ऑरेंज (सॉफ्टवेयर): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox software
'''ऑरेंज''' ओपन स्रोत सॉफ्टवेयर, डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग और डेटा माइनिंग उपकरण बॉक्स है। यह शोध पूर्ण तीव्र गुणात्मक डेटा विश्लेषण और इंटरैक्टिव डेटा [[सूचना विज़ुअलाइज़ेशन]] के लिए [[दृश्य प्रोग्रामिंग]] फ्रंट-एंड की सुविधा प्रदान करता है।<ref>{{Cite journal|last1=DemšarJanez|last2=CurkTomaž|last3=ErjavecAleš|last4=GorupČrt|last5=HočevarTomaž|last6=MilutinovičMitar|last7=MožinaMartin|last8=PolajnarMatija|last9=ToplakMarko|last10=StaričAnže|last11=ŠtajdoharMiha|date=2013-01-01|title=संतरा|url=https://dl.acm.org/doi/abs/10.5555/2567709.2567736|journal=The Journal of Machine Learning Research|language=EN}}</ref>
| name = Orange
| title = Orange
| logo = Orange-software-logo.png
| logo caption =
| logo_size = 200px
| logo_alt =
| screenshot = <!-- Image name is enough -->
| caption = <!-- Orange visual programming, showing explorative data analysis on Iris [[University of California, Irvine|UCI]] data set -->
| screenshot_size =
| screenshot_alt =
| collapsible =
| author =
| developer = [[University of Ljubljana]]
| released = {{Start date and age|1996|10|10|df=yes}}<ref>{{Cite web|url=https://github.com/biolab/orange3/blob/master/CHANGELOG.md#01---1996-10-10|title=orange3/CHANGELOG.md at master . biolab/orange3 . GitHub|website=[[GitHub]]}}</ref>
| discontinued = No
| latest release version = {{wikidata|property|reference|P348}}
| latest release date    = {{start date and age|{{wikidata|qualifier|P348|P577}}}}
| नवीनतम पूर्वावलोकन संस्करण =
| नवीनतम पूर्वावलोकन दिनांक = <!-- {{Start date and age|YYYY|MM|DD|df=yes/no}} -->
| रेपो = {{URL|https://github.com/biolab/orange3|Orange Repository}}
| प्रोग्रामिंग लैंग्वेज = पायथन (प्रोग्रामिंग लैंग्वेज), [[साइथन]], [[सी ++]], [[सी (प्रोग्रामिंग भाषा)]]
| ऑपरेटिंग सिस्टम = [[क्रॉस-प्लेटफॉर्म]]
| मंच =
| आकार =
| भाषा =
| भाषा फुटनोट =
| शैली = [[मशीन लर्निंग]], [[डेटा माइनिंग]], [[डेटा विज़ुअलाइज़ेशन]], [[डेटा विश्लेषण]]
| लाइसेंस = [[जीपीएल]]<ref>{{cite web |title=नारंगी - लाइसेंस|url=https://orange.biolab.si/license/
}}</ref><ref>{{cite web |title=ऑरेंज 3/लाइसेंस मास्टर पर। बायोलैब/ऑरेंज3. GitHub|website=[[GitHub]]
|url=https://github.com/biolab/orange3/blob/master/LICENSE
}}</ref>
| एलेक्सा =
| वेबसाइट = {{official url}}
| मानक =
| एएसओएफ =
}}
 
ऑरेंज एक [[खुला स्रोत सॉफ्टवेयर|ओपन स्रोत सॉफ्टवेयर]] है। ओपन-सोर्स डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग और डेटा माइनिंग टूलकिट है। यह खोजपूर्ण तीव्र गुणात्मक डेटा विश्लेषण और इंटरैक्टिव डेटा [[सूचना विज़ुअलाइज़ेशन]] के लिए एक [[दृश्य प्रोग्रामिंग]] फ्रंट-एंड की सुविधा देता है।<ref>{{Cite journal|last1=DemšarJanez|last2=CurkTomaž|last3=ErjavecAleš|last4=GorupČrt|last5=HočevarTomaž|last6=MilutinovičMitar|last7=MožinaMartin|last8=PolajnarMatija|last9=ToplakMarko|last10=StaričAnže|last11=ŠtajdoharMiha|date=2013-01-01|title=संतरा|url=https://dl.acm.org/doi/abs/10.5555/2567709.2567736|journal=The Journal of Machine Learning Research|language=EN}}</ref>


[[File:Workflow-Orange3.png|thumb|ऑरेंज 3 में विशिष्ट कार्यप्रवाह।]]
[[File:Workflow-Orange3.png|thumb|ऑरेंज 3 में विशिष्ट कार्यप्रवाह।]]
Line 43: Line 5:
== विवरण ==
== विवरण ==


ऑरेंज डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग, डेटा माइनिंग और डेटा विश्लेषण के लिए एक घटक-आधारित विज़ुअल प्रोग्रामिंग सॉफ़्टवेयर पैकेज है।
ऑरेंज डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग, डेटा माइनिंग और डेटा विश्लेषण के लिए घटक-आधारित विज़ुअल प्रोग्रामिंग सॉफ़्टवेयर पैकेज है।
 
ऑरेंज विजेट को विगेट्स कहा जाता है और वे सरल डेटा विज़ुअलाइज़ेशन, सबसेट चयन और प्रीप्रोसेसिंग से लेकर लर्निंग [[एल्गोरिदम]] के अनुभवजन्य मूल्यांकन तक होते हैं और दूसरा [[भविष्य कहनेवाला मॉडलिंग|भविष्य कहने वाला मॉडलिंग]] है।


