एपिग्राफ (गणित): Difference between revisions

From Vigyanwiki
No edit summary
 
Line 11: Line 11:


:<math>\operatorname{graph} f := \left\{ (x, y) \in X \times Y ~:~ y = f(x) \right\}.</math>
:<math>\operatorname{graph} f := \left\{ (x, y) \in X \times Y ~:~ y = f(x) \right\}.</math>
 
{{em|'''{{visible anchor|सूक्ति|सूक्ति}}'''}}<nowiki> }} या </nowiki>{{em|'''{{visible anchor|सुपरग्राफ |सुपरग्राफ }}'''}} एक फलन का  <math>f : X \to [-\infty, \infty]</math> विस्तारित संख्या रेखा में मूल्यवान <math>[-\infty, \infty] = \R \cup \{ \pm \infty \}</math> समूह है{{sfn|Rockafellar|Wets|2009|pp=1-37}}
{{em|'''{{visible anchor|सूक्ति|सूक्ति}}'''}} }} या {{em|'''{{visible anchor|सुपरग्राफ |सुपरग्राफ }}'''}} एक फलन का  <math>f : X \to [-\infty, \infty]</math> विस्तारित संख्या रेखा में मूल्यवान <math>[-\infty, \infty] = \R \cup \{ \pm \infty \}</math> समूह है{{sfn|Rockafellar|Wets|2009|pp=1-37}}
:<math>
:<math>
\begin{alignat}{4}
\begin{alignat}{4}
Line 49: Line 48:
एपिग्राफ से फलनों का पुनर्निर्माण
एपिग्राफ से फलनों का पुनर्निर्माण


एपिग्राफ [[खाली सेट|खाली समुच्चय]] है यदि केवल फलन समान रूप से अनंत के बराबर है।
एपिग्राफ खाली समुच्चय है यदि केवल फलन समान रूप से अनंत के बराबर है।


जिस प्रकार किसी भी फलन को उसके ग्राफ़ से फिर से बनाया जा सकता है, उसी प्रकार किसी भी विस्तारित वास्तविक-मूल्यवान फलन को भी बनाया जा सकता है <math>f</math> पर <math>X</math> इसके एपिग्राफ से पुनर्निर्माण किया जा सकता है <math>E := \operatorname{epi} f</math> (यहां तक ​​कि जब <math>f</math> लेता है <math>\pm \infty</math> मान के रूप में)। दिया गया <math>x \in X,</math> मूल्य <math>f(x)</math> से बनाया जा सकता है <math>E \cap \left( \{ x \} \times \R \right)</math> का <math>E</math> खड़ी रेखा के साथ <math>\{ x \} \times \R</math> के माध्यम से गुजरते हुए <math>x</math> निम्नलिखित:
जिस प्रकार किसी भी फलन को उसके ग्राफ़ से फिर से बनाया जा सकता है, उसी प्रकार किसी भी विस्तारित वास्तविक-मूल्यवान फलन को भी बनाया जा सकता है <math>f</math> पर <math>X</math> इसके एपिग्राफ से पुनर्निर्माण किया जा सकता है <math>E := \operatorname{epi} f</math> (यहां तक ​​कि जब <math>f</math> लेता है <math>\pm \infty</math> मान के रूप में)। दिया गया <math>x \in X,</math> मूल्य <math>f(x)</math> से बनाया जा सकता है <math>E \cap \left( \{ x \} \times \R \right)</math> का <math>E</math> खड़ी रेखा के साथ <math>\{ x \} \times \R</math> के माध्यम से गुजरते हुए <math>x</math> निम्नलिखित:
Line 68: Line 67:
* {{annotated link|प्रभावी डोमेन}}
* {{annotated link|प्रभावी डोमेन}}
* {{annotated link|हाइपोग्राफ (गणित)}}
* {{annotated link|हाइपोग्राफ (गणित)}}
* {{annotated link|उचित उत्तल कार्य}}
* {{annotated link|उचित उत्तल फलन}}
 


