सजातीय विविधता: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Algebraic variety defined within an affine space}} File:Cubic with double point.svg|thumb|द्वारा दिया गया एक [[घन स...")
 
 
(58 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Algebraic variety defined within an affine space}}
{{short description|Algebraic variety defined within an affine space}}
[[File:Cubic with double point.svg|thumb|द्वारा दिया गया एक [[घन समतल वक्र]] <math>y^2 = x^2(x+1)</math>]][[बीजगणितीय ज्यामिति]] में, एक बीजगणितीय रूप से बंद क्षेत्र पर, एक संबधित विविधता, या बीजगणितीय विविधता, {{math|''k''}} affine स्थान में शून्य-स्थल है {{math|''k''<sup>''n''</sup>}} के [[बहुपद]]ों के कुछ परिमित परिवार का {{math|''n''}} में गुणांक के साथ चर {{math|''k''}} जो एक प्रमुख आदर्श उत्पन्न करता है। यदि एक अभाज्य गुणज उत्पन्न करने की स्थिति को हटा दिया जाता है, तो ऐसे समुच्चय को बीजगणितीय समुच्चय (affine) कहा जाता है। एक [[जरिस्की टोपोलॉजी]] एक संबधित किस्म की उप-प्रजाति को [[अर्ध-एफ़ाइन किस्म]] कहा जाता है।
[[File:Cubic with double point.svg|thumb|[[घन समतल वक्र]] <math>y^2 = x^2(x+1)</math>]]बीजगणितीय ज्यामिति में, संवृत क्षेत्र {{math|''k''}} पर '''सजातीय विविधता''', {{math|''k''}} में गुणांक वाले {{math|''n''}} चर के बहुपदों के कुछ परिमित समूह के सजातीय अंतरिक्ष {{math|''k''<sup>''n''</sup>}} में शून्य-बिंदु होते है जो प्रमुख आदर्श उत्पन्न करता है। यदि अभाज्य गुणज उत्पन्न करने की स्थिति को हटा दिया जाता है, ऐसे समुच्चय को बीजगणितीय समुच्चय (सजातीय) कहा जाता है। सजातीय विविधता की जरिस्की सांस्थिति की उप-विविधता को अर्ध-सजातीय विविधता कहा जाता है।


कुछ ग्रंथों को एक प्रमुख आदर्श की आवश्यकता नहीं होती है, और एक [[प्रधान आदर्श]] द्वारा परिभाषित एक बीजगणितीय विविधता '' इरिड्यूसिबल '' कहते हैं। यह लेख आवश्यक रूप से प्रमुख आदर्शों के शून्य-लोकी को संदर्भित नहीं करता है जैसे कि बीजीय [[बीजगणितीय सेट]]।
कुछ ग्रंथों को प्रमुख आदर्श की आवश्यकता नहीं होती है, और [[प्रधान आदर्श]] द्वारा परिभाषित बीजगणितीय विविधता को अलघुकरणीय कहते हैं। यह लेख आवश्यक रूप से प्रमुख आदर्शों के शून्य-लोकस को संदर्भित नहीं करता है जैसे कि बीजगणितीय समुच्चय है।