विज़ुअल प्रोग्रामिंग को एक इंटरफ़ेस के माध्यम से कार्यान्वित किया जाता है जिसमें पूर्वनिर्धारित या उपयोगकर्ता-डिज़ाइन किए गए [[सॉफ्टवेयर विजेट]] को जोड़कर वर्कफ़्लोज़ बनाए जाते हैं, जबकि उन्नत उपयोगकर्ता डेटा परिवर्तन और विजेट परिवर्तन के लिए ऑरेंज को पायथन लाइब्रेरी के रूप में उपयोग कर सकते हैं।<ref>{{cite journal |author1=Janez Demšar |author2=Tomaž Curk |author3=Aleš Erjavec |author4=Črt Gorup |author5=Tomaž Hočevar |author6=Mitar Milutinovič |author7=Martin Možina |author8=Matija Polajnar |author9=Marko Toplak |author10=Anže Starič |author11=Miha Stajdohar |author12=Lan Umek |author13=Lan Žagar |author14=Jure Žbontar |author15=Marinka Žitnik |author16=Blaž Zupan |title=ऑरेंज: पायथन में डेटा माइनिंग टूलबॉक्स|journal=[[Journal of Machine Learning Research|JMLR]] |volume=14 |issue=1 |year=2013 |pages=2349–2353 |url=http://eprints.fri.uni-lj.si/2267/1/2013-Demsar-Orange-JMLR.pdf}}</ref>
ऑरेंज घटकों को विगेट्स कहा जाता है और वे सरल डेटा विज़ुअलाइज़ेशन, उप-समुच्चय चयन और प्री-प्रोसेसिंग से लेकर लर्निंग [[एल्गोरिदम]] के अनुभवजन्य मूल्यांकन तक होते हैं और द्वितीय भविष्य कहने वाला मॉडलिंग है।


विज़ुअल प्रोग्रामिंग इंटरफ़ेस के माध्यम से कार्यान्वित किया जाता है जिसमें पूर्वनिर्धारित या उपयोगकर्ता-डिज़ाइन किए गएघटक[[सॉफ्टवेयर विजेट|्स]] को जोड़कर वर्कफ़्लोज़ बनाए जाते हैं, जबकि उन्नत उपयोगकर्ता डेटा परिवर्तन औरघटक परिवर्तन के लिए ऑरेंज को पायथन लाइब्रेरी के रूप में उपयोग कर सकते हैं।<ref>{{cite journal |author1=Janez Demšar |author2=Tomaž Curk |author3=Aleš Erjavec |author4=Črt Gorup |author5=Tomaž Hočevar |author6=Mitar Milutinovič |author7=Martin Možina |author8=Matija Polajnar |author9=Marko Toplak |author10=Anže Starič |author11=Miha Stajdohar |author12=Lan Umek |author13=Lan Žagar |author14=Jure Žbontar |author15=Marinka Žitnik |author16=Blaž Zupan |title=ऑरेंज: पायथन में डेटा माइनिंग टूलबॉक्स|journal=[[Journal of Machine Learning Research|JMLR]] |volume=14 |issue=1 |year=2013 |pages=2349–2353 |url=http://eprints.fri.uni-lj.si/2267/1/2013-Demsar-Orange-JMLR.pdf}}</ref>


== सॉफ्टवेयर ==
== सॉफ्टवेयर ==


ऑरेंज जीपीएल के अनुसार जारी ओपन सोर्स सॉफ्टवेयर पैकेज है। 3.0 तक के संस्करणों में सी ++ में मुख्य घटक सम्मलित हैं जिनमें पायथन में रैपर गिटहब पर,जो पायथन में [[आवरण समारोह]] के साथ गिटहब पर उपलब्ध हैं। संस्करण 3.0 के बाद से, ऑरेंज वैज्ञानिक कंप्यूटिंग के लिए साधारण पायथन ओपन-सोर्स लाइब्रेरी का उपयोग करता है, जैसे कि सुन्न, [[स्किपी]] और [[scikit-सीखें|स्किकिट-लर्न]], जबकि इसका ग्राफिकल यूजर इंटरफेस क्रॉस-प्लेटफॉर्म [[क्यूटी (सॉफ्टवेयर)]] रूपरेखा के अंतर्गत कार्य करता है।
ऑरेंज जीपीएल के अनुसार प्रस्तावित ओपन सोर्स सॉफ्टवेयर पैकेज है। 3.0 तक के संस्करणों में सी++ में मुख्य घटक सम्मलित हैं जिनमें पायथन में रैपर गिटहब पर, [[आवरण समारोह|आवरण फंक्शन]] के साथ उपलब्ध हैं। संस्करण 3.0 के पश्चात से, ऑरेंज वैज्ञानिककम्पूटरीकृत के लिए साधारण पायथन ओपन-सोर्स लाइब्रेरी का उपयोग करता है, जैसे कि सुन्न, [[स्किपी]] और [[scikit-सीखें|स्किकिट-लर्न]], जबकि इसका ग्राफिकल यूजर इंटरफेस क्रॉस-प्लेटफॉर्म [[क्यूटी (सॉफ्टवेयर)]] रूपरेखा के अंतर्गत कार्य करता है।


डिफ़ॉल्ट स्थापना में 6 विजेट सेट (डेटा, विज़ुअलाइज़, वर्गीकृत, प्रतिगमन,मूल्यांकन औरअनुपयोगी) में कई पेपर लर्निंग,प्रीप्रोसेसिंग और डेटा विज़ुअलाइज़ेशन एल्गोरिदम सम्मलित हैं। अतिरिक्त कार्यात्मकता ऐड-ऑन (जैव सूचना विज्ञान, डेटा फ्यूजन और टेक्स्ट-माइनिंग) के रूप में उपलब्ध हैं।
डिफ़ॉल्ट स्थापना में 6घटक सेट (डेटा, विज़ुअलाइज़, वर्गीकृत, प्रतिगमन, मूल्यांकन और अनुपयोगी) में कई मशीन लर्निंग, प्री-प्रोसेसिंग और डेटा विज़ुअलाइज़ेशन एल्गोरिदम सम्मलित हैं। अतिरिक्त कार्यात्मकता ऐड-ऑन (जैव सूचना विज्ञान, डेटा फ्यूजन और टेक्स्ट-माइनिंग) के रूप में उपलब्ध हैं।


