संयुक्त समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Topological space that is connected}}
{{Short description|Topological space that is connected}}
{{Other uses|कनेक्शन (बहुविकल्पी)
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, '''संयुक्त समष्टि''' टोपोलॉजिकल समष्टि है जिसे दो या दो से अधिक असंयुक्त अरिक्त विवृत उप-समुच्चय के संघ के रूप में प्रदर्शित नहीं किया जा सकता है। कनेक्टेडनेस मुख्य टोपोलॉजिकल गुण है जिसका उपयोग टोपोलॉजिकल रिक्त समष्टि को पृथक करने के लिए किया जाता है।
}}
 
{{multiple image
<!-- Essential parameters -->
| align    = दाएँ<!-- बाएँ/दाएँ/केंद्र -->
| direction = लंबवत<!--क्षैतिज/ऊर्ध्वाधर -->
| width    = 200<!-- केवल अंक; कोई "पीएक्स" प्रत्यय, कृपया -->
 
<!-- चित्र 1 -->
| image1    = अभी जुड़ा है, जुड़ा औरगैर जुड़ा हुआ स्थान.svg<!-- केवल फ़ाइल नाम; नहीं "फ़ाइल:" या "छवि:" उपसर्ग, कृपया -->
| width1    =
| alt1      =
| caption1  = ऊपर से नीचे: लाल स्थान ''A'', गुलाबी स्थान ''B'', पीला स्थान
''C'' और नारंगी स्थान ''D'' सभी हैं '''जुड़ा हुआ स्थान''',जबकि हरा स्थान''E'' ([[उपसमुच्चय]] से बना है E<sub>1</sub>, E<sub>2</sub>, E<sub>3</sub>, and E<sub>4</sub>) है '''डिस्कनेक्ट किया गया'''. आगे, ''A'' and ''B''<nowiki> भी हैं [[ केवल जुड़े हुए स्थान|केवल जुड़े हुए(</nowiki>[[जीनस (गणित)|जीनस ]]
0), जबकि''C'' तथा''D'' नहीं हैं: ''C'' जीनस है 1 तथा''D'' जीनस 4 है।
 
<!-- छवि2 -->
| image2    =
| width2    =
| alt2      =
| caption2  =
 
<!-- |छवि10तक स्वीकार किया जाता है -->
 
<!-- अतिरिक्त पैरामीटर -->
| header            = '''R'''² के जुड़े और डिस्कनेक्ट किए गए उप-स्थान
| header_align      = <!-- बाएं/दाएं/केंद्र -->
| header_background =
| footer            =
| footer_align      = <!-- बाएं/दाएं/केंद्र -->
| footer_background =
| background color  =
}}
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, जुड़ा हुआ स्थान [[टोपोलॉजिकल स्पेस|संस्थानिक स्थान]] है जिसे दो या दो से अधिक [[अलग करना सेट|असंयुक्त अरिक्त]] [[खुला (टोपोलॉजी)|खुले]] उप-समुच्चय के संघ के रूप में प्रदर्शित नहीं किया जा सकता है। जुड़ाव मुख्य [[टोपोलॉजिकल गुण|टोपोलॉजिकल गुणों]] में से एक है जो संस्थानिक स्थान को विभक्त करता है।


संस्थानिक स्थान उप-समुच्चय के <math>X</math> से {{visible anchor|जुड़ा हुआ समूह
टोपोलॉजिकल स्पेस <math>X</math> का उपसमुच्चय संयुक्त समुच्चय है, <math>X</math> के उपसमष्टि के रूप में देखे जाने पर यह संयुक्त समष्टि है।
}}है, यदि इस <math>X</math> को [[सबस्पेस टोपोलॉजी|उप-स्थान टोपोलॉजी]] के रूप में देखा जाए तो यह जुड़ा हुआ स्थान है|


कुछ स्थितियाँ पथ जुड़ाव से भी संबंधित हैं, सरल रूप से <math>n</math>-जुड़ा हुआ स्थान हैं। अन्य संबंधित धारणा स्थानीय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का अनुसरण करती है।
कुछ संबंधित किन्तु दृढ़ स्थितियाँ पथ से जुड़ी हुई हैं, बस जुड़ी हुई हैं, और <math>n</math>-कनेक्टेड हैं। अन्य संबंधित धारणा समष्टिय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का यह अनुसरण करती है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
संस्थानिक स्थान <math>X</math> को {{visible anchor|विभक्त }} करता है यदि दो अरिक्त खुले समूहों का संयुग्मित है।अन्यथा, <math>X</math> जुड़ा है तब संस्थानिक स्थान, [[सबसेट|उप-स्थान]] टोपोलॉजी के अंतर्गत संयुग्मित है। कुछ लेखक रिक्त समूह को जुड़े हुए स्थान के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।
टोपोलॉजिकल समष्टि <math>X</math> को {{visible anchor|विभक्त }} करता है यदि दो अरिक्त विवृत समूहों का संयुग्मित है।अन्यथा, <math>X</math> जुड़ा है तब टोपोलॉजिकल समष्टि, उप-समष्टि टोपोलॉजी के अंतर्गत संयुग्मित है। कुछ लेखक रिक्त समूह को जुड़े हुए समष्टि के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।


संस्थानिक स्थान <math>X</math> के लिए निम्नलिखित कारण हैं:
टोपोलॉजिकल समष्टि <math>X</math> के लिए निम्नलिखित कारण हैं:


#<math>X</math> संयुग्मित है, इसे दो भिन्न -भिन्न अरिक्त खुले समूहों में विभाजित नहीं किया जा सकता है।
#<math>X</math> संयुग्मित है, इसे दो भिन्न -भिन्न अरिक्त विवृत समूहों में विभाजित नहीं किया जा सकता है।
# <math>X</math> उप-समुच्चय खुले और बंद ([[क्लोपेन सेट|क्लोपेन समूह]]) दोनों प्रकार के होते हैं <math>X</math> रिक्त समूह हैं।
# <math>X</math> उप-समुच्चय विवृत और बंद ([[क्लोपेन सेट|क्लोपेन समूह]]) दोनों प्रकार के होते हैं <math>X</math> रिक्त समूह हैं।
# रिक्त [[सीमा (टोपोलॉजी)|सीमा]] में उप-समुच्चय और रिक्त समूह भी <math>X</math> हैं।
# रिक्त [[सीमा (टोपोलॉजी)|सीमा]] में उप-समुच्चय और रिक्त समूह भी <math>X</math> हैं।
#<math>X</math> को अरिक्त [[अलग सेट|भिन्न समूहों]] के संघ के रूप में नहीं लिखा जा सकता हैI
#<math>X</math> को अरिक्त [[अलग सेट|भिन्न समूहों]] के संघ के रूप में नहीं लिखा जा सकता हैI
#<math>X</math> से <math>\{ 0, 1 \}</math> तक सभी निरंतर कार्य स्थिर हैं, जहां <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है| <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref>  
#<math>X</math> से <math>\{ 0, 1 \}</math> तक सभी निरंतर कार्य स्थिर हैं, जहां <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु समष्टि है| <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref>  
ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (दो भिन्न -भिन्न समूहों में <math>X</math> के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें |  
ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (दो भिन्न -भिन्न समूहों में <math>X</math> के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें |  