कुछ संदर्भों में, क्षेत्र को अलग करना उपयोगी होता है {{mvar|k}} जिसमें बीजगणितीय रूप से बंद क्षेत्र से गुणांकों पर विचार किया जाता है {{mvar|K}} (युक्त {{mvar|k}}) जिसके ऊपर शून्य-लोकस माना जाता है (अर्थात् एफ़ाइन किस्म के बिंदु अंदर होते हैं {{math|''K''<sup>''n''</sup>}}). इस मामले में, विविधता को परिभाषित कहा जाता है {{mvar|k}}, और विविधता के बिंदु जो संबंधित हैं {{math|''k''<sup>''n''</sup>}} कहा जाता है{{mvar|k}}-तर्कसंगत या तर्कसंगत अधिक {{mvar|k}}. सामान्य मामले में जहां {{mvar|k}} [[वास्तविक संख्या]]ओं का क्षेत्र है, a {{mvar|k}}-रामेय बिंदु को वास्तविक बिंदु कहते हैं।<ref name="ReidUAG">{{harvp|Reid|1988}}</ref> जब मैदान {{mvar|k}} निर्दिष्ट नहीं है, परिमेय बिंदु वह बिंदु है जो परिमेय संख्याओं पर परिमेय है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय का दावा है कि affine बीजगणितीय किस्म (यह एक वक्र है) द्वारा परिभाषित {{math|''x''<sup>''n''</sup>&nbsp;+&nbsp;''y''<sup>''n''</sup>&nbsp;−&nbsp;1&nbsp;{{=}}&nbsp;0}} का किसी पूर्णांक के लिए कोई परिमेय बिंदु नहीं है {{mvar|n}} दो से अधिक।
कुछ संदर्भों में, बीजगणितीय रूप से संवृत  क्षेत्र {{mvar|K}} (युक्त {{mvar|k}}) से भिन्न करना उपयोगी होता है जिसे गुणांक माना जाता है, जिस पर शून्य को लोकस माना जाता है (अर्थात् सजातीय विविधता के बिंदु {{math|''K''<sup>''n''</sup>}} में हैं)इस स्तिथि में, विविधता को {{mvar|k}} पर परिभाषित किया जाता है, और {{mvar|k}} से संबंधित विविधता बिंदु {{mvar|k}} को तर्कसंगत कहा जाता है। सामान्य स्थिति में जहाँ k [[वास्तविक संख्या|वास्तविक संख्याओं]] का क्षेत्र है, {{mvar|k}}- तर्कसंगत बिंदु को वास्तविक बिंदु कहते हैं।<ref name="ReidUAG">{{harvp|Reid|1988}}</ref> जब क्षेत्र {{mvar|k}} निर्दिष्ट नहीं होता है, तब परिमेय बिंदु वह बिंदु है जो परिमेय संख्याओं पर परिमित होती है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय है कि {{math|''x''<sup>''n''</sup>&nbsp;+&nbsp;''y''<sup>''n''</sup>&nbsp;−&nbsp;1&nbsp;{{=}}&nbsp;0}} द्वारा परिभाषित सजातीय बीजगणितीय विविधता (यह वक्र है) में दो से अधिक पूर्णांक {{mvar|n}} के लिए कोई परिमेय बिंदु नहीं है।


== परिचय ==
== परिचय ==
एक affine बीजगणितीय सेट बीजगणितीय रूप से बंद क्षेत्र में समाधान का सेट है {{math|''k''}} में गुणांकों के साथ बहुपद समीकरणों की एक प्रणाली {{math|''k''}}. अधिक सटीक, अगर <math>f_1, \ldots, f_m</math> में गुणांक वाले बहुपद हैं {{math|''k''}}, वे एक सजातीय बीजगणितीय सेट को परिभाषित करते हैं
सजातीय बीजगणितीय समुच्चय {{math|''k''}} में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से संवृत क्षेत्र {{math|''k''}} में समाधान का समुच्चय है। यदि <math>f_1, \ldots, f_m</math> में गुणांक वाले बहुपद है, वे सजातीय बीजगणितीय समुच्चय को परिभाषित करते हैं
:<math> V(f_1,\ldots, f_m) = \left\{(a_1,\ldots,a_n)\in k^n \;|\;f_1(a_1,\ldots, a_n)=\ldots=f_m(a_1,\ldots, a_n)=0\right\}.</math>
:<math> V(f_1,\ldots, f_m) = \left\{(a_1,\ldots,a_n)\in k^n \;|\;f_1(a_1,\ldots, a_n)=\ldots=f_m(a_1,\ldots, a_n)=0\right\}.</math>
एक affine (बीजीय) किस्म एक affine बीजगणितीय सेट है जो दो उचित affine बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस तरह के एक सजातीय बीजगणितीय सेट को अक्सर '' इर्रिड्यूसिबल '' कहा जाता है।
सजातीय (बीजीय) विविधता बीजगणितीय समुच्चय है जो दो उचित सजातीय बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय समुच्चय को प्रायः अलघुकरणीय कहा जाता है।