ऑरेंज मैकओएस,[[माइक्रोसॉफ़्ट विंडोज़]] और [[लिनक्स]] पर समर्थित है और इसे पायथन पैकेज इंडेक्स रिपॉजिटरी (पाइप इंस्टॉल ऑरेंज 3) से भी इंस्टॉल किया जा सकता है।
ऑरेंज मैकओएस, [[माइक्रोसॉफ़्ट विंडोज़]] और [[लिनक्स]] पर समर्थित है और इसे पायथन पैकेज इंडेक्स रिपॉजिटरी (पाइप इंस्टॉल ऑरेंज 3) से भी इंस्टॉल किया जा सकता है।


== सुविधाएँ ==
== सुविधाएँ ==


ऑरेंज में एक कैनवास [[इंटरफ़ेस (कंप्यूटिंग)]] होता है, जिस पर उपयोगकर्ता विजेट रखता है और डेटा विश्लेषण वर्कफ़्लो बनाता है। विजेट डेटा पढ़ने, डेटा तालिका दिखाने, सुविधाओं का चयन करने, प्रशिक्षण भविष्यवाणियों, सीखने के एल्गोरिदम की तुलना करने, डेटा तत्वों की कल्पना करने आदि जैसी बुनियादी कार्यक्षमताओं की प्रस्तुति करते हैं। उपयोगकर्ता अंतःक्रियात्मक रूप से विज़ुअलाइज़ेशन का पता लगा सकता है या चयनित सबसेट को अन्य विजेट्स में फीड कर सकता है।
ऑरेंज में कैनवास [[इंटरफ़ेस (कंप्यूटिंग)|इंटरफ़ेस (कम्पूटरीकृत)]] होता है, जिस पर उपयोगकर्ताघटक रखता है और डेटा विश्लेषण वर्कफ़्लो बनाता है।घटक डेटा पढ़ने, डेटा सारणी दिखाने, सुविधाओं का चयन करने, प्रशिक्षण भविष्यवाणियों, सीखने के एल्गोरिदम की तुलना करने, डेटा तत्वों की कल्पना करने आदि जैसी बुनियादी कार्यक्षमताओं की प्रस्तुति करते हैं। उपयोगकर्ता अंतःक्रियात्मक रूप से विज़ुअलाइज़ेशन का पता लगा सकते है या चयनित उप-समुच्चय को अन्यघटक्स में फीड कर सकता है।
 
[[File:Classification Tree widget in Orange 3.0.PNG|thumb|ऑरेंज 3.0 में वर्गीकरण ट्री-घटक]]'''कैनवास:''' डेटा विश्लेषण के लिए ग्राफिकल फ्रंट-एंड है।
*'''विजेट:'''
** '''डेटा:''' डेटा इनपुट, डेटा फ़िल्टरिंग, प्रतिमानकरण, अभियोग, सुविधा परिवर्तन और सुविधा चयन के लिएघटक है।
** '''विज़ुअलाइज़ करें:''' सामान्य विज़ुअलाइज़ेशन (बॉक्स प्लॉट, हिस्टोग्राम, स्कैटर प्लॉट) और मल्टीवेरिएट विज़ुअलाइज़ेशन (मोज़ेक डिस्प्ले, सीव डायग्राम) के लिएघटक है।
** '''वर्गीकृत करें:''' वर्गीकरण के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का समुच्चय है।
** '''प्रतिगमन:''' प्रतिगमन के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का समुच्चय है।
**'''मूल्यांकन करें:''' क्रॉस-वैलिडेशन, सैंपलिंग-आधारित प्रक्रियाएं, विश्वसनीयता अनुमान और भविष्यवाणी विधियों का स्कोरिंग करना है।
**'''अनपर्यवेक्षित:''' [[क्लस्टर विश्लेषण]] (के-मीन्स, पदानुक्रमित क्लस्टरिंग) और डेटा प्रोजेक्शन तकनीक (बहुआयामी स्केलिंग, प्रमुख घटक विश्लेषण, पत्राचार विश्लेषण)  के लिए अनपर्यवेक्षित लर्निंग एल्गोरिदम है।
 
