन अधिकांशतः इसे दो या दो से अधिक धाराओं में भिन्न किया जाता है। एक सामान्य शोधन योजना में दो धाराओं, हल्के और भारी सुधार में विभाजित करना सम्मलित है। लाइट रिफॉर्मेट में कम ऑक्टेन होता है और यदि यह इकाई उपलब्ध हो तो इसे आइसोमेराइजेशन फीडस्टॉक के रूप में उपयोग किया जा सकता है। भारी सुधार ऑक्टेन में उच्च और बेंजीन में कम है, इसलिए यह गैसोलीन पूल के लिए एक उत्कृष्ट सम्मिश्रण घटक है। | ||
रिफॉर्मेट को सीधे गैसोलीन | |||
रिफॉर्मेट में बेंजीन की सामग्री को कम करने के लिए बेंजीन को | रिफॉर्मेट में बेंजीन की सामग्री को कम करने के लिए बेंजीन को अधिकांशतः एक विशिष्ट ऑपरेशन के साथ हटा दिया जाता है क्योंकि तैयार गैसोलीन में अधिकांशतः बेंजीन सामग्री की ऊपरी सीमा होती है (यूई में यह 1% मात्रा है)। निकाले गए बेंजीन को रासायनिक उद्योग के लिए फीडस्टॉक के रूप में विपणन किया जा सकता है। | ||
==उत्प्रेरक और तंत्र== | ==उत्प्रेरक और तंत्र== | ||
अधिकांश | अधिकांश सुधारक उत्प्रेरक में [[ अनाकार सिलिका-एल्यूमिना ]] समर्थन आधार पर प्लेटिनम या रेनियम होता है, और कुछ में प्लैटिनम और रेनियम दोनों होते हैं। ताजा उत्प्रेरक का उपयोग करने से पहले [[ क्लोराइड ]] किया जाता है। | ||
स्पष्ट धातुओं (प्लैटिनम और रेनियम) को डिहाइड्रोजनीकरण प्रतिक्रियाओं के लिए उत्प्रेरक साइट माना जाता है और क्लोरीनयुक्त एल्यूमिना आइसोमेराइजेशन, साइक्लाइज़ेशन और हाइड्रोक्रैकिंग प्रतिक्रियाओं के लिए आवश्यक [[ अम्ल |अम्ल]] साइट प्रदान करता है। <ref name=Gary/>क्लोरीनेशन के मध्य सबसे अधिक सावधानी देखनी होती है। अर्थ : वास्तव में, यदि क्लोरीनयुक्त नहीं किया जाता है, तो उत्प्रेरक में प्लैटिनम और रेनियम वाष्प चरण में हाइड्रोजन द्वारा लगभग तुरंत धात्विक अवस्था में कम हो जाएंगे। दूसरी ओर, अत्यधिक क्लोरीनीकरण उत्प्रेरक की गतिविधि को अत्यधिक दबा सकता है। | |||
अर्ध-पुनर्योजी उत्प्रेरक सुधारक में उत्प्रेरक की गतिविधि | अर्ध-पुनर्योजी उत्प्रेरक सुधारक में उत्प्रेरक की गतिविधि कार्बन जमाव और क्लोराइड हानि से संचालन के दौरान समय के साथ कम हो जाती है। उत्प्रेरक की गतिविधि को समय-समय पर पुनर्जीवित किया जा सकता है या क्लोरीनीकरण के बाद कोक के उच्च तापमान ऑक्सीकरण द्वारा पुन: उत्पन्न किया जा सकता है। जैसा कि यहां पहले कहा गया है, अर्ध-पुनर्योजी उत्प्रेरक सुधारक प्रति 6 से 24 महीनों में लगभग एक बार पुनर्जीवित होते हैं। प्रतिक्रिया की स्थिति में गंभीरता जितनी अधिक होगी, उत्पादित रिफॉर्मेट का ऑक्टेन उतना ही अधिक होगा, लेकिन दो पुनर्जनन के बीच चक्र की अवधि भी कम होगी। उत्प्रेरक की चक्र अवधि भी फीडस्टॉक की गुणवत्ता पर बहुत निर्भर है। चूँकि, रिफाइनरी में उपयोग किए जाने वाले कच्चे तेल के स्वतंत्र रूप से, सभी उत्प्रेरकों को 180 डिग्री सेल्सियस के नेफ्था फीडस्टॉक के अधिकतम अंतिम क्वथनांक की आवश्यकता होती है। | ||
सामान्यतः, उत्प्रेरक को मूल्यवान प्लैटिनम और/या रेनियम सामग्री के सुधार के लिए निर्माता को वापस करने से पहले शायद 3 या 4 बार पुनर्जीवित किया जा सकता है।<ref name=Gary/> | |||
==कमजोरियां और प्रतिस्पर्धा == | ==कमजोरियां और प्रतिस्पर्धा == | ||
सल्फर और नाइट्रोजन द्वारा संदूषण के लिए उत्प्रेरक सुधार की संवेदनशीलता को सुधारक में प्रवेश करने से पहले नेफ्था को हाइड्रोट्रीट करने की आवश्यकता होती है, जिससे प्रक्रिया की लागत और जटिलता बढ़ जाती है। | सल्फर और नाइट्रोजन द्वारा संदूषण के लिए उत्प्रेरक सुधार की संवेदनशीलता को सुधारक में प्रवेश करने से पहले नेफ्था को हाइड्रोट्रीट करने की आवश्यकता होती है, जिससे प्रक्रिया की लागत और जटिलता बढ़ जाती है। डिहाइड्रोजनीकरण, सुधार का एक महत्वपूर्ण घटक, एक जोरदार एंडोथर्मिक प्रतिक्रिया है, और इस तरह, रिएक्टर पोत को बाहरी रूप से गर्म करने की आवश्यकता होती है। यह प्रक्रिया की लागत और उत्सर्जन दोनों में योगदान देता है। उत्प्रेरक सुधार में सामान्य पैराफिन की उच्च सामग्री के साथ नेफ्था को संसाधित करने की सीमित क्षमता होती है, उदा। गैस-टू-लिक्विड (जीटीएल) इकाइयों से नेफ्थास। कई देशों में सम्मिलित नियमों द्वारा अनुमेय की तुलना में सुधार में बेंजीन की बहुत अधिक सामग्री है। इसका तातपर्य यह है कि सुधार को या तो एक एरोमैटिक्स निष्कर्षण इकाई में संसाधित किया जाना चाहिए, या सुगंधित पदार्थों की कम सामग्री के साथ उपयुक्त हाइड्रोकार्बन धाराओं के साथ मिश्रित किया जाना चाहिए। उत्प्रेरक सुधार के लिए रिफाइनरी में अन्य प्रसंस्करण इकाइयों की एक पूरी श्रृंखला की आवश्यकता होती है (आसवन टावर के अलावा, एक नेफ्था हाइड्रोट्रीटर, आमतौर पर प्रकाश नेफ्था, एक सुगंधित निष्कर्षण इकाई, आदि को संसाधित करने के लिए एक आइसोमेराइजेशन इकाई) जो इसे छोटे ( माइक्रो-) रिफाइनरी है। | ||
डिहाइड्रोजनीकरण, सुधार का एक महत्वपूर्ण घटक, एक जोरदार एंडोथर्मिक प्रतिक्रिया है, और इस तरह, रिएक्टर पोत को बाहरी रूप से गर्म करने की आवश्यकता होती है। यह प्रक्रिया की लागत और उत्सर्जन दोनों में योगदान देता है। | |||