अगर {{math|''X''}} एक सजातीय बीजगणितीय समुच्चय है, और {{math|''I''}} उन सभी बहुपदों की गुणजावली है जिन पर शून्य है {{mvar|X}}, फिर [[भागफल की अंगूठी]] <math>R=k[x_1, \ldots, x_n]/I</math> कहा जाता है{{vanchor|coordinate ring}''एक्स'' का }. यदि ''X'' एक संबधित किस्म है, तो ''I'' अभाज्य है, इसलिए निर्देशांक वलय एक अभिन्न डोमेन है। समन्वय वलय ''आर'' के तत्वों को विविधता पर ''नियमित कार्य'' या ''बहुपद कार्य'' भी कहा जाता है। वे विविधता पर ''नियमित कार्यों की अंगूठी'' बनाते हैं, या, बस, ''विविधता की अंगूठी''; दूसरे शब्दों में (#स्ट्रक्चर शीफ देखें), यह ''एक्स'' के स्ट्रक्चर शीफ के ग्लोबल सेक्शन का स्पेस है।
यदि {{math|''X''}} सजातीय बीजगणितीय समुच्चय है, और {{math|''I''}} उन सभी बहुपदों की गुणजावली है जिन {{mvar|X}} पर शून्य है, तब [[भागफल की अंगूठी|भागफल वलय]] <math>R=k[x_1, \ldots, x_n]/I</math> को ''X'' का ऑर्डिनेट वलय कहा जाता है निर्देशांक वलय ''R'' के तत्वों को विविधता पर नियमित फलन या बहुपद फलन भी कहा जाता है। वे विविधता पर नियमित फलनों की वलय बनाते हैं, विविधता की वलय; दूसरे शब्दों में (संरचना शीफ देखें), यह X के संरचना बंड़ल के वैश्विक खंड का अंतरिक्ष है।


विविधता का आयाम प्रत्येक विविधता से जुड़ा एक पूर्णांक है, और यहां तक ​​​​कि प्रत्येक बीजगणितीय सेट के लिए, जिसका महत्व बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)।
विविधता का आयाम प्रत्येक पूर्णांक से जुड़ा है, और प्रत्येक बीजगणितीय समुच्चय के लिए, बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)।


== उदाहरण ==
== उदाहरण ==
* एक affine किस्म में एक hypersurface का पूरक {{math|''X''}} (वह है {{math|1=''X'' - { ''f'' = 0 } }} कुछ बहुपद के लिए {{math|''f''}}) एफ़िन है। इसके परिभाषित समीकरण [[संतृप्ति (कम्यूटेटिव बीजगणित)]] द्वारा प्राप्त किए जाते हैं {{mvar|f}} का परिभाषित आदर्श {{math|''X''}}. इस प्रकार निर्देशांक वलय एक वलय का स्थानीयकरण है <math>k[X][f^{-1}]</math>.
* सजातीय विविधता में {{math|''X''}} (जो कि कुछ बहुपद {{math|''f''}} के लिए {{math|1=''X'' - { ''f'' = 0 } }} है) में हाइपरसफेस का पूरक सजातीय है। इसके परिभाषित समीकरणों को {{math|''X''}} के आदर्श {{mvar|f}} द्वारा [[संतृप्ति (कम्यूटेटिव बीजगणित)|संतृप्ति]] करके प्राप्त किया जाता है। समन्वय वलय का स्थानीयकरण <math>k[X][f^{-1}]</math> है।
* विशेष रूप से, <math>\mathbb C - 0</math> (मूल के साथ affine रेखा हटा दी गई है) affine है।
* विशेष रूप से, <math>\mathbb C - 0</math> (सजातीय रेखा जिसके मूल को हटा दिया गया है) सजातीय है।
* वहीं दूसरी ओर, <math>\mathbb C^2 - 0</math> (मूल के साथ संबधित तल) एक सजातीय किस्म नहीं है; सी एफ हार्टोग्स का विस्तार प्रमेय।
* वहीं दूसरी ओर, <math>\mathbb C^2 - 0</math> (ऐफिन प्लेन जिसकी उत्पत्ति हटा दी गई है) सजातीय विविधता नहीं है।
* एफ़िन स्पेस में कोडिमेंशन वन की उप-किस्में <math>k^n</math> वास्तव में हाइपरसर्फ्स हैं, जो कि एक बहुपद द्वारा परिभाषित किस्में हैं।
* सजातीय अंतरिक्ष में कोडिमेंशन वन की उप-विविधता <math>k^n</math> वास्तव में हाइपरसर्फएक्स हैं, जो कि बहुपद द्वारा परिभाषित विविधता हैं।
* इरेड्यूसिबल एफाइन किस्म की [[सामान्य योजना]] एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी तरह, एक प्रक्षेपी किस्म का सामान्यीकरण एक प्रक्षेपी किस्म है।)
* अलघुकरणीय एफाइन विविधता का [[सामान्य योजना|सामान्यीकरण]] एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी प्रकार , प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।)