== ऐड-ऑन ==
 


[[File:Classification Tree widget in Orange 3.0.PNG|thumb|ऑरेंज 3.0 में वर्गीकरण ट्री विजेट]]कैनवास: डेटा विश्लेषण के लिए ग्राफिकल फ्रंट-एंड
ऑरेंज उपयोगकर्ता ऐड-ऑन में घटकों के साथ अपने मुख्य घटकों का विस्तार कर सकते हैं। समर्थित ऐड-ऑन में सम्मलित हैं:
*विजेट:
*'''एसोसिएट:''' निरंतर आइटम समुच्चय करने और एसोसिएशन नियम सीखने के लिए घटक है।
** डेटा: डेटा इनपुट, डेटा फ़िल्टरिंग, नमूनाकरण, अभियोग, सुविधा हेरफेर और सुविधा चयन के लिए विजेट
* '''जैव सूचना विज्ञान:''' जीन अभिव्यक्ति विश्लेषण, [[जीन सेट संवर्धन|संवर्धन]], और अभिव्यक्ति डेटा बेस (जैसे, जीन एक्सप्रेशन ओम्निबस) और पाथवे लाइब्रेरी तक पहुंच के लिए घटक है।
** विज़ुअलाइज़ करें: सामान्य विज़ुअलाइज़ेशन (बॉक्स प्लॉट, हिस्टोग्राम, स्कैटर प्लॉट) और मल्टीवेरेट विज़ुअलाइज़ेशन (मोज़ेक डिस्प्ले, सीव डायग्राम) के लिए विजेट।
* '''डेटा फ्यूजन:''' विभिन्न डेटा समुच्चय को फ्यूज करने के लिए घटक, सामूहिक मैट्रिक्स फैक्टराइजेशन और अव्यक्त कारकों का शोध है।
** वर्गीकृत करें: वर्गीकरण के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का एक सेट
* '''शैक्षिक:''' मशीन सीखने की अवधारणाओं को पढ़ाने के लिए घटक, जैसे कि [[k-मतलब क्लस्टरिंग|के-साधन क्लस्टरिंग]], [[बहुपद प्रतिगमन]], [[स्टोकेस्टिक ग्रेडिएंट डिसेंट]] इत्यादि।
** प्रतिगमन: प्रतिगमन के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का एक सेट
*भू: [[भू-स्थानिक विश्लेषण]] के साथ कार्य करने के लिए घटक है।
**मूल्यांकन करें: क्रॉस-वैलिडेशन, सैंपलिंग-आधारित प्रक्रियाएं, विश्वसनीयता अनुमान और भविष्यवाणी विधियों का स्कोरिंग
* '''इमेज एनालिटिक्स:''' इमेज और [[इमेज नेट]] [[शब्द एम्बेडिंग|एम्बेडिंग]] के साथ कार्य करने के लिए घटक है।
**अनपर्यवेक्षित: [[क्लस्टर विश्लेषण]] (के-मीन्स, पदानुक्रमित क्लस्टरिंग) और डेटा प्रोजेक्शन तकनीक (बहुआयामी स्केलिंग, प्रमुख घटक विश्लेषण, पत्राचार विश्लेषण)  के लिए अनसुपरवाइज्ड लर्निंग एल्गोरिदम।
* '''नेटवर्क:''' ग्राफ और [[नेटवर्क सिद्धांत]] के लिए घटक है।
** ऐड-ऑन:
*'''[[टेक्स्ट खनन|टेक्स्ट माइनिंग]]:''' [[प्राकृतिक भाषा प्रसंस्करण]] और टेक्स्ट माइनिंग के लिए घटक है।
***एसोसिएट: बार-बार आइटम सेट करने और एसोसिएशन नियम सीखने के लिए विजेट
* '''[[समय श्रृंखला]]:''' समय श्रृंखला विश्लेषण और मॉडलिंग के लिए विज घटक टीएस है।
*** जैव सूचना विज्ञान: जीन सेट विश्लेषण, [[जीन सेट संवर्धन]], और पाथवे पुस्तकालयों तक पहुंच के लिए विजेट
* '''स्पेक्ट्रोस्कोपी:''' [[हाइपरस्पेक्ट्रल इमेजिंग|हाइपर स्पेक्ट्रल]] डेटा समुच्चय के विश्लेषण और विज़ुअलाइज़ेशन के लिए घटक है।<ref>M. Toplak, G. Birarda, S. Read, C. Sandt, S. Rosendahl, L. Vaccari, J. Demšar, F. Borondics, Synchrotron Radiation News 30, 40–45 (2017). https://doi.org/10.1080/08940886.2017.1338424</ref>
*** डेटा फ्यूजन: विभिन्न डेटा सेटों को फ्यूज करने के लिए विजेट,सामूहिक मैट्रिक्स फैक्टराइजेशन और अव्यक्त कारकों की खोज
*** शैक्षिक: शिक्षण पेपर सीखने की अवधारणाओं के लिए विजेट, जैसे कि [[k-मतलब क्लस्टरिंग|के-मीन्स क्लस्टरिंग]], [[बहुपद प्रतिगमन]], [[स्टोकेस्टिक ग्रेडिएंट डिसेंट]], ...
***भू: [[भू-स्थानिक विश्लेषण]] के साथ कार्य करने के लिए विजेट
*** इमेज एनालिटिक्स: इमेज और [[इमेज नेट]] [[शब्द एम्बेडिंग]] के साथ कार्य करने के लिए विजेट
*** नेटवर्क: ग्राफ और [[नेटवर्क सिद्धांत]] के लिए विजेट
***[[टेक्स्ट खनन|टेक्स्ट माइनिंग]]: [[प्राकृतिक भाषा प्रसंस्करण]] और टेक्स्ट माइनिंग के लिए विजेट्स
*** [[समय श्रृंखला]]: समय श्रृंखला विश्लेषण और मॉडलिंग के लिए विजेट
*** स्पेक्ट्रोस्कोपी:(हाइपर)[[हाइपरस्पेक्ट्रल इमेजिंग]] के विश्लेषण और विज़ुअलाइज़ेशन के लिए विजेट | <ref>M. Toplak, G. Birarda, S. Read, C. Sandt, S. Rosendahl, L. Vaccari, J. Demšar, F. Borondics, Synchrotron Radiation News 30, 40–45 (2017). https://doi.org/10.1080/08940886.2017.1338424</ref>


[[File:Paint Data - example workflow.png|thumb|[[पदानुक्रमित क्लस्टरिंग]] और के-मीन्स के संयोजन में पेंट डेटा विजेट।]]
[[File:Paint Data - example workflow.png|thumb|[[पदानुक्रमित क्लस्टरिंग]] और के-घटक के संयोजन में पेंट डेटा घटक।]]


== उद्देश्य ==
== उद्देश्य ==


कार्यक्रम प्रयोग चयन, अनुशंसा प्रणाली और भविष्य कहने वाला मॉडलिंग के लिए एक मंच प्रदान करता है और इसका उपयोग [[बायोमेडिसिन]], जैव सूचना विज्ञान, [[जीनोमिक्स]] और शिक्षण में किया जाता है। विज्ञान में, इसका उपयोग नई पेपर लर्निंग एल्गोरिदम के परीक्षण और [[आनुवंशिकी]] और जैव सूचना विज्ञान में नई तकनीकों को लागू करने के लिए एक मंच के रूप में किया जाता है। शिक्षा में, जीव विज्ञान, बायोमेडिसिन और सूचना विज्ञान के छात्रों को पेपर सीखने और डेटा खनन विधियों को पढ़ाने के लिए इसका प्रयोग किया गया था।
कार्यक्रम प्रयोग चयन, अनुशंसा प्रणाली और भविष्य कहने वाला मॉडलिंग के लिए मंच प्रदान करता है और इसका उपयोग [[बायोमेडिसिन]], जैव सूचना विज्ञान, [[जीनोमिक्स]] और शिक्षण में किया जाता है। विज्ञान में, इसका उपयोग नई मशीन लर्निंग एल्गोरिदम के परीक्षण, [[आनुवंशिकी]] और जैव सूचना विज्ञान में नई तकनीकों को लागू करने के लिए मंच के रूप में किया जाता है। शिक्षा में, जीव विज्ञान, बायोमेडिसिन और सूचना विज्ञान के छात्रों को मशीन सीखने और डेटा खनन विधियों को पढ़ाने के लिए इसका प्रयोग किया गया था।