उत्प्रेरक सुधार में सामान्य पैराफिन की उच्च सामग्री के साथ नेफ्था को संसाधित करने की सीमित क्षमता होती है, उदा। गैस-टू-लिक्विड (जीटीएल) इकाइयों से नेफ्थास। | |||
कई देशों में | |||
उत्प्रेरक सुधार के लिए रिफाइनरी में अन्य प्रसंस्करण इकाइयों की एक पूरी श्रृंखला की आवश्यकता होती है (आसवन टावर के अलावा, एक नेफ्था हाइड्रोट्रीटर, आमतौर पर प्रकाश नेफ्था, एक सुगंधित निष्कर्षण इकाई, आदि को संसाधित करने के लिए एक आइसोमेराइजेशन इकाई) जो इसे छोटे ( माइक्रो-) | |||
उत्प्रेरक सुधार प्रक्रियाओं के मुख्य लाइसेंसकर्ता, यूओपी और एक्सेंस, उत्प्रेरकों को बेहतर बनाने के लिए लगातार काम करते हैं, लेकिन सुधार की दर अपनी भौतिक सीमाओं तक पहुंच रही है। यह शेवरॉन फिलिप्स केमिकल ([http://www.cpchem.com/en-us/rnt/licensing/aromaxtech/pages/process.aspx | उत्प्रेरक सुधार प्रक्रियाओं के मुख्य लाइसेंसकर्ता, यूओपी और एक्सेंस, उत्प्रेरकों को बेहतर बनाने के लिए लगातार काम करते हैं, लेकिन सुधार की दर अपनी भौतिक सीमाओं तक पहुंच रही है। यह शेवरॉन फिलिप्स और एनजीटी समसामयिकी परीक्षण ([https://www.ngt-synthesis.com/technology/ मेथाफॉर्मिंग] केमिकल ([http://www.cpchem.com/en-us/rnt/licensing/aromaxtech/pages/process.aspx एरोमैक्स] जैसी कंपनियों द्वारा नेफ्था को गैसोलीन में संसाधित करने के लिए नई तकनीकों के उद्भव को चला रहा है। <ref name="hydrocarbon_publishing">{{Cite web |url=http://subscriber.hydrocarbonpublishing.com/ReviewP/Review3q17catr.pdf |title=संग्रहीत प्रति|access-date=2018-04-08 |archive-date=2018-04-08 |archive-url=https://web.archive.org/web/20180408141426/http://subscriber.hydrocarbonpublishing.com/ReviewP/Review3q17catr.pdf |url-status=dead }}</ref>)<ref name="hydrocarbon_publishing" /><ref>{{Cite web|url=http://sk.ru/net/1110056/b/news/archive/2015/07/30/leading-industry-magazine-hydrocarbon-processing-acknowledges-ngts_2700_-innovation-process.aspx|title=अग्रणी उद्योग पत्रिका "हाइड्रोकार्बन प्रोसेसिंग" एनजीटीएस की नवाचार प्रक्रिया को स्वीकार करती है}}</ref>). | ||
==अर्थशास्त्र== | ==अर्थशास्त्र== | ||
{{Expand section|date= | {{Expand section|date=दिसंबर 2017}} | ||
उत्प्रेरक सुधार इस मायने में लाभदायक है कि यह लंबी-श्रृंखला वाले हाइड्रोकार्बन को परिवर्तित करता है, जिसके लिए उच्च आपूर्ति के बावजूद सीमित मांग है, शॉर्ट-चेन वाले हाइड्रोकार्बन में, जो पेट्रोल ईंधन में उनके उपयोग के कारण बहुत अधिक मांग में हैं। इसका उपयोग लघु-श्रृंखला वाले हाइड्रोकार्बन को सुगंधित करके उनकी ऑक्टेन रेटिंग में सुधार करने के लिए भी किया जा सकता है।<ref>{{Cite news|url=http://www.essentialchemicalindustry.org/processes/cracking-isomerisation-and-reforming.html|title=क्रैकिंग और संबंधित रिफाइनरी|last=Lichtarowicz|first=Marek|access-date=2017-12-03|language=en-gb}}</ref> | उत्प्रेरक सुधार इस मायने में लाभदायक है कि यह लंबी-श्रृंखला वाले हाइड्रोकार्बन को परिवर्तित करता है, जिसके लिए उच्च आपूर्ति के बावजूद सीमित मांग है, शॉर्ट-चेन वाले हाइड्रोकार्बन में, जो पेट्रोल ईंधन में उनके उपयोग के कारण बहुत अधिक मांग में हैं। इसका उपयोग लघु-श्रृंखला वाले हाइड्रोकार्बन को सुगंधित करके उनकी ऑक्टेन रेटिंग में सुधार करने के लिए भी किया जा सकता है।<ref>{{Cite news|url=http://www.essentialchemicalindustry.org/processes/cracking-isomerisation-and-reforming.html|title=क्रैकिंग और संबंधित रिफाइनरी|last=Lichtarowicz|first=Marek|access-date=2017-12-03|language=en-gb}}</ref> | ||
Line 151: | Line 147: | ||
*[http://www.ifp.fr/IFP/fr/IFP02OGS.nsf/(VNoticesOGST)/AD4A1392D20E5AAEC1256CDE0055399E/$file/decroocq_52n5.pdf?openelement Major scientific and technical challenges about development of new refining processes] {{Webarchive|url=https://web.archive.org/web/20061124190608/http://www.ifp.fr/IFP/fr/IFP02OGS.nsf/(VNoticesOGST)/AD4A1392D20E5AAEC1256CDE0055399E/$file/decroocq_52n5.pdf?openelement |date=2006-11-24 }} (IFP website) | *[http://www.ifp.fr/IFP/fr/IFP02OGS.nsf/(VNoticesOGST)/AD4A1392D20E5AAEC1256CDE0055399E/$file/decroocq_52n5.pdf?openelement Major scientific and technical challenges about development of new refining processes] {{Webarchive|url=https://web.archive.org/web/20061124190608/http://www.ifp.fr/IFP/fr/IFP02OGS.nsf/(VNoticesOGST)/AD4A1392D20E5AAEC1256CDE0055399E/$file/decroocq_52n5.pdf?openelement |date=2006-11-24 }} (IFP website) | ||
[[Category:All articles to be expanded]] | |||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles to be expanded from दिसंबर 2017]] | |||
[[Category:Articles using small message boxes]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:Articles with unsourced statements from May 2014]] | |||