==उद्धरण==
==उद्धरण==
{{commonscat|Epigraph and hypograph (mathematics)|epigraphs und hypographs}}
{{reflist|refs=
{{reflist|refs=
<ref name="NeittaanmäkiRepin2004">{{cite book|author1=Pekka Neittaanmäki|author2=Sergey R. Repin|title=Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates|url=https://books.google.com/books?id=s5DA9DerIs4C&pg=PA81|year=2004|publisher=Elsevier|isbn=978-0-08-054050-4|page=81}}</ref>
<ref name="NeittaanmäkiRepin2004">{{cite book|author1=Pekka Neittaanmäki|author2=Sergey R. Repin|title=Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates|url=https://books.google.com/books?id=s5DA9DerIs4C&pg=PA81|year=2004|publisher=Elsevier|isbn=978-0-08-054050-4|page=81}}</ref>
<ref name="AliprantisBorder2007">{{cite book|author1=Charalambos D. Aliprantis|author2=Kim C. Border|title=Infinite Dimensional Analysis: A Hitchhiker's Guide|url=https://books.google.com/books?id=4hIq6ExH7NoC&pg=PA8|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-32696-0|page=8|edition=3rd}}</ref>
<ref name="AliprantisBorder2007">{{cite book|author1=Charalambos D. Aliprantis|author2=Kim C. Border|title=Infinite Dimensional Analysis: A Hitchhiker's Guide|url=https://books.google.com/books?id=4hIq6ExH7NoC&pg=PA8|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-32696-0|page=8|edition=3rd}}</ref>
}}
}}


==संदर्भ==
==संदर्भ==
Line 83: Line 79:
* {{Rockafellar Wets Variational Analysis 2009 Springer}}
* {{Rockafellar Wets Variational Analysis 2009 Springer}}
* [[Ralph Tyrell Rockafellar|Rockafellar, Ralph Tyrell]] (1996), ''Convex Analysis'', Princeton University Press, Princeton, NJ. {{ISBN|0-691-01586-4}}.
* [[Ralph Tyrell Rockafellar|Rockafellar, Ralph Tyrell]] (1996), ''Convex Analysis'', Princeton University Press, Princeton, NJ. {{ISBN|0-691-01586-4}}.
{{Convex analysis and variational analysis}}


[[Category:Collapse templates]]
[[Category:Collapse templates]]

Latest revision as of 12:09, 27 October 2023

फलन का एपिग्राफ
फलन (काले रंग में) उत्तल होता है यदि और केवल यदि उसके ग्राफ़ के ऊपर का क्षेत्र (हरे रंग में) एक उत्तल समूह है। यह क्षेत्र फलन का एपिग्राफ है।

गणित में, किसी फलन का विस्तारित वास्तविक संख्या रेखा [1] में मूल्यवान समुच्चय है, जिसे निरूपित किया जाता है I कार्टेशियन उत्पाद में सभी बिंदु का किसी फलन के ग्राफ़ पर या उसके ऊपर स्थित है।[2]कठोर एपिग्राफ में बिंदुओं का समूह है ठीक इसके ग्राफ़ के ऊपर है।

महत्वपूर्ण रूप से, चूँकि ग्राफ और एपिग्राफ दोनों में बिंदु सम्मलित हैं एपिग्राफ में उप-समुच्चय में पूरी तरह से बिंदु होते हैं, जो यदि फलन को एक मान के रूप में लेता है तो पूरी तरह से मूल्य के रूप में नहीं इसके एपिग्राफ का एक उप-समुच्चय हो उदाहरण के लिए, यदि फिर बिंदु का होगा लेकिन ये दो समूह फिर भी निकटता से संबंधित हैं क्योंकि ग्राफ को सदैव एपिग्राफ से पुनर्निर्मित किया जा सकता है, और इसके विपरीत भी किया जा सकता है।

वास्तविक विश्लेषण में निरंतर फलन वास्तविक-मूल्यवान फलनों का अध्ययन परंपरागत रूप से फलन के उनके ग्राफ़ के अध्ययन से जुड़ा हुआ है, जो समूह हैं जो इन फलनों के बारे में ज्यामितीय जानकारी प्रदान करते हैं।[2]एपिग्राफ उत्तल विश्लेषण और परिवर्तनशील विश्लेषण के क्षेत्रों में इसी उद्देश्य की पूर्ति करते हैं, जिसमें प्राथमिक ध्यान केंद्रित उत्तल फलनों पर होता है, सदिश समष्टि (जैसे या ) में मान वाले निरंतर फलनों के अतिरिक्त है,[2] ऐसा इसलिए है क्योंकि सामान्यतः, ऐसे फलनों के लिए, ज्यामितीय अंतर्ज्ञान किसी फलन के एपिग्राफ से उसके ग्राफ की तुलना में अधिक सरलता से प्राप्त होता है।[2] इसी प्रकार वास्तविक विश्लेषण में ग्राफ़ का उपयोग कैसे किया जाता है, एपिग्राफ का उपयोग अधिकांशतः एक उत्तल फलन के गुणों की ज्यामितीय व्याख्या करने के लिए किया जा सकता है, परिकल्पना तैयार करने या सिद्ध करने में सहायता करने के लिए, या प्रति उदाहरण के निर्माण में सहायता के लिए है।

परिभाषा

एपिग्राफ की परिभाषा एक फलन के ग्राफ़ से प्रेरित थी, जहां ग्राफ़ के समूह के रूप में परिभाषित किया गया है