== एक्सटेंशन ==
== एक्सटेंशन ==
ऑरेंज पर विभिन्न परियोजनाएं ऐड-ऑन के साथ मुख्य घटकों का विस्तार करके या कार्यान्वित दृश्य प्रोग्रामिंग सुविधाओं और जीयूआई का लाभ उठाने के लिए केवल ऑरेंज कैनवस का उपयोग करके निर्माण करती हैं।
ऑरेंज पर विभिन्न परियोजनाएं ऐड-ऑन के साथ मुख्य घटकों का विस्तार करके या कार्यान्वित दृश्य प्रोग्रामिंग सुविधाओं और जीयूआई का लाभ उठाने के लिए केवल ऑरेंज कैनवस का उपयोग करके निर्माण करती हैं।


* ओएसिस - ऑरेंज सिंक्रोट्रॉन सुइट <ref>L. Rebuffi, M. Sanchez del Rio, Proc. SPIE 10388, 103880S (2017). https://doi.org/10.1117/12.2274263</ref>
* '''ओएसिस-''' ऑरेंज सिंक्रोट्रॉन सूट।<ref>L. Rebuffi, M. Sanchez del Rio, Proc. SPIE 10388, 103880S (2017). https://doi.org/10.1117/12.2274263</ref>
* एससी ऑरेंज - सिंगल सेल बायोस्टैटिस्टिक्स
* '''एससी ऑरेंज-''' सिंगल सेल बायोस्टैटिस्टिक्स।
* क्वासर - प्राकृतिक विज्ञान में डेटा विश्लेषण
* क्वासर - प्राकृतिक विज्ञान में डेटा विश्लेषण।


== इतिहास ==
== इतिहास ==
* 1996 में, [[लजुब्जाना विश्वविद्यालय]] और जोज़ेफ़ स्टीफ़न संस्थान ने एमएल का विकास प्रारम्भ किया, जो C++ में एक पेपर लर्निंग फ्रेमवर्क है।
* 1996 में, [[लजुब्जाना विश्वविद्यालय]] और जोज़ेफ़ स्टीफ़न संस्थान ने सी++ में मशीन लर्निंग फ्रेमवर्क एमएल का विकास प्रारम्भ किया।
* 1997 में, पेपर लर्निंग के लिए पायथन (प्रोग्रामिंग लैंग्वेज) बाइंडिंग विकसित की गई थी, जो उभरते हुए पायथन मॉड्यूल के साथ मिलकर ऑरेंज नामक एक संयुक्त रूपरेखा का निर्माण करती है।
* 1997 में, पेपर लर्निंग के लिए पायथन (प्रोग्रामिंग लैंग्वेज) बाइंडिंग विकसित की गई थी, जो उभरते हुए पायथन मॉड्यूल के साथ मिलकर ऑरेंज नामक संयुक्त रूपरेखा का निर्माण करती है।
* बाद के वर्षों के दौरान, डेटा माइनिंग और पेपर लर्निंग के लिए अधिकांश प्रमुख एल्गोरिदम C++ (ऑरेंज कोर) या पायथन मॉड्यूल में विकसित किए गए हैं।
* बाद के वर्षों के समय, डेटा माइनिंग और पेपर लर्निंग के लिए अधिकांश प्रमुख एल्गोरिदम सी++ (ऑरेंज कोर) या पायथन मॉड्यूल में विकसित किए गए हैं।
* 2002 में, [[PWM (विंडो मैनेजर)|पीडब्लूएम (विंडो मैनेजर)]] का उपयोग करके एक लचीला ग्राफिकल यूजर इंटरफेस बनाने के लिए पहला प्रोटोटाइप डिजाइन किया गया था।
* 2002 में, [[PWM (विंडो मैनेजर)|पीडब्लूएम (विंडो मैनेजर)]] का उपयोग करके ग्राफिकल यूजर इंटरफेस बनाने के लिए प्रथम प्रोटोटाइप डिजाइन किया गया था।
* 2003 में, [[PyQt|पीईक्यूटी]] पायथन बाइंडिंग का उपयोग करके क्यूटी (सॉफ्टवेयर) फ्रेमवर्क के लिए ग्राफिकल यूजर इंटरफेस को नया रूप दिया गया और फिर से विकसित किया गया। दृश्य प्रोग्रामिंग ढांचे को परिभाषित किया गया था, और विगेट्स (डेटा विश्लेषण पाइपलाइन के ग्राफिकल घटक) का विकास प्रारम्भ हो गया है।
* 2003 में, [[PyQt|पीईक्यूटी]] पायथन बाइंडिंग का उपयोग करके क्यूटी (सॉफ्टवेयर) फ्रेमवर्क के लिए ग्राफिकल यूजर इंटरफेस को नया रूप दिया गया और विकसित किया गया। दृश्य प्रोग्रामिंग के रूप को परिभाषित किया गया था, और घटक (डेटा विश्लेषण पाइपलाइन के ग्राफिकल घटक) का विकास प्रारम्भ हो गया है।
* 2005 में जैव सूचना विज्ञान में डेटा विश्लेषण के लिए एक्सटेंशन बनाए गए थे।
* 2005 में जैव सूचना विज्ञान में डेटा विश्लेषण के लिए एक्सटेंशन बनाए गए थे।
* 2008 में,मैकओएस एक्स डीएमजी और फिंक-आधारित स्थापना पैकेज विकसित किए गए थे।
* 2008 में, मैकओएस एक्स डीएमजी और फिंक-आधारित स्थापना पैकेज विकसित किए गए थे।
* 2009 में,100 से अधिक विजेट बनाए गए और रखे गए थे।
* 2009 में, 100 से अधिक घटक बना कर रखे गए थे।
* 2009 से,ऑरेंज 2.0 बीटा में है और वेब साइट दैनिक संकलन चक्र के आधार पर इंस्टॉलेशन पैकेज प्रदान करती है।
* 2009 से, ऑरेंज 2.0 बीटा में वेब साइट दैनिक संकलन चक्र के आधार पर इंस्टॉलेशन पैकेज प्रदान करती है।
* 2012 में,पुराने मॉड्यूल-आधारित संरचना की जगह, नया ऑब्जेक्ट पदानुक्रम लगाया गया था।
* 2012 में, प्राचीन मॉड्यूल-आधारित संरचना का स्थान, नया ऑब्जेक्ट पदानुक्रम लगाया गया था।
* 2013 में,ग्राफिकल यूजर इंटरफेस के महत्वपूर्ण नए स्वरूप में एक नया टूलबॉक्स और वर्कफ़्लो का चित्रण सम्मिलित था।
* 2013 में, ग्राफिकल यूजर इंटरफेस के महत्वपूर्ण नए स्वरूप में नया उपकरण बॉक्स और वर्कफ़्लो का चित्रण सम्मिलित था।
* 2015 में,ऑरेंज 3.0 रिलीज़ हुई।
* 2015 में, ऑरेंज 3.0 प्रस्तावित हुआ।
* 2016 में,ऑरेंज संस्करण 3.3 में है। विकास मासिक स्थिर रिलीज चक्र का उपयोग करता है।
* 2016 में, ऑरेंज संस्करण 3.3 में है। विकास मासिक स्थिर प्रस्तावित चक्र का उपयोग करता है।