[[Category:CS1 British English-language sources (en-gb)]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 04/11/2022]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:ईंधन प्रौद्योगिकी]] | |||
[[Category:तेल शोधन]] | |||
[[Category:रासायनिक प्रक्रियाएं]] | [[Category:रासायनिक प्रक्रियाएं]] | ||
Latest revision as of 17:18, 26 October 2023
उत्प्रेरक सुधार एक रासायनिक प्रक्रिया है जिसका उपयोग कच्चे तेल (सामान्यतः कम ओकटाइन रेटिंग वाले) से आसुत पेट्रोलियम को शोधशाला में पेट्रोलियम नेफ्थास उच्च-ऑक्टेन तरल उत्पादों में परिवर्तित करने के लिए किया जाता है, जिन्हें सुधारक कहा जाता है, जो उच्च-ऑक्टेन गैसोलीन के लिए प्रीमियम सम्मिश्रण स्टॉक हैं। यह प्रक्रिया निम्न-ऑक्टेन रैखिक हाइड्रोकार्बन को शाखित अल्केन्स और चक्रीय नेफ्थीन में परिवर्तित करती है, तब उच्च-ऑक्टेन सुगंधित हाइड्रोकार्बन का उत्पादन करने के लिए आंशिक रूप से निर्जलित होते हैं। डिहाइड्रोजनीकरण भी महत्वपूर्ण मात्रा में उपोत्पाद हाइड्रोजन गैस का उत्पादन करता है, जिसे हाइड्रोकार्बन जैसी अन्य शोधशाला में प्रक्रियाओं में लाया जाता है। एक पक्ष प्रतिक्रिया हाइड्रोजनोलिसिस है, जो कम मूल्य के हल्के हाइड्रोकार्बन, जैसे मीथेन , एटैन , प्रोपेन और ब्यूटेनस का उत्पादन करती है।
गैसोलीन सम्मिश्रण स्टॉक के अतिरिक्त, सुधारक सुगंधित थोक रसायनों का मुख्य स्रोत है, जैसे बेंजीन , टोल्यूनि, ज़ाइलीन और एथिलबेनज़ीन | जिनके विविध उपयोग सबसे महत्वपूर्ण रूप से प्लास्टिक में रूपांतरण के लिए कच्चे माल के रूप में हैं । चूँकि , सुधारक की बेंजीन सामग्री इसे कासीनजन बनाती है, जिसके कारण सरकारी नियमों को प्रभावी ढंग से इसकी बेंजीन सामग्री को कम करने के लिए आगे की प्रक्रिया की आवश्यकता होती है।
यह प्रक्रिया प्राकृतिक गैस , नेफ्था या अन्य पेट्रोलियम-व्युत्पन्न फीडस्टॉक्स से हाइड्रोजन, अमोनिया और मेथनॉल जैसे उत्पादों का उत्पादन करने के लिए औद्योगिक रूप से उपयोग की जाने वाली उत्प्रेरक भाप सुधार प्रक्रिया से अधिक भिन्न है और इसलिए भ्रमित नहीं होना चाहिए, न ही इस प्रक्रिया को विभिन्न अन्य उत्प्रेरक सुधार प्रक्रियाओं के साथ भ्रमित किया जाना है जो ईंधन कोशिकाओं या अन्य उपयोगों के लिए हाइड्रोजन का उत्पादन करने के लिए मेथनॉल या बायोमास-व्युत्पन्न फीडस्टॉक्स का उपयोग करते हैं।
ये दो मुख्य वर्ग हैं जिनमें सुधार प्रक्रियाओं के लिए उपयोग किए जाने वाले उत्प्रेरक आते हैं।
- समर्थित महान धातु
- गैर-महान संक्रमण धातु
विभिन्न प्रक्रियाओं का उपयोग करने वाले सिनगैस के संश्लेषण के लिए सबसे अच्छा उत्प्रेरक कई शोधों का विषय रहा है। रोडियम,[1][2] रूथेनियम,[3][4] और प्लैटिनम ,[5][6] साथ ही दुर्ग [7] और इरिडियम [8] उत्प्रेरक, सभी हाइड्रोजन उत्पादन , उत्प्रेरक थर्मल अपघटन, और शुष्क सुधार उत्प्रेरक पर गहन अध्ययन का विषय रहा हैं।[9] नोबल धातु-आधारित उत्प्रेरक बहुत अधिक प्रभावी होते हैं और कार्बन उत्पादन या ऑक्सीकरण द्वारा निष्क्रिय होने के लिए अधिकांश कम संवेदनशील होते हैं, लेकिन क्योंकि वे अधिक मितव्ययी होते हैं (कुल धातुओं की तुलना में 100-150 गुना कम लागत), वे कम बार-बार उपयोग किए जाते हैं[10] औद्योगिक उपयोगों में, निकेल पर आधारित उत्प्रेरकों का अधिक से अधिक उपयोग किया जाता है। चूँकि,कार्बन कार्बन संचय के कारण उनका लचीलापन कम है। मीथेन सुधार के लिए सबसे महत्वपूर्ण विषय, विशेष रूप से शुष्क सुधार में, गैर-महान धातु उत्प्रेरक के लिए कार्बन जमाव का दमन है।उत्प्रेरकों की सतह की बुनियादीता को बढ़ाना और सक्रिय अवयवों के कण आकार को विनियमित करना कार्बन को जमा होने से रोकने के लिए उपयोग की जाने वाली दो तकनीकें हैं। मेटल-सपोर्ट इंटरेक्शन में सुधार, ठोस समाधानों का निर्माण, और प्लाज्मा प्रक्रियाएं केवल कुछ रणनीतियाँ हैं जिन्हें धातु के कणों के आकार को प्रबंधित करने के लिए विकसित किया गया है। एक समर्थन या प्रमोटर के रूप में मूल धातु ऑक्साइड आसंजन का उपयोग करके उत्प्रेरक की सतह की मूलता में वृद्धि हुई थी।कई लेखकों के काम के परिणामस्वरूप बढ़े हुए उत्प्रेरक और प्रक्रियाओं ने समग्र दक्षता और पर्यावरणीय प्रदर्शन में सुधार किया है।[11][12]
इतिहास
1940 के दशक में, यूनिवर्सल ऑयल प्रोडक्ट्स (यूओपी) के लिए काम करने वाले एक शोध रसायनज्ञ, व्लादिमीर हेन्सेल,ने प्लैटिनम युक्त उत्प्रेरक का उपयोग करके एक उत्प्रेरक सुधार प्रक्रिया विकसित की।[13] बाद में बाद में 1949 में यूओपी द्वारा लो ऑक्टेन नेफ्थास से उच्च ऑक्टेन गैसोलीन के उत्पादन के लिए हेन्सेल की प्रक्रिया का व्यावसायीकरण किया गया और यूओपी प्रक्रिया को प्लेटफ़ॉर्मिंग प्रक्रिया के रूप में जाना जाने लगा|[14] पहली प्लेटफ़ॉर्मिंग इकाई 1949 में सड़क कैंसर के मुस्केगोन में ओल्ड डच शोधशाला कंपनी की शोधशाला में बनाई गई थी।
उसके बाद के वर्षों में, कुछ प्रमुख तेल कंपनियों और अन्य संगठनों द्वारा इस प्रक्रिया के कई अन्य संस्करण विकसित किए गए हैं।आज, दुनिया भर में उत्पादित अधिकांश गैसोलीन उत्प्रेरक सुधार प्रक्रिया से प्राप्त होता है।