=== जुड़े हुए घटक ===
=== जुड़े हुए घटक ===


संस्थानिक स्थान <math>X,</math> में कुछ बिंदु  <math>x</math> दिए गए हैं,  जुड़े हुए उप-समुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में <math>x</math> सम्मलित है| <math>X</math> बिंदु में <math>x</math> के जुड़े हुए घटक <math>X</math> सभी उप-समूहों का संघ है जिसमें <math>x;</math> सम्मलित है| सबसे बड़ा अद्वितीय (के संबंध में <math>\subseteq</math>) <math>X</math> का उप-समुच्चयों जिसमे <math>x.</math> सम्मिलित है | अरिक्त संस्थानिक स्थान के [[अधिकतम तत्व|अधिकतम तत्वों]]  को उपसमुच्चय (समावेशी द्वारा आदेशित <math>\subseteq</math>) के स्थान को घटक कहा जाता है। किसी भी संस्थानिक स्थान के घटक <math>X</math> का विभाजन भिन्न, अरिक्त और संपूर्ण स्थान संयुग्मित है। प्रत्येक घटक मूल स्थान का [[बंद उपसमुच्चय|बंद उप-समुच्चय]] है। इसी प्रकार, इस स्थिति में संख्या परिमित है, प्रत्येक घटक भी खुला उप-समुच्चय है। चूंकि, यदि संख्या अनंत है, तो यह स्थिति नहीं हो सकती हैI उदाहरण के लिए, [[परिमेय संख्या|परिमेय संख्याओं]] के समुच्चय से जुड़े घटक बिंदु समुच्चय ([[सिंगलटन (गणित)|सिंगलटन]] ) हैं, जो खुले नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ <math>q_1<q_2</math> विभिन्न घटकों में हैं। अपरिमेय संख्या <math>q_1 < r < q_2,</math> लीजिए और फिर  <math>A = \{q \in \Q : q < r\}</math> तथा <math>B = \{q \in \Q : q > r\}.</math> का <math>(A,B)</math> का वियोग हैI <math>\Q,</math> तथा <math>q_1 \in A, q_2 \in B</math>. इस प्रकार प्रत्येक घटक बिंदु समुच्चय है।
टोपोलॉजिकल समष्टि <math>X,</math> में कुछ बिंदु  <math>x</math> दिए गए हैं,  जुड़े हुए उप-समुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में <math>x</math> सम्मलित है| <math>X</math> बिंदु में <math>x</math> के जुड़े हुए घटक <math>X</math> सभी उप-समूहों का संघ है जिसमें <math>x;</math> सम्मलित है| सबसे बड़ा अद्वितीय (के संबंध में <math>\subseteq</math>) <math>X</math> का उप-समुच्चयों जिसमे <math>x.</math> सम्मिलित है | अरिक्त टोपोलॉजिकल समष्टि के [[अधिकतम तत्व|अधिकतम तत्वों]]  को उपसमुच्चय (समावेशी द्वारा आदेशित <math>\subseteq</math>) के समष्टि को घटक कहा जाता है। किसी भी टोपोलॉजिकल समष्टि के घटक <math>X</math> का विभाजन भिन्न, अरिक्त और संपूर्ण समष्टि संयुग्मित है। प्रत्येक घटक मूल समष्टि का [[बंद उपसमुच्चय|बंद उप-समुच्चय]] है। इसी प्रकार, इस स्थिति में संख्या परिमित है, प्रत्येक घटक भी खुला उप-समुच्चय है। चूंकि, यदि संख्या अनंत है, तो यह स्थिति नहीं हो सकती हैI उदाहरण के लिए, [[परिमेय संख्या|परिमेय संख्याओं]] के समुच्चय से जुड़े घटक बिंदु समुच्चय ([[सिंगलटन (गणित)|सिंगलटन]] ) हैं, जो विवृत नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ <math>q_1<q_2</math> विभिन्न घटकों में हैं। अपरिमेय संख्या <math>q_1 < r < q_2,</math> लीजिए और फिर  <math>A = \{q \in \Q : q < r\}</math> तथा <math>B = \{q \in \Q : q > r\}.</math> का <math>(A,B)</math> का वियोग हैI <math>\Q,</math> तथा <math>q_1 \in A, q_2 \in B</math>. इस प्रकार प्रत्येक घटक बिंदु समुच्चय है।


मान लीजिए कि <math>x</math> का संस्थानिक स्थान <math>X,</math> से जुड़ा हुआ है। [[clopen|क्लोपेन]] भी समुच्चय का प्रतिच्छेदन है(जिसे  <math>x.</math> का अर्ध-घटक कहा जाता है)I अर्थात <math>\Gamma_x \subset \Gamma'_x</math> में समानता होती है यदि <math>X</math>  कॉम्पैक्ट हौसडॉर्फ या स्थानीय रूप से जुड़ा हुआ है। <ref>{{Cite web|url=https://math.stackexchange.com/questions/1314013/components-of-the-set-of-rational-numbers|title=सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक}}</ref>
मान लीजिए कि <math>x</math> का टोपोलॉजिकल समष्टि <math>X,</math> से जुड़ा हुआ है। [[clopen|क्लोपेन]] भी समुच्चय का प्रतिच्छेदन है(जिसे  <math>x.</math> का अर्ध-घटक कहा जाता है)I अर्थात <math>\Gamma_x \subset \Gamma'_x</math> में समानता होती है यदि <math>X</math>  कॉम्पैक्ट हौसडॉर्फ या समष्टिीय रूप से जुड़ा हुआ है। <ref>{{Cite web|url=https://math.stackexchange.com/questions/1314013/components-of-the-set-of-rational-numbers|title=सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक}}</ref>


=== पृथक किए गए रिक्त स्थान ===
=== पृथक किए गए रिक्त समष्टि ===
स्थान जिसमें सभी घटक बिंदु उप-समुच्चय से पूरी तरह विभक्त हो जाते हैं। इस संपत्ति से संबंधित, स्थान <math>X</math> को  {{visible anchor|पूरी तरह }}से विभक्त किया जाता है यदि, <math>x</math> और <math>y</math>, <math>X</math> के दो भिन्न -भिन्न तत्वों में, भिन्न -भिन्न [[खुले सेट|खुले समुच्चय]] में सम्मलित हैं | <math>U</math> ऐसा युक्त है कि जिसमें  <math>x</math> , <math>y</math> तथा <math>V</math> का संघ हैI अर्थात <math>X</math>, <math>U</math> तथा <math>V</math> का संयुग्मित हैI स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न स्थान से विभक्त हो गया है, लेकिन विभक्त होने का कारण नहीं स्पष्ट है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें <math>\Q</math>, और शून्य को छोड़कर सभी बिंदु पर उन्हें पहचानें। परिणामी स्थान, [[भागफल टोपोलॉजी|विभाजित संस्थानिक]]  के साथ, पूरी तरह से विभक्त हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, यह प्रदर्शित होता है कि स्थान पूर्ण रूप से विभक्त नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ स्थान भी नहीं है, और पूर्ण रूप से विभक्त होने की स्थिति से अधिक शक्तिशाली है।
समष्टि जिसमें सभी घटक बिंदु उप-समुच्चय से पूरी तरह विभक्त हो जाते हैं। इस संपत्ति से संबंधित, समष्टि <math>X</math> को  {{visible anchor|पूरी तरह }}से विभक्त किया जाता है यदि, <math>x</math> और <math>y</math>, <math>X</math> के दो भिन्न -भिन्न तत्वों में, भिन्न -भिन्न [[खुले सेट|विवृत समुच्चय]] में सम्मलित हैं | <math>U</math> ऐसा युक्त है कि जिसमें  <math>x</math> , <math>y</math> तथा <math>V</math> का संघ हैI अर्थात <math>X</math>, <math>U</math> तथा <math>V</math> का संयुग्मित हैI स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न समष्टि से विभक्त हो गया है, लेकिन विभक्त होने का कारण नहीं स्पष्ट है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें <math>\Q</math>, और शून्य को छोड़कर सभी बिंदु पर उन्हें पहचानें। परिणामी समष्टि, [[भागफल टोपोलॉजी|विभाजित संसमष्टििक]]  के साथ, पूरी तरह से विभक्त हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, यह प्रदर्शित होता है कि समष्टि पूर्ण रूप से विभक्त नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ समष्टि भी नहीं है, और पूर्ण रूप से विभक्त होने की स्थिति से अधिक शक्तिशाली है।