सूक्ति }} या सुपरग्राफ एक फलन का विस्तारित संख्या रेखा में मूल्यवान समूह है[2]

संघ में खत्म जो अंतिम पंक्ति, समूह के दाहिने हाथ की ओर ऊपर दिखाई देता है से मिलकर खड़ी किरण होने के रूप में व्याख्या की जा सकती है और सभी बिंदुओं में इसके ठीक ऊपर है। इसी प्रकार, किसी फलन के ग्राफ़ पर या उसके नीचे बिंदुओं का समूह उसका हाइपोग्राफ़ है हाइपोग्राफ. स्ट्रिक्ट एपिग्राफ , हटाए गए ग्राफ़ के साथ एपिग्राफ है:


अन्य समूह के साथ संबंध

इस तथ्य के अतिरिक्त कि में से एक (या दोनों) ले सकते हैं एक मूल्य के रूप में (जिस स्थिति में इसका ग्राफ होगा नहीं का उप-समुच्चय हो ), का एपिग्राफ फिर भी एक उप समूह के रूप में परिभाषित किया गया है के अतिरिक्त यह निश्चयपूर्वक है क्योंकि जब एक सदिश समष्टि है तो ऐसा है लेकिन है कभी नहीँ वेक्टर समष्टि[2] (विस्तारित वास्तविक संख्या रेखा के बाद से सदिश समष्टि नहीं है)। अधिक सामान्यतः, यदि तब कुछ सदिश समष्टि का केवल अरिक्त उप-समुच्चय होता है उप समूह का कोई सदिश स्थल कभी भी नहीं है। एपिग्राफ सदिश समष्टि का उप-समुच्चय होने के कारण वास्तविक विश्लेषण और फलनात्मक विश्लेषण से संबंधित उपकरणों को अधिक सरलता से प्रस्तावित करने की अनुमति देता है।

फलन का फलनक्षेत्र (सह-फलनक्षेत्र के अतिरिक्त) इस परिभाषा के लिए विशेष रूप से महत्वपूर्ण नहीं है; यह कोई रैखिक समष्टि हो सकता है[1]या समूह के अतिरिक्त .[3]

कठोर एपिग्राफ और ग्राफ सदैव भिन्न होते हैं।

फलन की एपिग्राफ इसके ग्राफ और कठोर एपिग्राफ से संबंधित है,

जहां समुच्चय समानता रखती है यदि केवल वास्तविक मूल्यवान है। चूँकि,

सदैव रखता है।

एपिग्राफ से फलनों का पुनर्निर्माण

एपिग्राफ खाली समुच्चय है यदि केवल फलन समान रूप से अनंत के बराबर है।

जिस प्रकार किसी भी फलन को उसके ग्राफ़ से फिर से बनाया जा सकता है, उसी प्रकार किसी भी विस्तारित वास्तविक-मूल्यवान फलन को भी बनाया जा सकता है पर इसके एपिग्राफ से पुनर्निर्माण किया जा सकता है (यहां तक ​​कि जब लेता है मान के रूप में)। दिया गया मूल्य से बनाया जा सकता है का खड़ी रेखा के साथ के माध्यम से गुजरते हुए निम्नलिखित:

  • विषय 1: यदि केवल अगर
  • विषय 2: यदि केवल अगर
  • विषय 3: अन्यथा, रूप का अनिवार्य रूप से है जिससे का मूल्य अंतराल का न्यूनतम लेकर प्राप्त किया जा सकता है।
  • उपरोक्त प्रेक्षणों को मिलाकर सूत्र दिया जा सकता है के अनुसार विशेष रूप से, किसी के लिए : जहां परिभाषा के अनुसार, इसी सूत्रों का उपयोग के पुनर्निर्माण के लिए इसके कठोर एपिग्राफ से से भी किया जा सकता है।

    फलनों के गुणों और उनके अभिलेखों के बीच संबंध

    फलन उत्तल फलन होता है यदि इसका पुरालेख उत्तल समुच्चय है। वास्तविक संबंध फलन का एपिग्राफ में आधा समष्टि है, फलन अर्ध-निरंतरता है और केवल इसका एपिग्राफ बंद समुच्चय है।

    यह भी देखें

    उद्धरण

    1. 1.0 1.1 Pekka Neittaanmäki; Sergey R. Repin (2004). Reliable Methods for Computer Simulation: Error Control and Posteriori Estimates. Elsevier. p. 81. ISBN 978-0-08-054050-4.
    2. 2.0 2.1 2.2 2.3 2.4 2.5 Rockafellar & Wets 2009, pp. 1–37.
    3. Charalambos D. Aliprantis; Kim C. Border (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3rd ed.). Springer Science & Business Media. p. 8. ISBN 978-3-540-32696-0.

    संदर्भ