विकसित किए गए कुछ अन्य उत्प्रेरक सुधार संस्करणों के नाम के लिए, जिनमें से सभी ने प्लैटिनम और/या रेनियम उत्प्रेरक का उपयोग किया:
- रेनिफॉर्मिंग: शेवरॉन ऑयल कंपनी द्वारा विकसित।
- सीसीआर प्लेटफॉर्मिंग: यूनिवर्सल ऑयल प्रोडक्ट्स (यूओपी) द्वारा विकसित, निरंतर उत्प्रेरक पुनर्जनन के लिए डिज़ाइन किया गया एक प्लेटफ़ॉर्मिंग संस्करण।
- पॉवरफॉर्मिंग: एसो,ऑयल कंपनी द्वारा विकसित, जिसे वर्तमान में एक्सॉनमोबिल के नाम से जाना जाता है।
- मैग्नाफॉर्मिंग: एंगेलहार्ड और एआरसीओ द्वारा विकसित।
- अल्ट्राफॉर्मिंग: इंडियाना के स्टैंडर्ड ऑयल द्वारा विकसित, जो अब ब्रिटिश पेट्रोलियम का एक हिस्सा है।
- हौड्रिफॉर्मिंग: हौड्री प्रोसेस कॉर्पोरेशन द्वारा विकसित।
- ऑक्टेनाइजिंग: पेट्रोलियम के फ्रेंच संस्थान (आईएफपी) की सहायक एक्सेंस द्वारा विकसित एक उत्प्रेरक सुधार संस्करण, जिसे निरंतर उत्प्रेरक पुनर्जनन के लिए डिज़ाइन किया गया है।
रसायन विज्ञान
पेट्रोलियम रिफाइनरियों में उपयोग की जाने वाली उत्प्रेरक सुधार प्रक्रिया की प्रतिक्रिया रसायन शास्त्र का वर्णन करने से पहले, उत्प्रेरक सुधार फीडस्टॉक्स के रूप में उपयोग किए जाने वाले विशिष्ट नाफ्थाओं पर चर्चा की जाएगी।
विशिष्ट नेफ्था फीडस्टॉक्स
एक पेट्रोलियम में कई इकाई संचालन और इकाई प्रक्रियाएँ सम्मलित होती हैं।शोधशाला में पहली इकाई का संचालन परिष्कृत किए जा रहे पेट्रोलियम कच्चे तेल का निरंतर आसवन है, और यह शोधशाला के गैसोलीन उत्पाद का एक प्रमुख घटक बन जाएगा, जब इसे सल्फर युक्त हाइड्रोकार्बन को हटाने के लिए एक उत्प्रेरक हाइड्रोडेसल्फराइजेशन के माध्यम से संसाधित किया जाता है और इसके हाइड्रोकार्बन अणुओं को अधिक जटिल अणुओं में सुधारने के लिए एक उत्प्रेरक सुधारक होता है। एक उच्च ऑक्टेन रेटिंग मान। नाफ्था बहुत से विभिन्न हाइड्रोकार्बन यौगिकों का मिश्रण है। इसका प्रारंभिक क्वथनांक लगभग 35 °C और अंतिम क्वथनांक लगभग 200 °C होता है, और इसमें एल्केन , नैफ्थीन और सुगंधित हाइड्रोकार्बन होते हैं जिनमें 6 कार्बन परमाणु से लेकर लगभग 10 या 11 कार्बन परमाणु होते हैं।
कच्चे तेल के आसवन से नेफ्था को अधिकांशतः 6 या उससे कम कार्बन परमाणुओं वाले हाइड्रोकार्बन के हल्के नेफ्था का उत्पादन करने के लिए और 6 से अधिक के साथ हाइड्रोकार्बन के अधिकांश वाले भारी नेफ्था का उत्पादन करने के लिए आसुत किया जाता है। भारी नेफ्था का प्रारंभिक क्वथनांक लगभग 140 से 150 डिग्री सेल्सियस और अंतिम क्वथनांक लगभग 190 से 205 डिग्री सेल्सियस होता है।कच्चे तेल के आसवन से प्राप्त नैफ्था को "स्ट्रेट-रन" नेफ्था कहा जाता है।
यह सीधे चलने वाला भारी नाफ्था है जिसे आमतौर पर एक उत्प्रेरक सुधारक में संसाधित किया जाता है क्योंकि प्रकाश नाफ्था में 6 या उससे कम कार्बन परमाणुओं वाले अणु होते हैं, जो सुधार होने पर ब्यूटेन और कम आणविक भार वाले हाइड्रोकार्बन में दरार डालते हैं जो उच्च के रूप में उपयोगी नहीं होते हैं- ऑक्टेन गैसोलीन सम्मिश्रण घटक। इसके अतिरिक्त,6 कार्बन परमाणुओं वाले अणुओं में एरोमेटिक्स बनाने की प्रवृत्ति होती है जो अवांछनीय है क्योंकि कई देशों में सरकारी पर्यावरणीय नियम एरोमैटिक्स की मात्रा को सीमित करते हैं जिसमें गैसोलीन सम्मलित हो सकता है।[15][16][17] दुनिया भर में बहुत सारे पेट्रोलियम कच्चे तेल के स्रोत हैं और प्रत्येक कच्चे तेल की अपनी अनूठी संरचना है। इसके अतिरिक्त, सभी रिफाइनरियां एक ही कच्चे तेल को संसाधित नहीं करती हैं और प्रत्येक रिफाइनरी अपने स्वयं के विशिष्ट प्रारंभिक और अंतिम क्वथनांक के साथ सीधे चलने वाले नाफ्था का उत्पादन करती है। दूसरे शब्दों में, नेफ्था एक विशिष्ट शब्द के अतिरिक्त एक सामान्य शब्द है।
नीचे दी गई तालिका में विभिन्न कच्चे तेलों से प्राप्त उत्प्रेरक सुधार के लिए उपलब्ध कुछ विशिष्ट सीधे चलने वाले भारी नेफ्था फीडस्टॉक्स सूचीबद्ध हैं। यह देखा जा सकता है कि वे पैराफिन, नैफ्थीन और एरोमेटिक्स की सामग्री में काफी भिन्न हैं:
Crude oil name Location |
Barrow Island Australia[18] |
Mutineer-Exeter Australia[19] |
CPC Blend Kazakhstan[20] |
Draugen North Sea[21] |
---|---|---|---|---|
Initial boiling point, °C | 149 | 140 | 149 | 150 |
Final boiling point, °C | 204 | 190 | 204 | 180 |
Paraffins, liquid volume % | 46 | 62 | 57 | 38 |
Naphthenes, liquid volume % | 42 | 32 | 27 | 45 |
Aromatics, liquid volume % | 12 | 6 | 16 | 17 |
कुछ शोधशाला में नेफ्था में ओलेफिन्स सम्मलित हैं, जैसे कई शोधशालाओ में उपयोग होने वाले द्रव उत्प्रेरक विलंबित कोकर प्रक्रियाओं से प्राप्त नेफ्थास। कुछ शोधशाला हाइड्रोडीसल्फराइजेशन भी कर सकती हैं और उन नेफ्थाओं को उत्प्रेरित रूप से सुधार सकती हैं। चूँकि, अधिकांश भाग के लिए, उत्प्रेरक सुधार मुख्य रूप से सीधे चलने वाले भारी नाफ्थास पर उपयोग किया जाता है, जैसे उपरोक्त तालिका में कच्चे तेल के आसवन से प्राप्त होता है।
प्रतिक्रिया रसायन