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}


== अग्रिम पठन ==
== अग्रिम पठन ==
Line 118: Line 82:
* Capurso M. , Data Science and Engineering - A learning path – Volume 1: Methodological Aspects, Data Acquisition, Management and Cleaning, Analysis and Visualization in the Python-based Orange environment , Amazon , ISBN                              979-8825476490
* Capurso M. , Data Science and Engineering - A learning path – Volume 1: Methodological Aspects, Data Acquisition, Management and Cleaning, Analysis and Visualization in the Python-based Orange environment , Amazon , ISBN                              979-8825476490
* Capurso M. Data Science and Engineering - A learning path - Volume 2 Exploratory Data Analysis, Metrics, Models: with applications in the Orange Python-based environment, Amazon , <nowiki>ISBN  979-8358265325</nowiki>
* Capurso M. Data Science and Engineering - A learning path - Volume 2 Exploratory Data Analysis, Metrics, Models: with applications in the Orange Python-based environment, Amazon , <nowiki>ISBN  979-8358265325</nowiki>
==इस पेज में लापता आंतरिक लिंक की सूची==
*पायथन (प्रोग्रामिंग भाषा)
*मैक ओएस
*GitHub
*Numpy
*फीचर चयन
*डाटा संलयन
*अनियंत्रित शिक्षा
*एसोसिएशन नियम सीखना
*पर्यवेक्षित अध्ययन
*बायोइनफॉरमैटिक्स
*सिफारिश प्रणाली
*फिंक (सॉफ्टवेयर)
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{Official website}}
* [https://www.aps.anl.gov/Science/Scientific-Software/OASYS OASYS]
* [https://www.aps.anl.gov/Science/Scientific-Software/OASYS OASYS]
* [https://singlecell.biolab.si/ scOrange]
* [https://singlecell.biolab.si/ scOrange]
* [https://quasar.codes/ Quasar]
* [https://quasar.codes/ Quasar]


<!-- Avoid [[WP:Overcategorization]]! -->
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 06/12/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:कृत्रिम बुद्धि के अनुप्रयोग]]
[[Category:कृत्रिम बुद्धि के अनुप्रयोग]]
[[Category:क्रॉस-प्लेटफ़ॉर्म मुफ़्त सॉफ़्टवेयर]]
[[Category:क्रॉस-प्लेटफ़ॉर्म मुफ़्त सॉफ़्टवेयर]]
[[Category: डाटा माइनिंग और मशीन लर्निंग सॉफ्टवेयर]]
[[Category:जीपीएल लाइसेंस का प्रयोग करने वाला सॉफ्टवेयर]]
[[Category: डेटा विज़ुअलाइज़ेशन सॉफ़्टवेयर]]
[[Category:डाटा माइनिंग और मशीन लर्निंग सॉफ्टवेयर]]
[[Category: नि:शुल्क प्लॉटिंग सॉफ्टवेयर]]
[[Category:डेटा विज़ुअलाइज़ेशन सॉफ़्टवेयर]]
[[Category:नि]]
[[Category:पायथन में प्रोग्राम किया गया मुफ्त सॉफ्टवेयर]]
[[Category:मुफ्त विज्ञान सॉफ्टवेयर]]
[[Category:मुफ्त विज्ञान सॉफ्टवेयर]]
[[Category:पायथन में प्रोग्राम किया गया मुफ्त सॉफ्टवेयर]]
[[Category:विज्ञान सॉफ्टवेयर जो क्यूटी का उपयोग करता है]]
[[Category: संख्यात्मक सॉफ्टवेयर]]
[[Category:संख्यात्मक सॉफ्टवेयर]]
[[Category: विज्ञान सॉफ्टवेयर जो क्यूटी का उपयोग करता है]]
[[Category:समय श्रृंखला सॉफ्टवेयर]]
[[Category: जीपीएल लाइसेंस का प्रयोग करने वाला सॉफ्टवेयर]]
[[Category: समय श्रृंखला सॉफ्टवेयर]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 06/12/2022]]

Latest revision as of 13:19, 27 October 2023

ऑरेंज ओपन स्रोत सॉफ्टवेयर, डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग और डेटा माइनिंग उपकरण बॉक्स है। यह शोध पूर्ण तीव्र गुणात्मक डेटा विश्लेषण और इंटरैक्टिव डेटा सूचना विज़ुअलाइज़ेशन के लिए दृश्य प्रोग्रामिंग फ्रंट-एंड की सुविधा प्रदान करता है।[1]