== उदाहरण ==
== उदाहरण ==


* मानक उप-स्थान टोपोलॉजी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] में  <math>[0, 2]</math> बंद अंतराल में जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे <math>[0, 1]</math> तथा <math>[1, 2]</math> संघ के रूप में लिखा जा सकता हैI <math>[0, 2]</math> चुने हुए दूसरे खुले समुच्चय टोपोलॉजी में से नहीं है I
* मानक उप-समष्टि टोपोलॉजी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में  <math>[0, 2]</math> बंद अंतराल में जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे <math>[0, 1]</math> तथा <math>[1, 2]</math> संघ के रूप में लिखा जा सकता हैI <math>[0, 2]</math> चुने हुए दूसरे विवृत समुच्चय टोपोलॉजी में से नहीं है I
* <math>[0, 1]</math> तथा <math>[1, 2]</math> का संघ विभक्त हो गया है; इसके दोनों मानक संस्थानिक स्थान अंतराल खुले हैं <math>[0, 1) \cup (1, 2].</math>
* <math>[0, 1]</math> तथा <math>[1, 2]</math> का संघ विभक्त हो गया है; इसके दोनों मानक टोपोलॉजिकल समष्टि अंतराल विवृत हैं <math>[0, 1) \cup (1, 2].</math>
* <math>(0, 1) \cup \{ 3 \}</math> विभक्त किया गया है।
* <math>(0, 1) \cup \{ 3 \}</math> विभक्त किया गया है।
* <math>\R^n</math> का [[उत्तल सेट|उत्तल उप-समुच्चय]] [[बस जुड़ा हुआ सेट|जुड़ा हुआ]]हुआ है।
* <math>\R^n</math> का [[उत्तल सेट|उत्तल उप-समुच्चय]] [[बस जुड़ा हुआ सेट|जुड़ा हुआ]]हुआ है।
* यूक्लिडियन स्थान मूल को छोड़कर, <math>(0, 0)</math> जुड़ा हुआ है, मूल के बिना त्रि-आयामी यूक्लिडियन स्थान जुड़ा हुआ है, इसके विपरीत, मूल के बिना आयामी यूक्लिडियन स्थान जुड़ा नहीं है।
* यूक्लिडियन समष्टि मूल को छोड़कर, <math>(0, 0)</math> जुड़ा हुआ है, मूल के बिना त्रि-आयामी यूक्लिडियन समष्टि जुड़ा हुआ है, इसके विपरीत, मूल के बिना आयामी यूक्लिडियन समष्टि जुड़ा नहीं है।
* सीधी रेखा के कारण यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
* सीधी रेखा के कारण यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
* <math>\R</math> सामान्य टोपोलॉजी के साथ [[वास्तविक संख्या|वास्तविक संख्याओं]] के स्थान से जुड़ा है।
* <math>\R</math> सामान्य टोपोलॉजी के साथ [[वास्तविक संख्या|वास्तविक संख्याओं]] के समष्टि से जुड़ा है।
* [[निचली सीमा टोपोलॉजी]] विभक्त हो गई है।<ref>{{cite book|title=सामान्य टोपोलॉजी|author=Stephen Willard|publisher=Dover|year=1970|page=191|isbn=0-486-43479-6}}</ref>  
* [[निचली सीमा टोपोलॉजी]] विभक्त हो गई है।<ref>{{cite book|title=सामान्य टोपोलॉजी|author=Stephen Willard|publisher=Dover|year=1970|page=191|isbn=0-486-43479-6}}</ref>  
*यदि <math>\mathbb{R}</math> से बिंदु विभक्त कर दिया जाए , तथा शेष भाग काट दिया जाता है चूंकि, यदि <math>\R^n</math> , जहां  <math>n \geq 2,</math> शेष जुड़ा हुआ है। यदि <math>n\geq 3</math>, फिर <math>\R^n</math> बिंदुओं से विभक्त होने के बाद भी जुड़ा रहता हैI
*यदि <math>\mathbb{R}</math> से बिंदु विभक्त कर दिया जाए , तथा शेष भाग काट दिया जाता है चूंकि, यदि <math>\R^n</math> , जहां  <math>n \geq 2,</math> शेष जुड़ा हुआ है। यदि <math>n\geq 3</math>, फिर <math>\R^n</math> बिंदुओं से विभक्त होने के बाद भी जुड़ा रहता हैI
* उदाहरण के लिए, [[टोपोलॉजिकल वेक्टर स्पेस|संस्थानिक वेक्टर स्थान]],से कोई भी [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] या [[बनच स्थान]] (जैसे <math>\R</math> या <math>\Complex</math>) जुड़े हुए क्षेत्र है।
* उदाहरण के लिए, [[टोपोलॉजिकल वेक्टर स्पेस|संसमष्टििक वेक्टर समष्टि]],से कोई भी [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट समष्टि]] या [[बनच स्थान|बनच समष्टि]] (जैसे <math>\R</math> या <math>\Complex</math>) जुड़े हुए क्षेत्र है।
* कम से कम दो तत्वों के साथ प्रत्येक [[असतत सामयिक स्थान]] [[पूरी तरह से डिस्कनेक्ट किया गया स्थान|विभक्त हो गया है।]]  सबसे सरल उदाहरण [[असतत दो-बिंदु स्थान]] है।<ref>{{cite book|title=टोपोलॉजी और आधुनिक विश्लेषण का परिचय|author=George F. Simmons|author-link=George F. Simmons|publisher=McGraw Hill Book Company|year=1968|page=144|isbn=0-89874-551-9}}</ref>
* कम से कम दो तत्वों के साथ प्रत्येक [[असतत सामयिक स्थान|असतत सामयिक समष्टि]] [[पूरी तरह से डिस्कनेक्ट किया गया स्थान|विभक्त हो गया है।]]  सबसे सरल उदाहरण [[असतत दो-बिंदु स्थान|असतत दो-बिंदु समष्टि]] है।<ref>{{cite book|title=टोपोलॉजी और आधुनिक विश्लेषण का परिचय|author=George F. Simmons|author-link=George F. Simmons|publisher=McGraw Hill Book Company|year=1968|page=144|isbn=0-89874-551-9}}</ref>
* दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, [[असतत मूल्यांकन अंगूठी|असतत मूल्यांकन छल्ला]] के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की स्थान का उदाहरण है।
* दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, [[असतत मूल्यांकन अंगूठी|असतत मूल्यांकन छल्ला]] के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की समष्टि का उदाहरण है।
* [[कैंटर सेट|कैंटर समुच्चय]] पूरी तरह से विभक्त हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु और घटक होते हैं।
* [[कैंटर सेट|कैंटर समुच्चय]] पूरी तरह से विभक्त हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु और घटक होते हैं।
* यदि कोई स्थान <math>X</math> के बराबर [[होमोटॉपी]] है, तो <math>X</math> स्वयं जुड़ा हुआ है।
* यदि कोई समष्टि <math>X</math> के बराबर [[होमोटॉपी]] है, तो <math>X</math> स्वयं जुड़ा हुआ है।
* टोपोलॉजिस्ट की ज्या वक्र समुच्चय का उदाहरण है जो न तो पथ से जुड़ा है और न ही स्थानीय रूप से जुड़ा हुआ है।
* टोपोलॉजिस्ट की ज्या वक्र समुच्चय का उदाहरण है जो न तो पथ से जुड़ा है और न ही समष्टिीय रूप से जुड़ा हुआ है।
* [[सामान्य रैखिक समूह]] <math>\operatorname{GL}(n, \R)</math> (अर्थात् समूह <math>n</math>-द्वारा-<math>n</math> वास्तविक, व्युत्क्रमणीय आव्यूह) में दो जुड़े घटक होते हैं: सकारात्मक निर्धारक और दूसरा नकारात्मक निर्धारक। इसके विपरीत, <math>\operatorname{GL}(n, \Complex)</math> जुड़ा हुआ है। अधिक सामान्यतः पर, जटिल हिल्बर्ट स्थान पर उल्टा घिरे संचालनों का समुच्चय जुड़ा है।
* [[सामान्य रैखिक समूह]] <math>\operatorname{GL}(n, \R)</math> (अर्थात् समूह <math>n</math>-द्वारा-<math>n</math> वास्तविक, व्युत्क्रमणीय आव्यूह) में दो जुड़े घटक होते हैं: सकारात्मक निर्धारक और दूसरा नकारात्मक निर्धारक। इसके विपरीत, <math>\operatorname{GL}(n, \Complex)</math> जुड़ा हुआ है। अधिक सामान्यतः पर, जटिल हिल्बर्ट समष्टि पर उल्टा घिरे संचालनों का समुच्चय जुड़ा है।
* विनिमेय [[स्थानीय अंगूठी|स्थानीय छल्लों]] और अभिन्न कार्यक्षेत्र के स्पेक्ट्रा से जुड़े हुए हैं। निम्नलिखित कारण हैं<ref>[[Charles Weibel]], [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory]</ref>
* विनिमेय [[स्थानीय अंगूठी|समष्टिीय छल्लों]] और अभिन्न कार्यक्षेत्र के स्पेक्ट्रा से जुड़े हुए हैं। निम्नलिखित कारण हैं<ref>[[Charles Weibel]], [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory]</ref>
*# क्रमविनिमेय वलय का स्पेक्ट्रम <math>\R</math> से जुड़ा हुआ है
*# क्रमविनिमेय वलय का स्पेक्ट्रम <math>\R</math> से जुड़ा हुआ है
*# <math>\R</math> पर प्रत्येक [[सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल|सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल]] की निरंतर श्रेणी होती है।
*# <math>\R</math> पर प्रत्येक [[सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल|सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल]] की निरंतर श्रेणी होती है।
*# <math>\R</math> कोई क्रम नहीं है <math>\ne 0, 1</math> (अर्थात, <math>\R</math> गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।
*# <math>\R</math> कोई क्रम नहीं है <math>\ne 0, 1</math> (अर्थात, <math>\R</math> गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।


एक समतल जिसमें से अनंत रेखा निषेध कर दी गई है। विभक्त किए गए रिक्त स्थान के अन्य उदाहरण (अर्थात, रिक्त स्थान जो जुड़े नहीं हैं) जो समतल को वलय के साथ विभक्त कर दिया गया है, साथ ही साथ दो भिन्न-भिन्न बंद [[डिस्क (गणित)]] का संघ भी सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-स्थान टोपोलॉजी को धारण करते हैं।
एक समतल जिसमें से अनंत रेखा निषेध कर दी गई है। विभक्त किए गए रिक्त समष्टि के अन्य उदाहरण (अर्थात, रिक्त समष्टि जो जुड़े नहीं हैं) जो समतल को वलय के साथ विभक्त कर दिया गया है, साथ ही साथ दो भिन्न-भिन्न बंद [[डिस्क (गणित)]] का संघ भी सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-समष्टि टोपोलॉजी को धारण करते हैं।