== वाजिब बिंदु ==
== तर्कसंगत बिंदु ==
[[File:Doubling oriented.svg|thumb|right|वक्र के वास्तविक बिंदुओं का आरेखण {{math|''y''<sup>2</sup>&nbsp;{{=}}&nbsp;''x''<sup>3</sup>&nbsp;−&nbsp;''x''<sup>2</sup>&nbsp;−&nbsp;16''x''.}}]]
[[File:Doubling oriented.svg|thumb|right|वक्र के वास्तविक बिंदुओं का आरेखण {{math|''y''<sup>2</sup>&nbsp;{{=}}&nbsp;''x''<sup>3</sup>&nbsp;−&nbsp;''x''<sup>2</sup>&nbsp;−&nbsp;16''x''.}}]]
{{main|rational point}}
{{main|तर्कसंगत बिंदु}}
सजातीय विविधता के लिए <math>V\subseteq K^n</math> बीजगणितीय रूप से संवृत  क्षेत्र {{math|''K''}} पर, और {{math|''k''}} का उपक्षेत्र {{math|''K''}}, {{math|''V''}} का {{math|''k''}}-तार्किक बिंदु है <math>p\in V\cap k^n.</math> अर्थात {{math|''V''}} का बिंदु जिसके निर्देशांक {{math|''k''}} के तत्व हैं। सजातीय विविधता {{math|''V''}} के {{math|''k''}}- तर्कसंगत बिंदुओं का संग्रह अधिकतर निरूपित किया जाता है <math>V(k).</math> अधिकतर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ {{math|'''C'''}} हैं, वे बिंदु जो {{math|'''R'''}}-तर्कसंगत हैं (जहां {{math|'''R'''}} वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और {{math|'''Q'''}}-तर्कसंगतबिंदु({{math|'''Q'''}} परिमेय संख्याएँ) अधिकतर परिमेय बिंदु कहलाते हैं।


एक एफ़िन किस्म के लिए <math>V\subseteq K^n</math> बीजगणितीय रूप से बंद क्षेत्र पर {{math|''K''}}, और एक उपक्षेत्र {{math|''k''}} का {{math|''K''}}, ए {{math|''k''}}-तार्किक बिंदु {{math|''V''}} बिंदु है <math>p\in V\cap k^n.</math> यानी एक बिंदु {{math|''V''}} जिसके निर्देशांक तत्व हैं {{math|''k''}}. का संग्रह {{math|''k''}}-एक सजातीय किस्म के तर्कसंगत बिंदु {{math|''V''}} को अक्सर निरूपित किया जाता है <math>V(k).</math> अक्सर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ होती हैं {{math|'''C'''}}, बिंदु जो हैं {{math|'''R'''}}-तर्कसंगत (जहां {{math|'''R'''}} वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और {{math|'''Q'''}}-तर्कसंगत अंक ({{math|'''Q'''}} परिमेय संख्याएँ) अक्सर केवल परिमेय बिंदु कहलाते हैं।
उदाहरण के लिए, {{math|(1, 0)}} विविधता का {{math|'''Q'''}}-तर्कसंगत और {{math|'''R'''}}- तर्कसंगत बिंदु <math>V = V(x^2+y^2-1)\subseteq\mathbf{C}^2,</math> क्योंकि यह {{math|''V''}} में है और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु {{math|({{sqrt|2}}/2, {{sqrt|2}}/2)}} {{mvar|V}} का वास्तविक बिंदु है जो कि {{math|'''Q'''}}-तर्कसंगत नहीं है ,और <math>(i,\sqrt{2})</math> {{math|''V''}} का बिन्दु है जो कि {{math|'''R'''}}-तर्कसंगत नहीं है। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका {{math|'''R'''}}-तर्कसंगत बिंदुओं का समुच्चय इकाई वृत्त है। इसमें अपरिमित रूप से अनेक {{math|'''Q'''}}-तर्कसंगत बिंदु हैं
 