उत्प्रेरक सुधार प्रक्रिया में होने वाली कई रासायनिक प्रतिक्रियाएं होती हैं, जो सभी उत्प्रेरक और हाइड्रोजन के उच्च आंशिक दबाव की उपस्थिति में होती हैं| उत्प्रेरक सुधार के प्रकार या संस्करण के साथ-साथ वांछित प्रतिक्रिया गंभीरता के आधार पर, प्रतिक्रिया की स्थिति लगभग 495 से 525 डिग्री सेल्सियस के तापमान और लगभग 5 से 45 एटीएम के दबाव से होती है।[22][23]
सामान्यतः प्रयोग किए जाने वाले उत्प्रेरक सुधार उत्प्रेरक में प्लैटिनम और/या रेनियम जैसी उत्कृष्ट धातुएं होती हैं, जो सल्फर और नाइट्रोजन यौगिकों द्वारा उत्प्रेरक विषाक्तता के लिए अतिसंवेदनशील होती हैं। इसलिए, एक उत्प्रेरक सुधारक के लिए नाफ्था फीडस्टॉक हमेशा एक हाइड्रोडीसल्फराइजेशन इकाई में पूर्व-संसाधित होता है जो सल्फर और नाइट्रोजन यौगिकों दोनों को हटा देता है।अधिकांश उत्प्रेरकों को 1 पीपीएम से कम सल्फर और नाइट्रोजन सामग्री दोनों की आवश्यकता होती है।
चार प्रमुख उत्प्रेरक सुधार प्रतिक्रियाएं हैं: रेफरी नाम = गैरी>गैरी, जे.एच.; हैंडवर्क, जी.ई. (1984). पेट्रोलियम शोधन प्रौद्योगिकी और अर्थशास्त्र (दूसरा ed.). मार्सेल डेकर, इंक. ISBN 0-8247-7150-8.संदर्भ
- 1: नैफ्थीन का निर्जलीकरण उन्हें एरोमेटिक्स में परिवर्तित करता है , जैसा कि मिथाइलसाइक्लोहेक्सेन से टोल्यूनि (एक सुगंधित) में रूपांतरण को उदाहरण के रूप में नीचे दिखाया गया है:
:2: ओकटाइन के 2,5-डाइमिथाइलहेक्सेन (आइसोपैराफिन ) में रूपांतरण को उदाहरण के रूप में आइसोपैराफिन के लिए सामान्य पैराफिन का आइसोमराइज़ेशन , जैसा कि नीचे दिखाया गया है:
:3: पैराफिन का एरोमेटिक्स (सामान्यतः डीहाइड्रोसाइक्लाइज़ेशन कहा जाता है) के लिए डिहाइड्रोजनीकरण और गंध , जैसा कि हेपटैन से टोल्यूनि के रूपांतरण को उदाहरण के रूप में दिखाया गया है:
:4: पैराफिन का छोटे अणुओं में हाइड्रोक्रैकिंग, जैसा कि सामान्य हेप्टेन के आइसोपेंटेन और ईथेन में क्रैकिंग द्वारा उदाहरण के रूप में नीचे दिखाया गया है:
सुधार प्रतिक्रियाओं के उपरांत, अभिकारकों की कार्बन संख्या अपरिवर्तित रहती है, हाइड्रोकार्बन प्रतिक्रियाओं को छोड़कर जो हाइड्रोकार्बन अणु को कम कार्बन परमाणुओं वाले अणुओं में तोड़ते हैं।[23]पैराफिन का हाइड्रोकार्बन उपरोक्त चार प्रमुख सुधारात्मक प्रतिक्रियाओं में से एकमात्र है जो हाइड्रोजन का उपभोग करता है।सामान्य पैराफिन का समावयवीकरण हाइड्रोजन का उपभोग या उत्पादन नहीं करता है।चूँकि, नेफ्थेन के डिहाइड्रोजनेशन और पैराफिन के डीहाइड्रोसाइक्लाइज़ेशन दोनों ही हाइड्रोजन का उत्पादन करते हैं।पेट्रोलियम नेफ्थास के उत्प्रेरक सुधार में हाइड्रोजन का समग्र शुद्ध उत्पादन लगभग 50 से 200 घन मीटर हाइड्रोजन गैस (0 डिग्री सेल्सियस और 1 एटीएम पर) प्रति घन मीटर तरल नाफ्था फीडस्टॉक से होता है। संयुक्त राज्य अमेरिका की प्रथागत इकाइयों में, जो तरल नेफ्था फीडस्टॉक के प्रति बैरल (इकाई) 300 से 1200 क्यूबिक फीट हाइड्रोजन गैस (60 डिग्री फ़ारेनहाइट और 1 एटीएम पर) के बराबर है।[24] कई पेट्रोलियम रिफाइनरियों में, उत्प्रेरक सुधार में उत्पादित शुद्ध हाइड्रोजन रिफाइनरी में कहीं और उपयोग किए जाने वाले हाइड्रोजन के एक महत्वपूर्ण हिस्से की आपूर्ति करता है (उदाहरण के लिए, हाइड्रोडेसल्फराइजेशन प्रक्रियाओं में)। उत्प्रेरक पर बनने वाले किसी भी बहुलक को हाइड्रोजनोलाइज करने के लिए भी हाइड्रोजन आवश्यक है।
व्यवहार में, नेफ्था फीडस्टॉक में नैफ्थीन की मात्रा जितनी अधिक होगी, रिफॉर्मेट की गुणवत्ता उतनी ही बेहतर होगी और हाइड्रोजन का उत्पादन उतना ही अधिक होगा। सुधार के लिए सबसे अच्छा नेफ्था युक्त कच्चे तेल सामान्यतः पश्चिमी अफ्रीका या उत्तरी सागर से होते हैं, जैसे कि बोनी लाइट ऑयल या ट्रोल गैस क्षेत्र।
लंपिंग तकनीक का उपयोग करके मॉडल प्रतिक्रियाएं
उत्प्रेरक सुधार प्रक्रिया फीडस्टॉक, अनुपयोगी प्रतिक्रियाओं और उच्च तापमान सीमा में बहुत सारे घटकों के कारण, उत्प्रेरक सुधारक रिएक्टरों के डिजाइन और अनुकरण जटिलताओं के साथ हैं। लम्पिंग तकनीक का उपयोग जटिलताओं को कम करने के लिए बड़े पैमाने पर किया जाता है जिससे सुधार प्रणाली और गतिज दर मापदंडों का ठीक से वर्णन करने वाले गांठ और प्रतिक्रिया मार्ग फीडस्टॉक संरचना पर निर्भर न हों।[23]हाल के कार्यों में से एक में, नेफ्था को 15 प्रतिक्रियाओं के साथ 17 हाइड्रोकार्बन अंशों के संदर्भ में माना जाता है जिसमें C1 को C5 हाइड्रोकार्बन को हल्के पैराफिन के रूप में निर्दिष्ट किया जाता है और C6 को C8+ नेफ्था कट को आइसोपैराफिन्स , सामान्य पैराफिन, नेफ्थीन और एरोमेटिक्स के रूप में जाना जाता है।[23]उत्प्रेरक नेफ्था सुधार में प्रतिक्रियाएं प्राथमिक हैं और प्रत्येक प्रतिक्रिया की दर का वर्णन करने के लिए हौजेन-वाटसन लैंगमुइर-हिंशेलवुड प्रकार की प्रतिक्रिया दर अभिव्यक्तियों का उपयोग किया जाता है| इस प्रकार के दर समीकरण स्पष्ट रूप से उत्प्रेरक के साथ रासायनिक प्रजातियों की बातचीत के लिए उत्तरदायी होते हैं और इसमें भाजक होते हैं जिसमें प्रतिक्रियाशील प्रजातियों के सोखने की विशेषताएँ प्रस्तुत की जाती हैं।[23]
प्रक्रिया विवरण