ऑरेंज 3 में विशिष्ट कार्यप्रवाह।

विवरण

ऑरेंज डेटा विज़ुअलाइज़ेशन, मशीन लर्निंग, डेटा माइनिंग और डेटा विश्लेषण के लिए घटक-आधारित विज़ुअल प्रोग्रामिंग सॉफ़्टवेयर पैकेज है।

ऑरेंज घटकों को विगेट्स कहा जाता है और वे सरल डेटा विज़ुअलाइज़ेशन, उप-समुच्चय चयन और प्री-प्रोसेसिंग से लेकर लर्निंग एल्गोरिदम के अनुभवजन्य मूल्यांकन तक होते हैं और द्वितीय भविष्य कहने वाला मॉडलिंग है।

विज़ुअल प्रोग्रामिंग इंटरफ़ेस के माध्यम से कार्यान्वित किया जाता है जिसमें पूर्वनिर्धारित या उपयोगकर्ता-डिज़ाइन किए गएघटक्स को जोड़कर वर्कफ़्लोज़ बनाए जाते हैं, जबकि उन्नत उपयोगकर्ता डेटा परिवर्तन औरघटक परिवर्तन के लिए ऑरेंज को पायथन लाइब्रेरी के रूप में उपयोग कर सकते हैं।[2]

सॉफ्टवेयर

ऑरेंज जीपीएल के अनुसार प्रस्तावित ओपन सोर्स सॉफ्टवेयर पैकेज है। 3.0 तक के संस्करणों में सी++ में मुख्य घटक सम्मलित हैं जिनमें पायथन में रैपर गिटहब पर, आवरण फंक्शन के साथ उपलब्ध हैं। संस्करण 3.0 के पश्चात से, ऑरेंज वैज्ञानिककम्पूटरीकृत के लिए साधारण पायथन ओपन-सोर्स लाइब्रेरी का उपयोग करता है, जैसे कि सुन्न, स्किपी और स्किकिट-लर्न, जबकि इसका ग्राफिकल यूजर इंटरफेस क्रॉस-प्लेटफॉर्म क्यूटी (सॉफ्टवेयर) रूपरेखा के अंतर्गत कार्य करता है।

डिफ़ॉल्ट स्थापना में 6घटक सेट (डेटा, विज़ुअलाइज़, वर्गीकृत, प्रतिगमन, मूल्यांकन और अनुपयोगी) में कई मशीन लर्निंग, प्री-प्रोसेसिंग और डेटा विज़ुअलाइज़ेशन एल्गोरिदम सम्मलित हैं। अतिरिक्त कार्यात्मकता ऐड-ऑन (जैव सूचना विज्ञान, डेटा फ्यूजन और टेक्स्ट-माइनिंग) के रूप में उपलब्ध हैं।

ऑरेंज मैकओएस, माइक्रोसॉफ़्ट विंडोज़ और लिनक्स पर समर्थित है और इसे पायथन पैकेज इंडेक्स रिपॉजिटरी (पाइप इंस्टॉल ऑरेंज 3) से भी इंस्टॉल किया जा सकता है।

सुविधाएँ

ऑरेंज में कैनवास इंटरफ़ेस (कम्पूटरीकृत) होता है, जिस पर उपयोगकर्ताघटक रखता है और डेटा विश्लेषण वर्कफ़्लो बनाता है।घटक डेटा पढ़ने, डेटा सारणी दिखाने, सुविधाओं का चयन करने, प्रशिक्षण भविष्यवाणियों, सीखने के एल्गोरिदम की तुलना करने, डेटा तत्वों की कल्पना करने आदि जैसी बुनियादी कार्यक्षमताओं की प्रस्तुति करते हैं। उपयोगकर्ता अंतःक्रियात्मक रूप से विज़ुअलाइज़ेशन का पता लगा सकते है या चयनित उप-समुच्चय को अन्यघटक्स में फीड कर सकता है।

ऑरेंज 3.0 में वर्गीकरण ट्री-घटक

कैनवास: डेटा विश्लेषण के लिए ग्राफिकल फ्रंट-एंड है।

  • विजेट:
    • डेटा: डेटा इनपुट, डेटा फ़िल्टरिंग, प्रतिमानकरण, अभियोग, सुविधा परिवर्तन और सुविधा चयन के लिएघटक है।
    • विज़ुअलाइज़ करें: सामान्य विज़ुअलाइज़ेशन (बॉक्स प्लॉट, हिस्टोग्राम, स्कैटर प्लॉट) और मल्टीवेरिएट विज़ुअलाइज़ेशन (मोज़ेक डिस्प्ले, सीव डायग्राम) के लिएघटक है।
    • वर्गीकृत करें: वर्गीकरण के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का समुच्चय है।
    • प्रतिगमन: प्रतिगमन के लिए पर्यवेक्षित पेपर लर्निंग एल्गोरिदम का समुच्चय है।
    • मूल्यांकन करें: क्रॉस-वैलिडेशन, सैंपलिंग-आधारित प्रक्रियाएं, विश्वसनीयता अनुमान और भविष्यवाणी विधियों का स्कोरिंग करना है।
    • अनपर्यवेक्षित: क्लस्टर विश्लेषण (के-मीन्स, पदानुक्रमित क्लस्टरिंग) और डेटा प्रोजेक्शन तकनीक (बहुआयामी स्केलिंग, प्रमुख घटक विश्लेषण, पत्राचार विश्लेषण) के लिए अनपर्यवेक्षित लर्निंग एल्गोरिदम है।

ऐड-ऑन

ऑरेंज उपयोगकर्ता ऐड-ऑन में घटकों के साथ अपने मुख्य घटकों का विस्तार कर सकते हैं। समर्थित ऐड-ऑन में सम्मलित हैं:

