अंतराकारिता रिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{Short description|Endomorphism algebra of an abelian group}}
{{Short description|Endomorphism algebra of an abelian group}}
गणित में, एक [[एबेलियन समूह]](गणित में विनिमेय समूह) ''X'' के [[Index.php?title=अंतराकारिता|अंतराकारिता]] एक [[Index.php?title=रिंग|रिंग (गणित)]] बनाते हैं। इस रिंग को ''X'' का 'अंतराकारिता रिंग' कहा जाता है, जिसे एंड (''X'') द्वारा निरूपित किया जाता है; ''X'' के सभी [[समरूपता]]ओं का स्वयं में समुच्चय। अंतराकारिता का जोड़ स्वाभाविक रूप से बिंदुवार तरीके से उत्पन्न होता है और एंडोमोर्फिज्म रचना के माध्यम से गुणा होता है। इन ऑपरेशनों का उपयोग करते हुए, एक एबेलियन समूह के अंतराकारिता का सेट एक (यूनिटल) रिंग बनाता है, जिसमें शून्य आकारिकी होती है। <math display="inline">0: x \mapsto 0</math> योज्य पहचान और [[पहचान मानचित्र]] के रूप में <math display="inline">1: x \mapsto x</math> [[पहचान तत्व]] के रूप में।<ref>{{harvtxt|Fraleigh|1976|p=211}}</ref><ref>{{harvtxt|Passman|1991|pp=4–5}}</ref>
गणित में, एक [[एबेलियन समूह]](गणित में विनिमेय समूह) ''X'' के [[Index.php?title=अंतराकारिता|अंतराकारिता]] एक [[Index.php?title=रिंग|रिंग (गणित)]] बनाते हैं। इस रिंग को ''X'' का 'अंतराकारिता रिंग' कहा जाता है, जिसे एंड (''X'') द्वारा निरूपित किया जाता है; ''X'' के सभी [[समरूपता]]ओं का स्वयं में समुच्चय। अंतराकारिता का जोड़ स्वाभाविक रूप से बिंदुवार तरीके से उत्पन्न होता है और एंडोमोर्फिज्म रचना के माध्यम से गुणा होता है। इन ऑपरेशनों का उपयोग करते हुए, एक एबेलियन समूह के अंतराकारिता का सेट एक (यूनिटल) रिंग बनाता है, जिसमें शून्य आकारिकी होती है। <math display="inline">0: x \mapsto 0</math> योज्य पहचान और [[पहचान मानचित्र]] के रूप में <math display="inline">1: x \mapsto x</math> [[पहचान तत्व]] के रूप में।<ref>{{harvtxt|Fraleigh|1976|p=211}}</ref><ref>{{harvtxt|Passman|1991|pp=4–5}}</ref>
सम्मलित कार्यों को संदर्भ में एक समरूपता के रूप में परिभाषित किया गया है, जो विचाराधीन वस्तु की [[श्रेणी (गणित)]] पर निर्भर करता है। अंतराकारिता रिंग फलस्वरूप वस्तु के कई आंतरिक गुणों को कूटबद्ध करता है। चूंकि परिणामी वस्तु अधिकांशत: कुछ रिंग ''R'' पर एक बीजगणित (रिंग थ्योरी) होती है, इसे 'अंतराकारिता बीजगणित' भी कहा जा सकता है।
सम्मलित कार्यों को संदर्भ में एक समरूपता के रूप में परिभाषित किया गया है, जो विचाराधीन वस्तु की [[श्रेणी (गणित)]] पर निर्भर करता है। अंतराकारिता रिंग फलस्वरूप वस्तु के कई आंतरिक गुणों को कूटबद्ध करता है। चूंकि परिणामी वस्तु अधिकांशत: कुछ रिंग ''R'' पर एक बीजगणित (रिंग थ्योरी) होती है, इसे 'अंतराकारिता बीजगणित' भी कहा जा सकता है।