सबसे अधिक उपयोग की जाने वाली उत्प्रेरक सुधार इकाई में तीन रासायनिक प्रतिघातक होते हैं, जिनमें से प्रत्येक में उत्प्रेरक का एक निश्चित बिस्तर होता है, और सभी उत्प्रेरक को नियमित उत्प्रेरक पुनर्जनन समाप्ति के दौरान सीटू रसायन विज्ञान और रासायनिक इंजीनियरिंग में पुनर्जीवित किया जाता है, जो प्रत्येक 6 से 24 महीनों में लगभग एक बार होता है। ऐसी इकाई को अर्ध-पुनर्योजी उत्प्रेरक सुधारक (एसआरआर) के रूप में जाना जाता है।
कुछ उत्प्रेरक सुधार इकाइयों में एक अतिरिक्त स्पेयर या स्विंग प्रतिघातक होता है और प्रत्येक प्रतिघातक को भिन्न - भिन्न किया जा सकता है ताकि किसी एक प्रतिघातक को सीटू पुनर्जनन में किया जा सके जबकि अन्य रिएक्टर प्रचालन में हों। जब उस प्रतिघातक को फिर से बनाया जाता है, तो यह दूसरे प्रतिघातक को बदल देता है, जो बदले में भिन्न हो जाता है ताकि इसे फिर से बनाया जा सके। ऐसी इकाइयाँ, जिन्हें चक्रीय उत्प्रेरक सुधारक कहा जाता है, बहुत सामान्य नहीं हैं। चक्रीय उत्प्रेरक सुधारक आवश्यक समाप्ति के बीच की अवधि को बढ़ाने का काम करते हैं।
नवीनतम और सबसे आधुनिक प्रकार के उत्प्रेरक सुधारकों को निरंतर उत्प्रेरक पुनर्जनन (सीसीआर) सुधारक कहा जाता है। इस तरह की इकाइयों को एक विशेष पुनर्योजी में उत्प्रेरक के हिस्से के निरंतर इन-सीटू पुनर्जनन द्वारा परिभाषित किया जाता है, और पुन: उत्पन्न उत्प्रेरक को ऑपरेटिंग प्रतिघातको के निरंतर जोड़ द्वारा परिभाषित किया जाता है। 2006 तक, दो सीसीआर संस्करण उपलब्ध थे: यूओपी की सीसीआर प्लेटफ़ॉर्मर प्रक्रिया[25] और एक्सेंस की ऑक्टेनाइजिंग प्रक्रिया।[26] सीसीआर इकाइयों की स्थापना और उपयोग तेजी से बढ़ रहा है।
प्रारंभिक उत्प्रेरक सुधार इकाइयों में से कई (1950 और 1960 के दशक में) गैर-पुनर्योजी थे कि वे स्वस्थानी उत्प्रेरक पुनर्जनन में प्रदर्शन नहीं करते थे। इसके अतिरिक्त, जब आवश्यक हो, पुराने उत्प्रेरक को नए उत्प्रेरक द्वारा बदल दिया गया था और वृद्ध उत्प्रेरक को उत्प्रेरक निर्माताओं को या तो पुनर्जीवित करने के लिए या वृद्ध उत्प्रेरक की प्लैटिनम सामग्री को पुनर्प्राप्त करने के लिए भेज दिया गया था। बहुत कम, यदि कोई हो, वर्तमान में प्रचालन में उत्प्रेरक सुधारक गैर-पुनर्योजी हैं।[citation needed] नीचे दिया गया प्रक्रिया प्रवाह आरेख एक विशिष्ट अर्ध-पुनर्योजी उत्प्रेरक सुधार इकाई को दर्शाता है।
तरल फ़ीड (आरेख में नीचे बाईं ओर) प्रतिक्रिया दबाव (5-45 एटीएम) तक पंप किया जाता है और हाइड्रोजन युक्त रीसायकल गैस की एक धारा से जुड़ जाता है। परिणामी तरल-गैस मिश्रण को उष्मा का आदान प्रदान के माध्यम से प्रवाहित करके पहले से गरम किया जाता है। वाष्पीकृत अभिकारकों के पहले रिएक्टर में प्रवेश करने से पहले पहले से गरम फ़ीड मिश्रण को पूरी तरह से वाष्पीकृत और प्रतिक्रिया तापमान (495-520 डिग्री सेल्सियस) तक गर्म किया जाता है। जैसा कि रिएक्टर में उत्प्रेरक के निश्चित बिस्तर के माध्यम से वाष्पीकृत अभिकारक प्रवाहित होते हैं, प्रमुख प्रतिक्रिया नैफ्थेन का एरोमेटिक्स का निर्जलीकरण है जो अत्यधिक एंडोथर्मिक है और रिएक्टर के प्रवेश और बाहर निकलने के बीच एक बड़े तापमान में कमी का परिणाम है। आवश्यक प्रतिक्रिया तापमान और प्रतिक्रिया की दर को बनाए रखने के लिए, दूसरे रिएक्टर के माध्यम से प्रवाहित होने से पहले वाष्पीकृत धारा को दूसरे फायर किए गए हीटर में फिर से गरम किया जाता है। दूसरे रिएक्टर में तापमान फिर से कम हो जाता है और तीसरे रिएक्टर से बहने से पहले वाष्पीकृत धारा को तीसरे फायर किए गए हीटर में फिर से गर्म करना चाहिए। जैसे ही वाष्पीकृत धारा तीन रिएक्टरों के माध्यम से आगे बढ़ती है, प्रतिक्रिया की दर कम हो जाती है और इसलिए रिएक्टर बड़े हो जाते हैं। इसी समय, रिएक्टरों के बीच आवश्यक पुनः ताप की मात्रा कम हो जाती है।अधिकांश उत्प्रेरक सुधार इकाई के वांछित प्रदर्शन को प्रदान करने के लिए तीन रिएक्टरों की आवश्यकता होती है
कुछ प्रतिष्ठान तीन भिन्न -भिन्न फायर किए गए हीटरों का उपयोग करते हैं जैसा कि योजनाबद्ध आरेख में दिखाया गया है और कुछ इंस्टॉलेशन तीन भिन्न -भिन्न हीटिंग कॉइल के साथ एक सिंगल फायर किए गए हीटर का उपयोग करते हैं।
तीसरे रिएक्टर से गर्म प्रतिक्रिया उत्पादों को हीट एक्सचेंजर के माध्यम से प्रवाहित करके आंशिक रूप से ठंडा किया जाता है, जहां पहले रिएक्टर को फ़ीड करके गरम किया जाता है और फिर दबाव नियंत्रक (पीसी) के माध्यम से गैस विभाजक में प्रवाहित होने से पहले पानी ठंडा हीट एक्सचेंजर के माध्यम से प्रवाहित होता है।
गैस विभाजक पोत से अधिकांश हाइड्रोजन-समृद्ध गैस रीसायकल हाइड्रोजन गैस कंप्रेसर के चूषण में लौट आती है और सुधार प्रतिक्रियाओं से हाइड्रोजन-समृद्ध गैस का शुद्ध उत्पादन अन्य रिफाइनरी प्रक्रियाओं में उपयोग के लिए निर्यात किया जाता है जो हाइड्रोजन का उपभोग करते हैं (जैसे कि हाइड्रोडेसल्फराइजेशन इकाइयां और/या हाइड्रोक्रैकिंग)।
गैस विभाजक पोत से तरल को एक भिन्नात्मक स्तंभ में भेजा जाता है जिसे सामान्यतः स्टेबलाइजर कहा जाता है। स्टेबलाइजर से उपरि गैस उत्पाद में हाइड्रोकार्बन प्रतिक्रियाओं द्वारा उत्पादित प्रतिफल मीथेन, ईथेन, प्रोपेन और ब्यूटेन गैसें होती हैं, जैसा कि एक उत्प्रेरक सुधारक की प्रतिक्रिया रसायन विज्ञान की उपरोक्त चर्चा में बताया गया है, और इसमें हाइड्रोजन की कुछ छोटी मात्रा भी हो सकती है। प्रोपेन और ब्यूटेन को हटाने और पुनर्प्राप्त करने के लिए उस गैस बंद को रिफाइनरी के केंद्रीय गैस प्रसंस्करण संयंत्र में भेजा जाता है। इस तरह के प्रसंस्करण के बाद अवशिष्ट गैस रिफाइनरी की ईंधन गैस प्रणाली का हिस्सा बन जाती है।