== पथ जुड़ाव ==
== पथ जुड़ाव ==
[[File:Path-connected space.svg|thumb|R² का यह उपस्थान पथ से जुड़ा हुआ है, क्योंकि अंतरिक्ष में किन्हीं दो बिंदुओं के बीच एक पथ खींचा जा सकता है।]]{{visible anchor|पथ से जुड़ा स्थान
[[File:Path-connected space.svg|thumb|R² का यह उप-समष्टि पथ से जुड़ा हुआ है, क्योंकि समतल में दो बिंदुओं के बीच पथ खींचा जा सकता है।]]{{visible anchor|पथ से जुड़ा समष्टि
}} जुड़ाव की शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। [[पथ (टोपोलॉजी)|(टोपोलॉजी) पथ]] स्थान में बिंदु <math>x</math> से <math>y</math> तक का पथ <math>X</math> एक निरंतर फलन है| <math>f</math> [[इकाई अंतराल]] से <math>[0,1]</math> से प्रति <math>X</math> साथ <math>f(0)=x</math> तथा <math>f(1)=y</math>. <math>X</math> का {{visible anchor|पथ-घटक
}} जुड़ाव की शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। [[पथ (टोपोलॉजी)|(टोपोलॉजी) पथ]] समष्टि में बिंदु <math>x</math> से <math>y</math> तक का पथ <math>X</math> एक निरंतर फलन है| <math>f</math> [[इकाई अंतराल]] से <math>[0,1]</math> से प्रति <math>X</math> साथ <math>f(0)=x</math> तथा <math>f(1)=y</math>. <math>X</math> का {{visible anchor|पथ-घटक
}} तुल्यता संबंध के अंतर्गत <math>X</math> का तुल्यता वर्ग है जो <math>x</math> को <math>y</math> के समतुल्य बनाता है यदि <math>x</math> प्रति <math>y</math>. स्थान  <math>X</math> को पथ जुड़ाव कहा जाता है यदि कुल एक पथ घटक है यदि कोई दो बिंदुओं <math>X</math> में सम्मलित होने वाला मार्ग है| फिर से, कई लेखक खाली स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, खाली स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; खाली समुच्चय पर एक अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।
}} तुल्यता संबंध के अंतर्गत <math>X</math> का तुल्यता वर्ग है जो <math>x</math> को <math>y</math> के समतुल्य बनाता है यदि <math>x</math> प्रति <math>y</math>. स्थान  <math>X</math> को पथ जुड़ाव कहा जाता है यदि कुल पथ घटक है कोई दो बिंदुओं <math>X</math> में सम्मलित होने वाला मार्ग है| तत्पश्चात, कई लेखक रिक्त स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, रिक्त स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; रिक्त समुच्चय पर अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।


प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम सदैव सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा <math>L^*</math>और  टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|
प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम सदैव सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा <math>L^*</math>और  टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|


[[वास्तविक रेखा]] के उप-समुच्चय <math>\R</math> जुड़े हुए हैं [[यदि केवल]] वे पथ से जुड़े हुए हैं; ये उप-समुच्चय <math>R</math> के [[अंतराल (गणित)]] हैं .
[[वास्तविक रेखा]] के उप-समुच्चय <math>\R</math> जुड़े हुए हैं [[यदि केवल]] वे पथ से जुड़े हुए हैं; ये उप-समुच्चय <math>R</math> के [[अंतराल (गणित)]] हैंI
साथ ही,<math>\R^n</math> या <math>\C^n</math> के उप-समुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं।
साथ ही,<math>\R^n</math> या <math>\C^n</math> के उप-समुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं।
इसके अतिरिक्त, [[परिमित सामयिक स्थान|परिमित सामयिक स्थानों]] के लिए जुड़ाव और पथ-जुड़ाव समान हैं।
इसके अतिरिक्त, [[परिमित सामयिक समष्टि]] के लिए जुड़ाव और पथ-जुड़ाव समान हैं।


== चाप जुड़ाव == <!-- स्थान जुड़ाव चाप _जुड़ाव इस उपखंड पर रीडायरेक्ट करता है -->
== चाप जुड़ाव == <!-- समष्टि जुड़ाव चाप _जुड़ाव इस उपखंड पर रीडायरेक्ट करता है -->
एक स्थान <math>X</math> चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से भिन्न ]]-भिन्न बिंदुओं को एक पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम चाप-जुड़ाव उप-समुच्य है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।
समष्टि को <math>X</math> चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो [[टोपोलॉजिकल रूप से भिन्न ]]-भिन्न बिंदुओं को पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो [[टोपोलॉजिकल एम्बेडिंग]] है <math>f : [0, 1] \to X</math>. का चाप-घटक <math>X</math> का अधिकतम चाप-जुड़ाव उप-समुच्य है <math>X</math>; या समतुल्य रूप से समतुल्य संबंध का तुल्यता वर्ग कि क्या दो बिंदुओं को चाप से जोड़ा जा सकता है या ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।


प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह एक कमजोर हौसडॉर्फ स्थान के लिए सही है<math>\Delta</math>-हॉसडॉर्फ स्थान, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।
प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह कमजोर हौसडॉर्फ स्थान के लिए सही है<math>\Delta</math>-हॉसडॉर्फ स्थान, जो ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद हैI ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां <math>0</math> पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।


पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:
पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर सरलता से स्थानांतरित नहीं होता है। होने देना <math>X</math> दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:


चाप -जुड़ाव स्थान की निरंतर छवि चाप-जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ एक लब्धि चित्र बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।
चाप -जुड़ाव स्थान की निरंतर छवि चाप-जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ लब्धि चित्र बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, <math>X</math> दो अतिव्यापी चाप-घटक हैं।
* चाप -जुड़ाव स्थान का उत्पाद नहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* चाप -जुड़ाव स्थान का उत्पाद नहीं हो सकता है। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप से जुड़ा है, लेकिन <math>X</math> नहीं है।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> एक चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
* किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, <math>X \times \mathbb{R}</math> चाप-घटक है, लेकिन <math>X</math> दो चाप-घटक हैं।
*यदि चाप से जुड़े उप-समुच्चय में एक गैर-खाली अंतःखण्ड है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।
*यदि चाप से जुड़े उप-समुच्चय में अरिक्त अंतःखण्ड है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक <math>X</math> प्रतिच्छेद करते हैं, लेकिन उनका संघ चाप से जुड़ा नहीं है।


स्थानीय जुड़ाव <!-- उसका खंड [[ढका हुआ स्थान]] --> से जुड़ा हुआ है
स्थानीय जुड़ाव <!-- उसका खंड [[ढका हुआ स्थान]] --> से जुड़ा हुआ है


{{main|स्थानीय रूप से जुड़ा हुआ स्थान
{{main|स्थानीय रूप से जुड़ा हुआ स्थान}}
}}
टोपोलॉजिकल स्थान को बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> प्रत्येक निकटम <math>x</math> जुड़ा हुआ खुला निकटम सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक <math>X</math> खुला है।
एक टोपोलॉजिकल स्थान को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है <math>x</math> प्रत्येक निकटम <math>x</math> एक जुड़ा हुआ खुला निकटम सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का [[आधार (टोपोलॉजी)]] है। यह दिखाया जा सकता है कि एक स्थान <math>X</math> स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक <math>X</math> खुला है।


इसी प्रकार एक टोपोलॉजिकल स्थान को कहा जाता है{{visible anchor|स्थानीय रूप से पथ से जुड़ा हुआ
इसी प्रकार टोपोलॉजिकल स्थान को कहा जाता हैI{{visible anchor|स्थानीय रूप से पथ से जुड़ा हुआ
}}यदि इसमें पथ से जुड़े समुच्य का आधार है।
}}यदि इसमें पथ से जुड़े समुच्य का आधार है।
स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उप-समुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है।
स्थानीय रूप से पथ से जुड़े स्थान का खुला उप-समुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है।
यह पहले के वर्णन को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
यह पहले के वर्णन को सामान्यीकृत करता है <math>\R^n</math> तथा <math>\C^n</math>, जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी [[टोपोलॉजिकल मैनिफोल्ड]] स्थानीय रूप से पथ से जुड़ा होता है।
[[फाइल: टोपोलॉजिस्ट (वारसॉ) ज्या वक्र .पीएनजी|थंब|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का मिलन है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.
[[फाइल: टोपोलॉजिस्ट (वारसॉ) ज्या वक्र .पीएनजी|थंब|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है]]स्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का संघ है <math>\R</math>, जैसे कि <math>(0,1) \cup (2,3)</math>.
 
जुड़े हुए स्थान का शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \left\{ \left(x, \sin\left(\tfrac{1}{x}\right)\right) : x \in (0, 1] \right\}</math>, with the [[Euclidean topology]] [[Induced topology|induced]] by inclusion in <math>\R^2</math>.


एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है <math>T = \{(0,0)\} \cup \बाएं\{ \बाएं(x, \sin\बाएं(\tfrac{1}{x}\दाये)\दाये) : x \in (0, 1] \दाये\}</math>में सम्मलित करके [[यूक्लिडियन टोपोलॉजी]] [[प्रेरित टोपोलॉजी]] के साथ <math>\R^2</math>.