पदानुक्रमित क्लस्टरिंग और के-घटक के संयोजन में पेंट डेटा घटक।

उद्देश्य

कार्यक्रम प्रयोग चयन, अनुशंसा प्रणाली और भविष्य कहने वाला मॉडलिंग के लिए मंच प्रदान करता है और इसका उपयोग बायोमेडिसिन, जैव सूचना विज्ञान, जीनोमिक्स और शिक्षण में किया जाता है। विज्ञान में, इसका उपयोग नई मशीन लर्निंग एल्गोरिदम के परीक्षण, आनुवंशिकी और जैव सूचना विज्ञान में नई तकनीकों को लागू करने के लिए मंच के रूप में किया जाता है। शिक्षा में, जीव विज्ञान, बायोमेडिसिन और सूचना विज्ञान के छात्रों को मशीन सीखने और डेटा खनन विधियों को पढ़ाने के लिए इसका प्रयोग किया गया था।

एक्सटेंशन

ऑरेंज पर विभिन्न परियोजनाएं ऐड-ऑन के साथ मुख्य घटकों का विस्तार करके या कार्यान्वित दृश्य प्रोग्रामिंग सुविधाओं और जीयूआई का लाभ उठाने के लिए केवल ऑरेंज कैनवस का उपयोग करके निर्माण करती हैं।

  • ओएसिस- ऑरेंज सिंक्रोट्रॉन सूट।[4]
  • एससी ऑरेंज- सिंगल सेल बायोस्टैटिस्टिक्स।
  • क्वासर - प्राकृतिक विज्ञान में डेटा विश्लेषण।

इतिहास

  • 1996 में, लजुब्जाना विश्वविद्यालय और जोज़ेफ़ स्टीफ़न संस्थान ने सी++ में मशीन लर्निंग फ्रेमवर्क एमएल का विकास प्रारम्भ किया।
  • 1997 में, पेपर लर्निंग के लिए पायथन (प्रोग्रामिंग लैंग्वेज) बाइंडिंग विकसित की गई थी, जो उभरते हुए पायथन मॉड्यूल के साथ मिलकर ऑरेंज नामक संयुक्त रूपरेखा का निर्माण करती है।
  • बाद के वर्षों के समय, डेटा माइनिंग और पेपर लर्निंग के लिए अधिकांश प्रमुख एल्गोरिदम सी++ (ऑरेंज कोर) या पायथन मॉड्यूल में विकसित किए गए हैं।
  • 2002 में, पीडब्लूएम (विंडो मैनेजर) का उपयोग करके ग्राफिकल यूजर इंटरफेस बनाने के लिए प्रथम प्रोटोटाइप डिजाइन किया गया था।
  • 2003 में, पीईक्यूटी पायथन बाइंडिंग का उपयोग करके क्यूटी (सॉफ्टवेयर) फ्रेमवर्क के लिए ग्राफिकल यूजर इंटरफेस को नया रूप दिया गया और विकसित किया गया। दृश्य प्रोग्रामिंग के रूप को परिभाषित किया गया था, और घटक (डेटा विश्लेषण पाइपलाइन के ग्राफिकल घटक) का विकास प्रारम्भ हो गया है।
  • 2005 में जैव सूचना विज्ञान में डेटा विश्लेषण के लिए एक्सटेंशन बनाए गए थे।
  • 2008 में, मैकओएस एक्स डीएमजी और फिंक-आधारित स्थापना पैकेज विकसित किए गए थे।
  • 2009 में, 100 से अधिक घटक बना कर रखे गए थे।
  • 2009 से, ऑरेंज 2.0 बीटा में वेब साइट दैनिक संकलन चक्र के आधार पर इंस्टॉलेशन पैकेज प्रदान करती है।
  • 2012 में, प्राचीन मॉड्यूल-आधारित संरचना का स्थान, नया ऑब्जेक्ट पदानुक्रम लगाया गया था।
  • 2013 में, ग्राफिकल यूजर इंटरफेस के महत्वपूर्ण नए स्वरूप में नया उपकरण बॉक्स और वर्कफ़्लो का चित्रण सम्मिलित था।
  • 2015 में, ऑरेंज 3.0 प्रस्तावित हुआ।
  • 2016 में, ऑरेंज संस्करण 3.3 में है। विकास मासिक स्थिर प्रस्तावित चक्र का उपयोग करता है।

संदर्भ

  1. DemšarJanez; CurkTomaž; ErjavecAleš; GorupČrt; HočevarTomaž; MilutinovičMitar; MožinaMartin; PolajnarMatija; ToplakMarko; StaričAnže; ŠtajdoharMiha (2013-01-01). "संतरा". The Journal of Machine Learning Research (in English).
  2. Janez Demšar; Tomaž Curk; Aleš Erjavec; Črt Gorup; Tomaž Hočevar; Mitar Milutinovič; Martin Možina; Matija Polajnar; Marko Toplak; Anže Starič; Miha Stajdohar; Lan Umek; Lan Žagar; Jure Žbontar; Marinka Žitnik; Blaž Zupan (2013). "ऑरेंज: पायथन में डेटा माइनिंग टूलबॉक्स" (PDF). JMLR. 14 (1): 2349–2353.
  3. M. Toplak, G. Birarda, S. Read, C. Sandt, S. Rosendahl, L. Vaccari, J. Demšar, F. Borondics, Synchrotron Radiation News 30, 40–45 (2017). https://doi.org/10.1080/08940886.2017.1338424
  4. L. Rebuffi, M. Sanchez del Rio, Proc. SPIE 10388, 103880S (2017). https://doi.org/10.1117/12.2274263

अग्रिम पठन

  • Demšar, Janez and Blaž Zupan, Orange: Data Mining Fruitful and Fun - A Historical Perspective, Informatica 37, pgs. 55–60, (2013).
  • Capurso M. , Data Science and Engineering - A learning path – Volume 1: Methodological Aspects, Data Acquisition, Management and Cleaning, Analysis and Visualization in the Python-based Orange environment , Amazon , ISBN 979-8825476490
  • Capurso M. Data Science and Engineering - A learning path - Volume 2 Exploratory Data Analysis, Metrics, Models: with applications in the Orange Python-based environment, Amazon , ISBN 979-8358265325

बाहरी संबंध