Latest revision as of 12:26, 27 October 2023

गणित में, एक एबेलियन समूह(गणित में विनिमेय समूह) X के अंतराकारिता एक रिंग (गणित) बनाते हैं। इस रिंग को X का 'अंतराकारिता रिंग' कहा जाता है, जिसे एंड (X) द्वारा निरूपित किया जाता है; X के सभी समरूपताओं का स्वयं में समुच्चय। अंतराकारिता का जोड़ स्वाभाविक रूप से बिंदुवार तरीके से उत्पन्न होता है और एंडोमोर्फिज्म रचना के माध्यम से गुणा होता है। इन ऑपरेशनों का उपयोग करते हुए, एक एबेलियन समूह के अंतराकारिता का सेट एक (यूनिटल) रिंग बनाता है, जिसमें शून्य आकारिकी होती है। योज्य पहचान और पहचान मानचित्र के रूप में पहचान तत्व के रूप में।[1][2]

सम्मलित कार्यों को संदर्भ में एक समरूपता के रूप में परिभाषित किया गया है, जो विचाराधीन वस्तु की श्रेणी (गणित) पर निर्भर करता है। अंतराकारिता रिंग फलस्वरूप वस्तु के कई आंतरिक गुणों को कूटबद्ध करता है। चूंकि परिणामी वस्तु अधिकांशत: कुछ रिंग R पर एक बीजगणित (रिंग थ्योरी) होती है, इसे 'अंतराकारिता बीजगणित' भी कहा जा सकता है।

एक एबेलियन समूह पूर्णांकों के रिंग के ऊपर एक मॉड्यूल (गणित) के समान है, जो कि रिंग की श्रेणी में प्रारंभिक वस्तु है। इसी तरह से, यदि R कोई क्रमविनिमेय रिंग है, तो R-मॉड्यूल के अंतराकारिता समान स्वयंसिद्धों और व्युत्पत्ति द्वारा एक रिंग के ऊपर एक बीजगणित बनाते हैं। विशेष रूप से, यदि R एक फ़ील्ड (गणित) है, तो इसके मॉड्यूल M सदिश स्थल हैं और उनके अंतराकारिता रिंग एक फ़ील्ड R पर बीजगणित हैं।

विवरण

मान लीजिए (A, +) एक आबेली समूह हो और हम A से A में समूह समाकारिता पर विचार करते हैं। फिर इस तरह के दो समाकारिता के योग को एक अन्य समूह समाकारिता उत्पन्न करने के लिए बिंदुवार परिभाषित किया जा सकता है। स्पष्ट रूप से, दो ऐसी समरूपताएँ f और g दी गई हैं, f और g का योग समाकारिता है f + g : xf(x) + g(x). इस ऑपरेशन के अनुसार एंड (A) एक एबेलियन समूह है। समरूपता की संरचना के अतिरिक्त संचालन के साथ, एंड (A) गुणात्मक पहचान वाला एक रिंग है। यह रचना स्पष्ट है fg : xf(g(x)). गुणात्मक पहचान A पर पहचान समरूपता है।

यदि समुच्चय A एबेलियन समूह नहीं बनाता है, तो उपरोक्त निर्माण आवश्यक रूप से योज्य मानचित्र नहीं है, क्योंकि तब दो समरूपताओं का योग एक समरूपता नहीं होना चाहिए।[3] अंतराकारिता का यह सेट निकट-रिंग का एक विहित उदाहरण है जो कि रिंग नहीं है।

गुण

  • अंतराकारिता के रिंग में हमेशा योगात्मक और गुणक पहचान तत्व होते हैं, क्रमशः शून्य मानचित्र और पहचान कार्य।
  • अंतराकारिता रिंग सहयोगी हैं, लेकिन सामान्यत: गैर विनिमेय रिंग है।
  • यदि एक मॉड्यूल सरल मॉड्यूल है, तो इसका अंतराकारिता रिंग एक विभाजन की रिंग है (इसे कभी-कभी शूर लेम्मा कहा जाता है)।[4]
  • एक मॉड्यूल अविघटनीय मॉड्यूल है यदि और केवल यदि इसकी अंतराकारिता रिंग में कोई गैर-तुच्छ निष्क्रिय तत्व (रिंग थ्योरी) नहीं है।[5] यदि मॉड्यूल एक अंतःक्षेपक मॉड्यूल है, तो अपघटन क्षमता स्थानीय रिंग होने के कारण अंतराकारिता रिंग के बराबर है।[6]
  • एक अर्ध-सरल मॉड्यूल के लिए, अंतराकारिता रिंग एक वॉन न्यूमैन नियमित रिंग है।
  • एक गैर-शून्य सही श्रणीय मॉड्यूल के अंतराकारिता रिंग में या तो एक या दो अधिकतम सही आदर्श होते हैं। यदि मॉड्यूल आर्टिनियन, नोथेरियन, प्रोजेक्टिव या अंतःक्षेपक है, तो अंतराकारिता रिंग का एक अद्वितीय अधिकतम आदर्श है, जिससे कि यह एक स्थानीय रिंग हो।
  • एक आर्टिनियन एकरूप मॉड्यूल की अंतराकारिता रिंग एक स्थानीय रिंग है।[7]
  • परिमित रचना लंबाई वाले मॉड्यूल का अंतराकारिता रिंग एक अर्द्ध प्राथमिक रिंग है।
  • एक निरंतर मॉड्यूल या असतत मॉड्यूल की अंतराकारिता रिंग एक साफ रिंग है।[8]
  • यदि एक R मॉड्यूल बारीक रूप से उत्पन्न और प्रक्षेपी है (जो कि एक पूर्वज है), तो मॉड्यूल की अंतराकारिता रिंग और आर सभी मोरिटा अपरिवर्तनीय गुणों को साझा करते हैं। मोरिटा सिद्धांत का एक मूलभूत परिणाम यह है कि R के समतुल्य सभी रिंग प्रोजेनेरेटरस के अंतराकारिता रिंग के रूप में उत्पन्न होते हैं।