समुच्य संचालन  
समुच्य संचालन  
Line 130: Line 95:
जुड़े हुए उप-समुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.
जुड़े हुए उप-समुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है <math>X=(0,1) \cup (1,2)</math>.


प्रत्येक दीर्घवृत्त एक जुड़ा हुआ उप-समुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उप-समुच्यों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.
प्रत्येक दीर्घवृत्त जुड़ा हुआ उप-समुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उप-समुच्यों में विभाजित किया जा सकता है <math>U</math> तथा <math>V</math>.


इसका अर्थ यह है कि, यदि संघ <math>X</math> डिस्कनेक्ट किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उप-समुच्यों का एक संघ {{em|है}}  विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।
इसका अर्थ यह है कि, यदि संघ <math>X</math> विभक्त किया गया है, तो संग्रह <math>\{X_i\}</math> दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं <math>X</math> (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उप-समुच्यों का एक संघ {{em|है}}  विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।


यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।
यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (<math display="inline"> \bigcap X_i \neq \emptyset</math>), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।
Line 138: Line 103:
यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और <math>\forall i: X_i \cap X_{i+1} \neq \emptyset</math>, फिर से उनका संघ जुड़ा होना चाहिए।
# यदि समुच्यजोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो यदि <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |अंतिम = ब्रैंडस्मा|शीर्षक=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|काम=[[ढेरअदला बदली]] |तिथि = फरवरी 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
# यदि समुच्यजोड़ीदार-असंबद्ध हैं और [[भागफल स्थान (टोपोलॉजी)]] <math>X / \{X_i\}</math> जुड़ा हुआ है, तो {{mvar|X}} जुड़ा होना चाहिए। नहीं तो यदि <math>U \cup V</math> का वियोग है {{mvar|X}} फिर <math>q(U) \cup q(V)</math> भागफल स्थान का पृथक्करण है (चूंकि <math>q(U), q(V)</math> असंयुक्त हैं और भागफल स्थान में खुले हैं)।<ref>{{cite web |first=Henno |अंतिम = ब्रैंडस्मा|शीर्षक=इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?|काम=[[ढेरअदला बदली]] |तिथि = फरवरी 13, 2013 |url=https://math.stackexchange.com/q/302118 }}</ref>
समुच्य का जुड़ाव का समुच्य अंतर अनिवार्य नहीं है। चूंकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले समुच्यों के मिलन के रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).
समुच्य का जुड़ाव का समुच्य अंतर अनिवार्य नहीं है। चूंकि, यदि <math>X \supseteq Y</math> और उनका अंतर <math>X \setminus Y</math> विभक्त किया गया है (और इस प्रकार दो खुले समुच्यों के संघके रूप में लिखा जा सकता है <math>X_1</math> तथा <math>X_2</math>), फिर संघ <math>Y</math> ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि <math>Y \cup X_{i}</math> सभी के लिए जुड़ा हुआ है <math>i</math>).


{{math proof|title=प्रमाण<ref>{{cite web |लेखक = मरेक |शीर्षक=जुड़ेपन के बारे में इस परिणाम को कैसे सिद्ध करें? |तिथि =13 फरवरी 2013 |काम=[[स्टैक एक्सचेंज]]|
{{math proof|title=प्रमाण<ref>{{cite web |लेखक = मरेक |शीर्षक=जुड़ेपन के बारे में इस परिणाम को कैसे सिद्ध करें? |तिथि =13 फरवरी 2013 |काम=[[स्टैक एक्सचेंज]]|
url=https://math.stackexchange.com/q/302094 }}</ref>|proof=
url=https://math.stackexchange.com/q/302094 }}</ref>|proof=
विरोधाभास से, मान लीजिए <math>Y \cup X_{1}</math> जुड़ा नहीं है। अतः इसे दो असंयुक्त खुले समुच्चयों के मिलन के रूप में लिखा जा सकता है, उदा. <math>Y \cup X_{1}=Z_{1} \cup Z_{2}</math>. चूंकि <math>Y</math>जुड़ा हुआ है, यह इन घटकों में से एक में पूरी तरह से समाहित होना चाहिए, कहते हैं
विरोधाभास से, मान लीजिए <math>Y \cup X_{1}</math> जुड़ा नहीं है। अतः इसे दो असंयुक्त खुले समुच्चयों के संघ के रूप में लिखा जा सकता है, उदा. <math>Y \cup X_{1}=Z_{1} \cup Z_{2}</math>. चूंकि <math>Y</math>जुड़ा हुआ है, यह इन घटकों में पूरी तरह से समाहित होना चाहिए, कहते हैं
<math>Z_1</math>, and thus <math>Z_2</math>में निहित है<math>X_1</math>.अब हम जानते हैं कि:
<math>Z_1</math>, and thus <math>Z_2</math>में निहित है<math>X_1</math>.अब हम जानते हैं कि:
<math display="block">X=\left(Y \cup X_{1}\right) \cup X_{2}=\left(Z_{1} \cup Z_{2}\right) \cup X_{2}=\left(Z_{1} \cup X_{2}\right) \cup\left(Z_{2} \cap X_{1}\right)</math>
<math display="block">X=\left(Y \cup X_{1}\right) \cup X_{2}=\left(Z_{1} \cup Z_{2}\right) \cup X_{2}=\left(Z_{1} \cup X_{2}\right) \cup\left(Z_{2} \cap X_{1}\right)</math>
Line 151: Line 116:


[[File:Connectedness-of-set-difference.png|thumb|दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है]]
[[File:Connectedness-of-set-difference.png|thumb|दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है]]


== प्रमेय <!--'Main theorem of connectedness' redirects here-->==
== प्रमेय <!--'Main theorem of connectedness' redirects here-->==
Line 172: Line 145:
लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। [[चक्र ग्राफ]] | 5-चक्र ग्राफ (और कोई भी <math>n</math>-साइकिल के साथ <math>n>3</math> विषम) ऐसा ही एक उदाहरण है।
लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। [[चक्र ग्राफ]] | 5-चक्र ग्राफ (और कोई भी <math>n</math>-साइकिल के साथ <math>n>3</math> विषम) ऐसा ही एक उदाहरण है।


नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं {{harv|मस्कट|बुहगिअर |2006}}. टोपोलॉजिकल स्थान और ग्राफ़ संयोजी स्थान की विशेष स्थिति हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।
नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं {{harv|मस्कट|बुहगिअर |2006}}टोपोलॉजिकल स्थान और ग्राफ़ संयोजी स्थान की विशेष स्थिति हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।


चूंकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में खड़े रूप में इलाज़ करके, प्रत्येक ग्राफ को कैनोनिक रूप से एक टोपोलॉजिकल स्थान में बनाया जा सकता है (टोपोलॉजिकल ग्राफ सिद्धांत ग्राफ़ को टोपोलॉजिकल स्थान के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) यदि केवल यह एक टोपोलॉजिकल स्थान के रूप में जुड़ा हुआ है।
चूंकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में खड़े रूप में इलाज़ करके, प्रत्येक ग्राफ को कैनोनिक रूप से टोपोलॉजिकल स्थान में बनाया जा सकता है (टोपोलॉजिकल ग्राफ सिद्धांत ग्राफ़ को टोपोलॉजिकल स्थान के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) यदि केवल यह टोपोलॉजिकल स्थान के रूप में जुड़ा हुआ है।


जुड़ाव के शक्तिशाली रूप  
जुड़ाव के शक्तिशाली रूप  
टोपोलॉजिकल स्थान के लिए जुड़ाव के शक्तिशाली रूप हैं, उदाहरण के लिए:
टोपोलॉजिकल स्थान के लिए जुड़ाव के शक्तिशाली रूप हैं, उदाहरण के लिए:
* यदि टोपोलॉजिकल स्थान में दो भिन्न -भिन्न गैर-खाली खुले समुच्य सम्मलित नहीं हैं <math>X</math>, <math>X</math> जुड़ा होना चाहिए, और इस प्रकार [[अति जुड़े हुए स्थान]] भी जुड़े हुए हैं।
* यदि टोपोलॉजिकल स्थान में दो भिन्न -भिन्न अरिक्त खुले समुच्य सम्मलित नहीं हैं <math>X</math>, <math>X</math> जुड़ा होना चाहिए, और इस प्रकार [[अति जुड़े हुए स्थान]] भी जुड़े हुए हैं।
* चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल कनेक्टिविटी की परिभाषा से हटा दिया जाता है, तो एक साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
* चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल जुड़ाव की परिभाषा से हटा दिया जाता है, तो साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
* फिर भी कनेक्टिविटी के शक्तिशाली संस्करणों में एक अनुबंधित स्थान की धारणा सम्मलित है। हर सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।
* फिर भी जुड़ाव के शक्तिशाली संस्करणों में अनुबंधित स्थान की धारणा सम्मलित है। सभी सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।