उदाहरण के लिए, {{math|(1, 0)}} एक है {{math|'''Q'''}}-तर्कसंगत और एक {{math|'''R'''}}-किस्म का तर्कसंगत बिंदु <math>V = V(x^2+y^2-1)\subseteq\mathbf{C}^2,</math> जैसा इसमें है {{math|''V''}} और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु {{math|({{sqrt|2}}/2, {{sqrt|2}}/2)}} का वास्तविक बिंदु है {{mvar|V}} जो कि नहीं {{math|'''Q'''}}-तर्कसंगत, और <math>(i,\sqrt{2})</math> का एक बिन्दु है {{math|''V''}} जो कि नहीं {{math|'''R'''}}-तर्कसंगत। इस किस्म को एक वृत्त कहा जाता है, क्योंकि इसका सेट {{math|'''R'''}}-रेशनल पॉइंट्स [[यूनिट सर्कल]] है। इसमें अपरिमित रूप से अनेक हैं {{math|'''Q'''}}-तर्कसंगत बिंदु जो बिंदु हैं
:<math>\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)</math>
:<math>\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)</math>
कहाँ {{mvar|t}} एक परिमेय संख्या है।
जहाँ {{mvar|t}} परिमेय संख्या है।
 
वृत्त <math>V(x^2+y^2-3)\subseteq\mathbf{C}^2</math> डिग्री दो के [[बीजगणितीय वक्र]] का एक उदाहरण है जिसमें कोई नहीं है {{math|'''Q'''}}-तर्कसंगत बिंदु। इसका अंदाजा इस बात से लगाया जा सकता है कि, [[मॉड्यूलर अंकगणित]] {{math|4}}, दो वर्गों का योग नहीं हो सकता {{math|3}}.
 
यह सिद्ध किया जा सकता है कि a के साथ डिग्री दो का बीजगणितीय वक्र {{math|'''Q'''}}-रेशनल पॉइंट के अपरिमित रूप से कई अन्य होते हैं {{math|'''Q'''}}-तर्कसंगत अंक; ऐसा प्रत्येक बिंदु वक्र का दूसरा प्रतिच्छेदन बिंदु है और परिमेय बिंदु से गुजरने वाली परिमेय ढलान वाली रेखा है।


जटिल किस्म <math>V(x^2+y^2+1)\subseteq\mathbf{C}^2</math> है कोई {{math|'''R'''}}-तर्कसंगत बिंदु, लेकिन कई जटिल बिंदु हैं।
वृत्त <math>V(x^2+y^2-3)\subseteq\mathbf{C}^2</math> डिग्री दो के [[बीजगणितीय वक्र]] का उदाहरण है जिसमें कोई {{math|'''Q'''}}-तर्कसंगत बिंदु नहीं है। यह इस तथ्य से निकाला जा सकता है, [[मॉड्यूलर अंकगणित|मॉड्यूलर]] {{math|4}}, दो वर्गों का योग {{math|3}} नहीं हो सकता है।


अगर {{math|''V''}} में एक एफ़ाइन किस्म है {{math|'''C'''<sup>2</sup>}} जटिल संख्याओं पर परिभाषित {{math|'''C'''}}, द {{math|'''R'''}}-तर्कसंगत अंक {{math|''V''}} को कागज के एक टुकड़े पर या रेखांकन सॉफ्टवेयर द्वारा खींचा जा सकता है। दाईं ओर का आंकड़ा दिखाता है {{math|'''R'''}}-तर्कसंगत अंक <math>V(y^2-x^3+x^2+16x)\subseteq\mathbf{C}^2.</math>
यह सिद्ध किया जा सकता है कि {{math|'''Q'''}} तर्कसंगत बिंदु के साथ डिग्री दो का बीजगणितीय वक्र के अपरिमित रूप से कई अन्य {{math|'''Q'''}} तर्कसंगतबिंदुहोते हैं; ऐसा प्रत्येक बिंदु वक्र का दूसरा प्रतिच्छेदन बिंदु है और परिमेय बिंदु से गुजरने वाली परिमेय ढलान वाली रेखा है।