स्टेबलाइजर के नीचे उत्पाद हाई-ऑक्टेन लिक्विड रिफॉर्मेट है जो रिफाइनरी के उत्पाद गैसोलीन का एक घटक बन जाएगा। रिफॉर्मेट को सीधे गैसोलीन पोखर में मिश्रित किया जा सकता है लेकिन अधिकांशतः इसे दो या दो से अधिक धाराओं में भिन्न किया जाता है। एक सामान्य शोधन योजना में दो धाराओं, हल्के और भारी सुधार में विभाजित करना सम्मलित है। लाइट रिफॉर्मेट में कम ऑक्टेन होता है और यदि यह इकाई उपलब्ध हो तो इसे आइसोमेराइजेशन फीडस्टॉक के रूप में उपयोग किया जा सकता है। भारी सुधार ऑक्टेन में उच्च और बेंजीन में कम है, इसलिए यह गैसोलीन पूल के लिए एक उत्कृष्ट सम्मिश्रण घटक है।
रिफॉर्मेट में बेंजीन की सामग्री को कम करने के लिए बेंजीन को अधिकांशतः एक विशिष्ट ऑपरेशन के साथ हटा दिया जाता है क्योंकि तैयार गैसोलीन में अधिकांशतः बेंजीन सामग्री की ऊपरी सीमा होती है (यूई में यह 1% मात्रा है)। निकाले गए बेंजीन को रासायनिक उद्योग के लिए फीडस्टॉक के रूप में विपणन किया जा सकता है।
उत्प्रेरक और तंत्र
अधिकांश सुधारक उत्प्रेरक में अनाकार सिलिका-एल्यूमिना समर्थन आधार पर प्लेटिनम या रेनियम होता है, और कुछ में प्लैटिनम और रेनियम दोनों होते हैं। ताजा उत्प्रेरक का उपयोग करने से पहले क्लोराइड किया जाता है।
स्पष्ट धातुओं (प्लैटिनम और रेनियम) को डिहाइड्रोजनीकरण प्रतिक्रियाओं के लिए उत्प्रेरक साइट माना जाता है और क्लोरीनयुक्त एल्यूमिना आइसोमेराइजेशन, साइक्लाइज़ेशन और हाइड्रोक्रैकिंग प्रतिक्रियाओं के लिए आवश्यक अम्ल साइट प्रदान करता है। [27]क्लोरीनेशन के मध्य सबसे अधिक सावधानी देखनी होती है। अर्थ : वास्तव में, यदि क्लोरीनयुक्त नहीं किया जाता है, तो उत्प्रेरक में प्लैटिनम और रेनियम वाष्प चरण में हाइड्रोजन द्वारा लगभग तुरंत धात्विक अवस्था में कम हो जाएंगे। दूसरी ओर, अत्यधिक क्लोरीनीकरण उत्प्रेरक की गतिविधि को अत्यधिक दबा सकता है।
अर्ध-पुनर्योजी उत्प्रेरक सुधारक में उत्प्रेरक की गतिविधि कार्बन जमाव और क्लोराइड हानि से संचालन के दौरान समय के साथ कम हो जाती है। उत्प्रेरक की गतिविधि को समय-समय पर पुनर्जीवित किया जा सकता है या क्लोरीनीकरण के बाद कोक के उच्च तापमान ऑक्सीकरण द्वारा पुन: उत्पन्न किया जा सकता है। जैसा कि यहां पहले कहा गया है, अर्ध-पुनर्योजी उत्प्रेरक सुधारक प्रति 6 से 24 महीनों में लगभग एक बार पुनर्जीवित होते हैं। प्रतिक्रिया की स्थिति में गंभीरता जितनी अधिक होगी, उत्पादित रिफॉर्मेट का ऑक्टेन उतना ही अधिक होगा, लेकिन दो पुनर्जनन के बीच चक्र की अवधि भी कम होगी। उत्प्रेरक की चक्र अवधि भी फीडस्टॉक की गुणवत्ता पर बहुत निर्भर है। चूँकि, रिफाइनरी में उपयोग किए जाने वाले कच्चे तेल के स्वतंत्र रूप से, सभी उत्प्रेरकों को 180 डिग्री सेल्सियस के नेफ्था फीडस्टॉक के अधिकतम अंतिम क्वथनांक की आवश्यकता होती है।
सामान्यतः, उत्प्रेरक को मूल्यवान प्लैटिनम और/या रेनियम सामग्री के सुधार के लिए निर्माता को वापस करने से पहले शायद 3 या 4 बार पुनर्जीवित किया जा सकता है।[27]
कमजोरियां और प्रतिस्पर्धा
सल्फर और नाइट्रोजन द्वारा संदूषण के लिए उत्प्रेरक सुधार की संवेदनशीलता को सुधारक में प्रवेश करने से पहले नेफ्था को हाइड्रोट्रीट करने की आवश्यकता होती है, जिससे प्रक्रिया की लागत और जटिलता बढ़ जाती है। डिहाइड्रोजनीकरण, सुधार का एक महत्वपूर्ण घटक, एक जोरदार एंडोथर्मिक प्रतिक्रिया है, और इस तरह, रिएक्टर पोत को बाहरी रूप से गर्म करने की आवश्यकता होती है। यह प्रक्रिया की लागत और उत्सर्जन दोनों में योगदान देता है। उत्प्रेरक सुधार में सामान्य पैराफिन की उच्च सामग्री के साथ नेफ्था को संसाधित करने की सीमित क्षमता होती है, उदा। गैस-टू-लिक्विड (जीटीएल) इकाइयों से नेफ्थास। कई देशों में सम्मिलित नियमों द्वारा अनुमेय की तुलना में सुधार में बेंजीन की बहुत अधिक सामग्री है। इसका तातपर्य यह है कि सुधार को या तो एक एरोमैटिक्स निष्कर्षण इकाई में संसाधित किया जाना चाहिए, या सुगंधित पदार्थों की कम सामग्री के साथ उपयुक्त हाइड्रोकार्बन धाराओं के साथ मिश्रित किया जाना चाहिए। उत्प्रेरक सुधार के लिए रिफाइनरी में अन्य प्रसंस्करण इकाइयों की एक पूरी श्रृंखला की आवश्यकता होती है (आसवन टावर के अलावा, एक नेफ्था हाइड्रोट्रीटर, आमतौर पर प्रकाश नेफ्था, एक सुगंधित निष्कर्षण इकाई, आदि को संसाधित करने के लिए एक आइसोमेराइजेशन इकाई) जो इसे छोटे ( माइक्रो-) रिफाइनरी है।
उत्प्रेरक सुधार प्रक्रियाओं के मुख्य लाइसेंसकर्ता, यूओपी और एक्सेंस, उत्प्रेरकों को बेहतर बनाने के लिए लगातार काम करते हैं, लेकिन सुधार की दर अपनी भौतिक सीमाओं तक पहुंच रही है। यह शेवरॉन फिलिप्स और एनजीटी समसामयिकी परीक्षण (मेथाफॉर्मिंग केमिकल (एरोमैक्स जैसी कंपनियों द्वारा नेफ्था को गैसोलीन में संसाधित करने के लिए नई तकनीकों के उद्भव को चला रहा है। [28])[28][29]).