सामान्य, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान सम्मलित हैं जो पथ से जुड़े नहीं हैं। [[कंघी की जगह]] ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट की ज्या वक्र है।
सामान्य, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान सम्मलित हैं जो पथ से जुड़े नहीं हैं। [[कंघी की जगह]] ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट की ज्या वक्र है।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|गणित}}
{{Portal|गणित
}}
* [[जुड़ा हुआ घटक (ग्राफ सिद्धांत)]]
* [[जुड़ा हुआ घटक (ग्राफ सिद्धांत)]]
*कनेक्टिविटी ठिकाना
*कनेक्टिविटी ठिकाना
Line 199: Line 173:


==अग्रिम पठन==
==अग्रिम पठन==
{{refbegin}}
{{refbegin}}{{cite book |author=Munkres, James R. |author-link=James Munkres |title=Topology, Second Edition |publisher=Prentice Hall |year=2000 |isbn=0-13-181629-2}}
* {{cite book | author= Munkres, James R. | author-link=James Munkres | title=Topology, Second Edition | publisher=Prentice Hall | year=2000 | isbn=0-13-181629-2}}
* {{MathWorld|urlname=ConnectedSet|title=Connected Set}}
* {{MathWorld|urlname=ConnectedSet|title=Connected Set}}
* {{eom|title=Connected space|author=V. I. Malykhin}}
* {{eom|title=Connected space|author=V. I. Malykhin}}
* {{Cite journal|url=http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf|last1=Muscat|first1=J|last2=Buhagiar|first2=D|title=Connective Spaces|journal=Mem. Fac. Sci. Eng. Shimane Univ., Series B: Math. Sc.|volume=39|year=2006|pages=1–13|access-date=2010-05-17|archive-url=https://web.archive.org/web/20160304053949/http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf|archive-date=2016-03-04|url-status=dead}}.
* {{Cite journal |url=http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf |last1=Muscat |first1=J |last2=Buhagiar |first2=D |title=Connective Spaces |journal=Mem. Fac. Sci. Eng. Shimane Univ., Series B: Math. Sc. |volume=39 |year=2006 |pages=1–13 |access-date=2010-05-17 |archive-url=https://web.archive.org/web/20160304053949/http://www.math.shimane-u.ac.jp/memoir/39/D.Buhagiar.pdf |archive-date=2016-03-04 |url-status=dead}}.
{{refend}}
{{refend}}


{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Connected Space}}[[Category: सामान्य टोपोलॉजी]]
{{DEFAULTSORT:Connected Space}}
[[Category: स्थलाकृतिक स्थानों के गुण]]
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Connected Space]]
[[Category:Created On 27/11/2022]]
[[Category:CS1 errors|Connected Space]]
[[Category:Created On 27/11/2022|Connected Space]]
[[Category:Harv and Sfn no-target errors|Connected Space]]
[[Category:Lua-based templates|Connected Space]]
[[Category:Machine Translated Page|Connected Space]]
[[Category:Pages with broken file links|Connected Space]]
[[Category:Pages with empty portal template|Connected Space]]
[[Category:Pages with script errors|Connected Space]]
[[Category:Portal templates with redlinked portals|Connected Space]]
[[Category:Short description with empty Wikidata description|Connected Space]]
[[Category:Templates Vigyan Ready|Connected Space]]
[[Category:Templates that add a tracking category|Connected Space]]
[[Category:Templates that generate short descriptions|Connected Space]]
[[Category:Templates using TemplateData|Connected Space]]
[[Category:सामान्य टोपोलॉजी|Connected Space]]
[[Category:स्थलाकृतिक स्थानों के गुण|Connected Space]]

Latest revision as of 12:39, 27 October 2023

टोपोलॉजी और गणित की संबंधित शाखाओं में, संयुक्त समष्टि टोपोलॉजिकल समष्टि है जिसे दो या दो से अधिक असंयुक्त अरिक्त विवृत उप-समुच्चय के संघ के रूप में प्रदर्शित नहीं किया जा सकता है। कनेक्टेडनेस मुख्य टोपोलॉजिकल गुण है जिसका उपयोग टोपोलॉजिकल रिक्त समष्टि को पृथक करने के लिए किया जाता है।

टोपोलॉजिकल स्पेस का उपसमुच्चय संयुक्त समुच्चय है, के उपसमष्टि के रूप में देखे जाने पर यह संयुक्त समष्टि है।

कुछ संबंधित किन्तु दृढ़ स्थितियाँ पथ से जुड़ी हुई हैं, बस जुड़ी हुई हैं, और -कनेक्टेड हैं। अन्य संबंधित धारणा समष्टिय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का यह अनुसरण करती है।

औपचारिक परिभाषा

टोपोलॉजिकल समष्टि को विभक्त करता है यदि दो अरिक्त विवृत समूहों का संयुग्मित है।अन्यथा, जुड़ा है तब टोपोलॉजिकल समष्टि, उप-समष्टि टोपोलॉजी के अंतर्गत संयुग्मित है। कुछ लेखक रिक्त समूह को जुड़े हुए समष्टि के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।

टोपोलॉजिकल समष्टि के लिए निम्नलिखित कारण हैं:

  1. संयुग्मित है, इसे दो भिन्न -भिन्न अरिक्त विवृत समूहों में विभाजित नहीं किया जा सकता है।
  2. उप-समुच्चय विवृत और बंद (क्लोपेन समूह) दोनों प्रकार के होते हैं रिक्त समूह हैं।
  3. रिक्त सीमा में उप-समुच्चय और रिक्त समूह भी हैं।
  4. को अरिक्त भिन्न समूहों के संघ के रूप में नहीं लिखा जा सकता हैI
  5. से तक सभी निरंतर कार्य स्थिर हैं, जहां असतत टोपोलॉजी से संपन्न दो-बिंदु समष्टि है| [1]

ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (दो भिन्न -भिन्न समूहों में के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें |

जुड़े हुए घटक

टोपोलॉजिकल समष्टि में कुछ बिंदु दिए गए हैं, जुड़े हुए उप-समुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में सम्मलित है| बिंदु में के जुड़े हुए घटक सभी उप-समूहों का संघ है जिसमें सम्मलित है| सबसे बड़ा अद्वितीय (के संबंध में ) का उप-समुच्चयों जिसमे सम्मिलित है | अरिक्त टोपोलॉजिकल समष्टि के अधिकतम तत्वों को उपसमुच्चय (समावेशी द्वारा आदेशित ) के समष्टि को घटक कहा जाता है। किसी भी टोपोलॉजिकल समष्टि के घटक का विभाजन भिन्न, अरिक्त और संपूर्ण समष्टि संयुग्मित है। प्रत्येक घटक मूल समष्टि का बंद उप-समुच्चय है। इसी प्रकार, इस स्थिति में संख्या परिमित है, प्रत्येक घटक भी खुला उप-समुच्चय है। चूंकि, यदि संख्या अनंत है, तो यह स्थिति नहीं हो सकती हैI उदाहरण के लिए, परिमेय संख्याओं के समुच्चय से जुड़े घटक बिंदु समुच्चय (सिंगलटन ) हैं, जो विवृत नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ विभिन्न घटकों में हैं। अपरिमेय संख्या लीजिए और फिर तथा का का वियोग हैI तथा . इस प्रकार प्रत्येक घटक बिंदु समुच्चय है।

मान लीजिए कि का टोपोलॉजिकल समष्टि से जुड़ा हुआ है। क्लोपेन भी समुच्चय का प्रतिच्छेदन है(जिसे का अर्ध-घटक कहा जाता है)I अर्थात में समानता होती है यदि कॉम्पैक्ट हौसडॉर्फ या समष्टिीय रूप से जुड़ा हुआ है। [2]

पृथक किए गए रिक्त समष्टि

समष्टि जिसमें सभी घटक बिंदु उप-समुच्चय से पूरी तरह विभक्त हो जाते हैं। इस संपत्ति से संबंधित, समष्टि को पूरी तरह से विभक्त किया जाता है यदि, और , के दो भिन्न -भिन्न तत्वों में, भिन्न -भिन्न विवृत समुच्चय में सम्मलित हैं | ऐसा युक्त है कि जिसमें , तथा का संघ हैI अर्थात , तथा का संयुग्मित हैI स्पष्ट रूप से, कोई भी पूर्ण रूप से भिन्न समष्टि से विभक्त हो गया है, लेकिन विभक्त होने का कारण नहीं स्पष्ट है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें , और शून्य को छोड़कर सभी बिंदु पर उन्हें पहचानें। परिणामी समष्टि, विभाजित संसमष्टििक के साथ, पूरी तरह से विभक्त हो गया है। चूंकि, शून्य की दो प्रतियों पर विचार करने से, यह प्रदर्शित होता है कि समष्टि पूर्ण रूप से विभक्त नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ समष्टि भी नहीं है, और पूर्ण रूप से विभक्त होने की स्थिति से अधिक शक्तिशाली है।