उदाहरण

  • R मॉड्यूल (गणित) की श्रेणी में R-मॉड्यूल M की अंतराकारिता रिंग केवल R मॉड्यूल समरूपता का उपयोग करेगी, जो सामान्यत: एबेलियन समूह समरूपता का एक उचित उपसमुच्चय है।[9] जब M एक सूक्ष्म रूप से उत्पन्न मॉड्यूल प्रक्षेपी मॉड्यूल होता है, तो अंतराकारिता रिंग मॉड्यूल श्रेणियों के मोरिटा तुल्यता के लिए केंद्रीय होता है।
  • किसी भी एबेलियन समूह के लिए , , क्योंकि कोई भी मैट्रिक्स में की एक प्राकृतिक समरूपता संरचना वहन करती है निम्नलिखित अनुसार:
इस समरूपता का उपयोग बहुत सारे गैर विनिमेय अंतराकारिता रिंगों के निर्माण के लिए कर सकते हैं। उदाहरण के लिए: , तब से .
और जब एक क्षेत्र है, एक विहित समरूपता है , इसलिए , अर्थात A की अंतराकारिता रिंग -सदिश जगह की पहचान मैट्रिक्स रिंग के साथ की जाती है। n-by-n मेट्रिसेस की रिंग में प्रविष्टियां होती हैं।[10] सामान्यत:, मुक्त मॉड्यूल का अंतराकारिता बीजगणित स्वाभाविक रूप से है -by- रिंग में प्रविष्टियों के साथ मैट्रिक्स .
  • अंतिम बिंदु के एक विशेष उदाहरण के रूप में, इकाई के साथ किसी भी रिंग R के लिए, End(RR) = R, जहां R के तत्व बाएं गुणन द्वारा R पर कार्य करते हैं।
  • सामान्य तौर पर, अंतराकारिता रिंग्स को किसी भी पूर्ववर्ती श्रेणी की वस्तुओं के लिए परिभाषित किया जा सकता है।

टिप्पणियाँ

  1. Fraleigh (1976, p. 211)
  2. Passman (1991, pp. 4–5)
  3. Dummit & Foote, p. 347)
  4. Jacobson 2009, p. 118.
  5. Jacobson 2009, p. 111, Prop. 3.1.
  6. Wisbauer 1991, p. 163.
  7. Wisbauer 1991, p. 263.
  8. Camillo et al. 2006.
  9. Abelian groups may also be viewed as modules over the ring of integers.
  10. Drozd & Kirichenko 1994, pp. 23–31.


संदर्भ

  • Camillo, V. P.; Khurana, D.; Lam, T. Y.; Nicholson, W. K.; Zhou, Y. (2006), "Continuous modules are clean", J. Algebra, 304 (1): 94–111, doi:10.1016/j.jalgebra.2006.06.032, ISSN 0021-8693, MR 2255822
  • Drozd, Yu. A.; Kirichenko, V.V. (1994), Finite Dimensional Algebras, Berlin: Springer-Verlag, ISBN 3-540-53380-X
  • Dummit, David; Foote, Richard, Algebra