अर्थशास्त्र
This section needs expansion. You can help by adding to it. (दिसंबर 2017) |
उत्प्रेरक सुधार इस मायने में लाभदायक है कि यह लंबी-श्रृंखला वाले हाइड्रोकार्बन को परिवर्तित करता है, जिसके लिए उच्च आपूर्ति के बावजूद सीमित मांग है, शॉर्ट-चेन वाले हाइड्रोकार्बन में, जो पेट्रोल ईंधन में उनके उपयोग के कारण बहुत अधिक मांग में हैं। इसका उपयोग लघु-श्रृंखला वाले हाइड्रोकार्बन को सुगंधित करके उनकी ऑक्टेन रेटिंग में सुधार करने के लिए भी किया जा सकता है।[30]
संदर्भ
- ↑ Horn, R; Williams, K; Degenstein, N; Schmidt, L (2006-08-15). "रोडियम पर मीथेन के उत्प्रेरक आंशिक ऑक्सीकरण द्वारा सिनगैस: स्थानिक रूप से हल किए गए माप और संख्यात्मक सिमुलेशन से यांत्रिक निष्कर्ष". Journal of Catalysis (in English). 242 (1): 92–102. doi:10.1016/j.jcat.2006.05.008.
- ↑ Salazar-Villalpando, Maria D.; Miller, Adam C. (March 2011). "मीथेन और आइसोटोपिक ऑक्सीजन विनिमय प्रतिक्रियाओं का उत्प्रेरक आंशिक ऑक्सीकरण 18O से अधिक लेबल Rh/Gadolinium doped ceria". International Journal of Hydrogen Energy (in English). 36 (6): 3880–3885. doi:10.1016/j.ijhydene.2010.11.040.
- ↑ Ishihara, A; Qian, E; Finahari, I; Sutrisna, I; Kabe, T (2005-04-27). "निकल भाप सुधार उत्प्रेरक पर रूथेनियम का अतिरिक्त प्रभाव". Fuel (in English): S0016236105000852. doi:10.1016/j.fuel.2005.03.006.
- ↑ Shamsi, Abolghasem (January 2009). "मीथेन का आंशिक ऑक्सीकरण और उत्प्रेरक गतिविधि और चयनात्मकता पर सल्फर का प्रभाव". Catalysis Today (in English). 139 (4): 268–273. doi:10.1016/j.cattod.2008.03.033.
- ↑ Souza, Mariana M.V.M.; Macedo Neto, Octávio R.; Schmal, Martin (March 2006). "समर्थित पीटी उत्प्रेरकों पर प्राकृतिक गैस से संश्लेषण गैस उत्पादन". Journal of Natural Gas Chemistry (in English). 15 (1): 21–27. doi:10.1016/S1003-9953(06)60003-0.
- ↑ Salazar-Villalpando, Maria D.; Miller, Adam C. (January 2011). "मिथेन अपघटन द्वारा हाइड्रोजन उत्पादन और पीटी/CexGd1−xO2 और Pt/CexZr1−xO2 पर मीथेन के उत्प्रेरक आंशिक ऑक्सीकरण". Chemical Engineering Journal (in English). 166 (2): 738–743. doi:10.1016/j.cej.2010.11.076.
- ↑ Ryu, J; Lee, K; Kim, H; Yang, J; Jung, H (2008-05-08). "मीथेन से सिनगैस में आंशिक ऑक्सीकरण के लिए धातु मोनोलिथ पर पैलेडियम-आधारित उत्प्रेरक का प्रचार". Applied Catalysis B: Environmental (in English). 80 (3–4): 306–312. doi:10.1016/j.apcatb.2007.10.010.
- ↑ Richardson, J.T.; Paripatyadar, S.A. (May 1990). "समर्थित रोडियम के साथ मीथेन का कार्बन डाइऑक्साइड सुधार". Applied Catalysis (in English). 61 (1): 293–309. doi:10.1016/S0166-9834(00)82152-1.
- ↑ Barbero, J. (2003). "[कोई शीर्षक नहीं मिला]". Catalysis Letters. 87 (3/4): 211–218. doi:10.1023/A:1023407609626. S2CID 91889442.
- ↑ Zeppieri, M.; Villa, P.L.; Verdone, N.; Scarsella, M.; De Filippis, P. (2010-10-20). "निकेल- और रोडियम-आधारित उत्प्रेरकों पर मीथेन भाप सुधार प्रतिक्रिया का काइनेटिक". Applied Catalysis A: General. 387 (1–2): 147–154. doi:10.1016/j.apcata.2010.08.017. ISSN 0926-860X.
- ↑ Ertl, Gerhard; Knözinger, Helmut; Schüth, Ferdi; Weitkamp, Jens, eds. (2008-03-15). विषम उत्प्रेरण की पुस्तिका: ऑनलाइन (in English). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527610044. ISBN 978-3-527-31241-2.
- ↑ Molenbroek, Alfons M.; Helveg, Stig; Topsøe, Henrik; Clausen, Bjerne S. (September 2009). "विषम उत्प्रेरण में नैनो-कण". Topics in Catalysis (in English). 52 (10): 1303–1311. doi:10.1007/s11244-009-9314-1. ISSN 1022-5528. S2CID 95513283.
- ↑ A Biographical Memoir of Vladimir Haensel written by Stanley Gembiki, published by the National Academy of Sciences in . 2006.
- ↑ Platforming described on UOP's website Archived December 30, 2006, at the Wayback Machine
- ↑ Canadian regulations on benzene in gasoline Archived 2004-10-12 at the Wayback Machine
- ↑ United Kingdom regulations on benzene in gasoline Archived November 23, 2006, at the Wayback Machine
- ↑ USA regulations on benzene in gasoline
- ↑ "Barrow Island crude oil assay" (PDF). Archived from the original (PDF) on 2008-03-09. Retrieved 2006-12-16.
- ↑ "Mutineer-Exeter crude oil assay" (PDF). Archived from the original (PDF) on 2008-03-09. Retrieved 2006-12-16.
- ↑ CPC Blend crude oil assay
- ↑ Draugen crude oil assay Archived November 28, 2007, at the Wayback Machine
- ↑ OSHA Technical Manual, Section IV, Chapter 2, Petroleum refining Processes (A publication of the Occupational Safety and Health Administration)
- ↑ 23.0 23.1 23.2 23.3 23.4 Arani, H. M.; Shirvani, M.; Safdarian, K.; Dorostkar, E. (December 2009). "उत्प्रेरक नेफ्था सुधार के गतिज मॉडल के लिए लंपिंग प्रक्रिया". Brazilian Journal of Chemical Engineering. 26 (4): 723–732. doi:10.1590/S0104-66322009000400011. ISSN 0104-6632.
- ↑ US Patent 5011805, Dehydrogenation, dehydrocyclization and reforming catalyst (Inventor: Ralph Dessau, Assignee: Mobil Oil Corporation)
- ↑ "सीसीआर प्लेटफार्मिंग" (PDF). uop.com. 2004. Archived from the original (PDF) on November 9, 2006.
- ↑ Octanizing Options Archived 2008-03-09 at the Wayback Machine (Axens website)
- ↑ 27.0 27.1 Cite error: Invalid
<ref>
tag; no text was provided for refs namedGary
- ↑ 28.0 28.1 "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2018-04-08. Retrieved 2018-04-08.
- ↑ "अग्रणी उद्योग पत्रिका "हाइड्रोकार्बन प्रोसेसिंग" एनजीटीएस की नवाचार प्रक्रिया को स्वीकार करती है".
- ↑ Lichtarowicz, Marek. "क्रैकिंग और संबंधित रिफाइनरी" (in British English). Retrieved 2017-12-03.
बाहरी संबंध
- Oil Refinery Processes, A Brief Overview
- Colorado School of Mines, Lecture Notes (Chapter 10, Refining Processes, Catalytic Refinery by John Jechura, Adjunct Professor)
- Students' Guide to Refining (scroll down to Platforming)
- Modern Refinery Website of Delft University of Technology, Netherlands (use search function for Reforming)
- Major scientific and technical challenges about development of new refining processes Archived 2006-11-24 at the Wayback Machine (IFP website)