उदाहरण

  • मानक उप-समष्टि टोपोलॉजी यूक्लिडियन समष्टि में बंद अंतराल में जुड़ा हुआ है| चूंकि, उदाहरण के लिए, इसे तथा संघ के रूप में लिखा जा सकता हैI चुने हुए दूसरे विवृत समुच्चय टोपोलॉजी में से नहीं है I
  • तथा का संघ विभक्त हो गया है; इसके दोनों मानक टोपोलॉजिकल समष्टि अंतराल विवृत हैं
  • विभक्त किया गया है।
  • का उत्तल उप-समुच्चय जुड़ा हुआहुआ है।
  • यूक्लिडियन समष्टि मूल को छोड़कर, जुड़ा हुआ है, मूल के बिना त्रि-आयामी यूक्लिडियन समष्टि जुड़ा हुआ है, इसके विपरीत, मूल के बिना आयामी यूक्लिडियन समष्टि जुड़ा नहीं है।
  • सीधी रेखा के कारण यूक्लिडियन समतल जुड़ा नहीं है क्योंकि इसमें दो अर्ध-समतल होते हैं।
  • सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं के समष्टि से जुड़ा है।
  • निचली सीमा टोपोलॉजी विभक्त हो गई है।[3]
  • यदि से बिंदु विभक्त कर दिया जाए , तथा शेष भाग काट दिया जाता है चूंकि, यदि , जहां शेष जुड़ा हुआ है। यदि , फिर बिंदुओं से विभक्त होने के बाद भी जुड़ा रहता हैI
  • उदाहरण के लिए, संसमष्टििक वेक्टर समष्टि,से कोई भी हिल्बर्ट समष्टि या बनच समष्टि (जैसे या ) जुड़े हुए क्षेत्र है।
  • कम से कम दो तत्वों के साथ प्रत्येक असतत सामयिक समष्टि विभक्त हो गया है। सबसे सरल उदाहरण असतत दो-बिंदु समष्टि है।[4]
  • दूसरी ओर, एक परिमित समुच्चय जुड़ा हो सकता है। उदाहरण के लिए, असतत मूल्यांकन छल्ला के स्पेक्ट्रम में दो बिंदु जुड़े होते हैं। यह सिएरपिन्स्की समष्टि का उदाहरण है।
  • कैंटर समुच्चय पूरी तरह से विभक्त हो गया है; चूंकि समुच्चय में अधिक रूप से कई बिंदु और घटक होते हैं।
  • यदि कोई समष्टि के बराबर होमोटॉपी है, तो स्वयं जुड़ा हुआ है।
  • टोपोलॉजिस्ट की ज्या वक्र समुच्चय का उदाहरण है जो न तो पथ से जुड़ा है और न ही समष्टिीय रूप से जुड़ा हुआ है।
  • सामान्य रैखिक समूह (अर्थात् समूह -द्वारा- वास्तविक, व्युत्क्रमणीय आव्यूह) में दो जुड़े घटक होते हैं: सकारात्मक निर्धारक और दूसरा नकारात्मक निर्धारक। इसके विपरीत, जुड़ा हुआ है। अधिक सामान्यतः पर, जटिल हिल्बर्ट समष्टि पर उल्टा घिरे संचालनों का समुच्चय जुड़ा है।
  • विनिमेय समष्टिीय छल्लों और अभिन्न कार्यक्षेत्र के स्पेक्ट्रा से जुड़े हुए हैं। निम्नलिखित कारण हैं[5]
    1. क्रमविनिमेय वलय का स्पेक्ट्रम से जुड़ा हुआ है
    2. पर प्रत्येक सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल की निरंतर श्रेणी होती है।
    3. कोई क्रम नहीं है (अर्थात, गैर-तुच्छ उपाय से दो छल्लों का उत्पाद नहीं है)।

एक समतल जिसमें से अनंत रेखा निषेध कर दी गई है। विभक्त किए गए रिक्त समष्टि के अन्य उदाहरण (अर्थात, रिक्त समष्टि जो जुड़े नहीं हैं) जो समतल को वलय के साथ विभक्त कर दिया गया है, साथ ही साथ दो भिन्न-भिन्न बंद डिस्क (गणित) का संघ भी सम्मलित है, जहां इस अनुच्छेद के सभी उदाहरण द्वि-आयामी यूक्लिडियन द्वारा प्रेरित उप-समष्टि टोपोलॉजी को धारण करते हैं।

पथ जुड़ाव

R² का यह उप-समष्टि पथ से जुड़ा हुआ है, क्योंकि समतल में दो बिंदुओं के बीच पथ खींचा जा सकता है।
पथ से जुड़ा समष्टि

जुड़ाव की शक्तिशाली धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। (टोपोलॉजी) पथ समष्टि में बिंदु से तक का पथ एक निरंतर फलन है| इकाई अंतराल से से प्रति साथ तथा . का पथ-घटक तुल्यता संबंध के अंतर्गत का तुल्यता वर्ग है जो को के समतुल्य बनाता है यदि प्रति . स्थान   को पथ जुड़ाव कहा जाता है यदि कुल पथ घटक है कोई दो बिंदुओं में सम्मलित होने वाला मार्ग है| तत्पश्चात, कई लेखक रिक्त स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, चूंकि, रिक्त स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; रिक्त समुच्चय पर अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।

प्रत्येक पथ स्थान से जुड़ा हुआ है। इसका विलोम सदैव सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा और टोपोलॉजिस्ट की ज्या वक्र सम्मलित है|

वास्तविक रेखा के उप-समुच्चय जुड़े हुए हैं यदि केवल वे पथ से जुड़े हुए हैं; ये उप-समुच्चय के अंतराल (गणित) हैंI साथ ही, या के उप-समुच्चय खुले जुड़े हुए हैं और केवल वे पथ से जुड़े हुए हैं। इसके अतिरिक्त, परिमित सामयिक समष्टि के लिए जुड़ाव और पथ-जुड़ाव समान हैं।

चाप जुड़ाव

समष्टि को चाप जुड़ा हुआ या चाप वार जुड़ाव कहा जाता है यदि कोई दो टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं को पथ (टोपोलॉजी) से जोड़ा जा सकता है, जो टोपोलॉजिकल एम्बेडिंग है . का चाप-घटक का अधिकतम चाप-जुड़ाव उप-समुच्य है ; या समतुल्य रूप से समतुल्य संबंध का तुल्यता वर्ग कि क्या दो बिंदुओं को चाप से जोड़ा जा सकता है या ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।

प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, चाप से भी जुड़ा हुआ है; अधिक सामान्यतः यह कमजोर हौसडॉर्फ स्थान के लिए सही है-हॉसडॉर्फ स्थान, जो ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद हैI ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।

पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर सरलता से स्थानांतरित नहीं होता है। होने देना दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन चाप से जुड़े रिक्त स्थान के लिए नहीं हैं:

चाप -जुड़ाव स्थान की निरंतर छवि चाप-जुड़ाव नहीं हो सकती है: उदाहरण के लिए, चाप -जुड़ाव स्थान से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से भिन्न -भिन्न बिंदुओं के साथ लब्धि चित्र बहुत छोटा होने के कारण चाप -जुड़ाव नहीं किया जा सकता है। प्रमुखता।

  • चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, दो अतिव्यापी चाप-घटक हैं।
  • चाप -जुड़ाव स्थान का उत्पाद नहीं हो सकता है। उदाहरण के लिए, चाप से जुड़ा है, लेकिन नहीं है।
  • किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, चाप-घटक है, लेकिन दो चाप-घटक हैं।
  • यदि चाप से जुड़े उप-समुच्चय में अरिक्त अंतःखण्ड है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक प्रतिच्छेद करते हैं, लेकिन उनका संघ चाप से जुड़ा नहीं है।

स्थानीय जुड़ाव से जुड़ा हुआ है

टोपोलॉजिकल स्थान को बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है प्रत्येक निकटम जुड़ा हुआ खुला निकटम सम्मलित है। यह स्थानीय रूप से जुड़ा हुआ है यदि इसमें जुड़े हुए समूहों का आधार (टोपोलॉजी) है। यह दिखाया जा सकता है कि स्थान स्थानीय रूप से जुड़ा हुआ है और केवल खुले समुच्य के प्रत्येक घटक खुला है।

इसी प्रकार टोपोलॉजिकल स्थान को कहा जाता हैIस्थानीय रूप से पथ से जुड़ा हुआ यदि इसमें पथ से जुड़े समुच्य का आधार है। स्थानीय रूप से पथ से जुड़े स्थान का खुला उप-समुच्चय जुड़ा हुआ है और केवल यह पथ से जुड़ा हुआ है। यह पहले के वर्णन को सामान्यीकृत करता है तथा , जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक सामान्यतः, कोई भी टोपोलॉजिकल मैनिफोल्ड स्थानीय रूप से पथ से जुड़ा होता है। थंब|314x314px|टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं हैस्थानीय रूप से जुड़े हुए का अर्थ जुड़ा हुआ नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो भिन्न -भिन्न समुच्य अंतरालों का संघ है , जैसे कि .

जुड़े हुए स्थान का शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की ज्या वक्र है, जिसे परिभाषित किया गया है , with the Euclidean topology induced by inclusion in .


समुच्य संचालन छल्ला |जुड़े हुए उप-समुच्यों के संघों और अंतःखण्ड के उदाहरण जुड़े हुए उपसमुच्यों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।

जुड़े हुए उप-समुच्यों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है .

प्रत्येक दीर्घवृत्त जुड़ा हुआ उप-समुच्य है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो भिन्न -भिन्न खुले उप-समुच्यों में विभाजित किया जा सकता है तथा .

इसका अर्थ यह है कि, यदि संघ विभक्त किया गया है, तो संग्रह दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ भिन्न -भिन्न हैं और खुले हैं (तस्वीर देखो)। इसका तात्पर्य है कि कई स्थिति में, जुड़े हुए उप-समुच्यों का एक संघ है विशेष रूप से:अनिवार्य रूप से जुड़ा हुआ है।

यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (), तो प्रकाशित है कि उन्हें भिन्न -भिन्न यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए समुच्यों का मिलन जुड़ा हुआ है।

  1. यदि उपसमुच्य के प्रत्येक जोड़े का चौराहा खाली नहीं है () तो फिर उन्हें भिन्न -भिन्न यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।

यदि समुच्य को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यदि पूर्णांक सूचकांकों द्वारा अनुक्रमित और , फिर से उनका संघ जुड़ा होना चाहिए।

  1. यदि समुच्यजोड़ीदार-असंबद्ध हैं और भागफल स्थान (टोपोलॉजी) जुड़ा हुआ है, तो X जुड़ा होना चाहिए। नहीं तो यदि का वियोग है X फिर भागफल स्थान का पृथक्करण है (चूंकि असंयुक्त हैं और भागफल स्थान में खुले हैं)।[6]

समुच्य का जुड़ाव का समुच्य अंतर अनिवार्य नहीं है। चूंकि, यदि और उनका अंतर विभक्त किया गया है (और इस प्रकार दो खुले समुच्यों के संघके रूप में लिखा जा सकता है तथा ), फिर संघ ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यदि सभी के लिए जुड़ा हुआ है ).

प्रमाण[7]

विरोधाभास से, मान लीजिए जुड़ा नहीं है। अतः इसे दो असंयुक्त खुले समुच्चयों के संघ के रूप में लिखा जा सकता है, उदा. . चूंकि जुड़ा हुआ है, यह इन घटकों में पूरी तरह से समाहित होना चाहिए, कहते हैं , and thus में निहित है.अब हम जानते हैं कि:

पिछले संघ में दो समुच्य भिन्न हैं और अंदर खुले हैं , इसलिए पृथक्करण है, इस तथ्य के विपरीत कि जुड़ा हुआ है।

दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है





प्रमेय

  • संबद्धता का मुख्य प्रमेय: होने देना तथा टोपोलॉजिकल स्पेस बनें और दें एक सतत कार्य हो। यदि है (पथ-) छवि से जुड़ा हुआ है (पथ-) जुड़ा हुआ है। इस परिणाम को मध्यवर्ती मूल्य प्रमेय का सामान्यीकरण माना जा सकता है।
  • हर पथ से जुड़ा स्थान जुड़ा हुआ है।
  • हर स्थानीय पथ से जुड़ा स्थान स्थानीय रूप से जुड़ा हुआ है।
  • स्थानीय रूप से पाथ-कनेक्टेड स्पेस पाथ-कनेक्टेड है अगर और केवल अगर यह जुड़ा हुआ है।
  • जुड़े हुए सबसेट का क्लोजर (टोपोलॉजी) जुड़ा हुआ है। इसके अलावा, जुड़े हुए सबसेट और उसके बंद होने के बीच कोई भी सबसेट जुड़ा हुआ है।
  • जुड़े हुए घटक हमेशा बंद सेट होते हैं (लेकिन सामान्य तौर पर खुले नहीं होते हैं)
  • स्थानीय रूप से जुड़े हुए स्थान के जुड़े घटक भी खुले हैं।
  • एक स्थान के जुड़े घटक पथ से जुड़े घटकों के असंयुक्त संघ हैं (जो सामान्य रूप से न तो खुले हैं और न ही बंद हैं)।
  • कनेक्टेड (स्थानीय रूप से जुड़ा हुआ, पथ-जुड़ा हुआ, स्थानीय रूप से पथ-जुड़ा हुआ) स्थान का प्रत्येक भाग स्थान (टोपोलॉजी) जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से जुड़ा हुआ है, पथ-जुड़ा हुआ है, स्थानीय रूप से जुड़ा हुआ है)।
  • कनेक्टेड (प्रतिक्रिया पथ से जुड़े) रिक्त स्थान के एक परिवार का प्रत्येक उत्पाद टोपोलॉजी जुड़ा हुआ है (उत्तर पथ से जुड़ा हुआ है)।
  • स्थानीय रूप से जुड़े (प्रतिक्रिया स्थानीय रूप से पथ से जुड़े) स्थान का प्रत्येक खुला उपसमुच्चय स्थानीय रूप से जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से पथ से जुड़ा हुआ है)।
  • प्रत्येक विविध स्थानीय रूप से पाथ-कनेक्टेड है।
  • चाप-वार जुड़ा हुआ स्थान पथ से जुड़ा हुआ है, लेकिन पथ-वार जुड़ा हुआ स्थान चाप-वार जुड़ा नहीं हो सकता है
  • चाप-वार जुड़े सेट की निरंतर छवि चाप-वार जुड़ी हुई है।

रेखांकन

ग्राफ़ (असतत गणित) में पथ से जुड़े उपसमुच्चय होते हैं, अर्थात् वे उपसमुच्चय जिनके लिए बिंदुओं के प्रत्येक युग्म में उनके साथ जुड़ने वाले किनारों का मार्ग होता है। लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। चक्र ग्राफ | 5-चक्र ग्राफ (और कोई भी -साइकिल के साथ विषम) ऐसा ही एक उदाहरण है।

नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं (मस्कट & बुहगिअर 2006)टोपोलॉजिकल स्थान और ग्राफ़ संयोजी स्थान की विशेष स्थिति हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।

चूंकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में खड़े रूप में इलाज़ करके, प्रत्येक ग्राफ को कैनोनिक रूप से टोपोलॉजिकल स्थान में बनाया जा सकता है (टोपोलॉजिकल ग्राफ सिद्धांत ग्राफ़ को टोपोलॉजिकल स्थान के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) यदि केवल यह टोपोलॉजिकल स्थान के रूप में जुड़ा हुआ है।

जुड़ाव के शक्तिशाली रूप टोपोलॉजिकल स्थान के लिए जुड़ाव के शक्तिशाली रूप हैं, उदाहरण के लिए:

  • यदि टोपोलॉजिकल स्थान में दो भिन्न -भिन्न अरिक्त खुले समुच्य सम्मलित नहीं हैं , जुड़ा होना चाहिए, और इस प्रकार अति जुड़े हुए स्थान भी जुड़े हुए हैं।
  • चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल जुड़ाव की परिभाषा से हटा दिया जाता है, तो साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
  • फिर भी जुड़ाव के शक्तिशाली संस्करणों में अनुबंधित स्थान की धारणा सम्मलित है। सभी सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।

सामान्य, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान सम्मलित हैं जो पथ से जुड़े नहीं हैं। कंघी की जगह ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट की ज्या वक्र है।

यह भी देखें

संदर्भ

  1. Wilder, R.L. (1978). ""कनेक्टेड" की सामयिक अवधारणा का विकास". American Mathematical Monthly. 85 (9): 720–726. doi:10.2307/2321676. JSTOR 2321676.
  2. "सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक".
  3. Stephen Willard (1970). सामान्य टोपोलॉजी. Dover. p. 191. ISBN 0-486-43479-6.
  4. George F. Simmons (1968). टोपोलॉजी और आधुनिक विश्लेषण का परिचय. McGraw Hill Book Company. p. 144. ISBN 0-89874-551-9.
  5. Charles Weibel, The K-book: An introduction to algebraic K-theory
  6. https://math.stackexchange.com/q/302118. {{cite web}}: |first= missing |last= (help); Missing or empty |title= (help); Unknown parameter |अंतिम= ignored (help); Unknown parameter |काम= ignored (help); Unknown parameter |तिथि= ignored (help); Unknown parameter |शीर्षक= ignored (help)
  7. https://math.stackexchange.com/q/302094. {{cite web}}: Missing or empty |title= (help); Unknown parameter |काम= ignored (help); Unknown parameter |तिथि= ignored (help); Unknown parameter |लेखक= ignored (help); Unknown parameter |शीर्षक= ignored (help)


अग्रिम पठन

Munkres, James R. (2000). Topology, Second Edition. Prentice Hall. ISBN 0-13-181629-2.