जटिल विविधता <math>V(x^2+y^2+1)\subseteq\mathbf{C}^2</math> का कोई {{math|'''R'''}}-तर्कसंगत बिंदु नहीं हैं, किंतु कई जटिल बिंदु हैं।


== एकवचन बिंदु और स्पर्शरेखा स्थान ==
यदि {{math|''V''}} जटिल संख्या {{math|'''C'''}} पर परिभाषित {{math|'''C'''<sup>2</sup>}} में सजातीय विविधता हैं {{math|''V''}} के {{math|'''R'''}}-तर्कसंगत बिंदु को कागज के समूह पर या रेखांकन सॉफ्टवेयर द्वारा खींचा जा सकता है। दाईं ओर का आंकड़ा {{math|'''R'''}}-तर्कसंगत बिंदु दर्शाता है<math>V(y^2-x^3+x^2+16x)\subseteq\mathbf{C}^2.</math>
होने देना {{mvar|V}} बहुपदों द्वारा परिभाषित एक सजातीय किस्म हो <math>f_1, \dots, f_r\in  k[x_1, \dots, x_n],</math> और <math>a=(a_1, \dots,a_n)</math> का एक बिंदु हो {{mvar|V}}.
== एकवचन बिंदु और स्पर्शरेखा समिष्ट ==
मान लीजिए {{mvar|V}} बहुपदों द्वारा परिभाषित सजातीय विविधता हो <math>f_1, \dots, f_r\in  k[x_1, \dots, x_n],</math> और <math>a=(a_1, \dots,a_n)</math> का बिंदु हो .


[[जैकबियन मैट्रिक्स]] {{math|''J''{{sub|''V''}}(''a'')}} का {{mvar|V}} पर {{mvar|a}} आंशिक डेरिवेटिव का मैट्रिक्स है
{{mvar|a}} पर {{mvar|V}} का [[जैकबियन मैट्रिक्स|जैकबियन]] आव्यूह {{math|''J''{{sub|''V''}}(''a'')}} आंशिक डेरिवेटिव का आव्यूह है
:<math> \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n).</math>
:<math> \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n).</math>
बिंदु {{mvar|a}} की रैंक नियमित है {{math|''J''{{sub|''V''}}(''a'')}} बीजगणितीय विविधता के आयाम के बराबर है {{mvar|V}}, और एकवचन अन्यथा।
बिंदु {{mvar|a}} नियमित है यदि {{math|''J''{{sub|''V''}}(''a'')}} की रैंक {{mvar|V}} बीजगणितीय विविधता के आयाम के समान है,औरअन्यथा एकवचन है ।


अगर {{mvar|a}} नियमित है, स्पर्शरेखा स्थान {{mvar|V}} पर {{mvar|a}} का एफिन उपस्थान है <math>k^n</math> रैखिक समीकरणों द्वारा परिभाषित<ref>{{harvp|Milne|2017|loc=Ch. 5}}</ref>
यदि {{mvar|a}} नियमित है, {{mvar|V}} पर {{mvar|a}} पर स्पर्शरेखा समिष्ट एफिन उपस्थान है <math>k^n</math> रैखिक समीकरणों द्वारा परिभाषित<ref>{{harvp|Milne|2017|loc=Ch. 5}}</ref>
:<math>\sum_{i=1}^n \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n) (x_i - a_i) = 0, \quad j = 1, \dots, r.</math>
:<math>\sum_{i=1}^n \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n) (x_i - a_i) = 0, \quad j = 1, \dots, r.</math>
यदि बिंदु एकवचन है, तो इन समीकरणों द्वारा परिभाषित एफ़िन उप-स्थान को कुछ लेखकों द्वारा स्पर्शरेखा स्थान भी कहा जाता है, जबकि अन्य लेखकों का कहना है कि एकवचन बिंदु पर कोई स्पर्शरेखा स्थान नहीं है।<ref>{{harvp|Reid|1988|p=94}}.</ref>
यदि बिंदु एकवचन है, तो इन समीकरणों द्वारा परिभाषित सजातीय उप-समिष्ट को कुछ लेखकों द्वारा स्पर्शरेखा समिष्ट भी कहा जाता है, जबकि अन्य लेखकों का कहना है कि एकवचन बिंदु पर कोई स्पर्शरेखा समिष्ट नहीं है।<ref>{{harvp|Reid|1988|p=94}}.</ref>
एक अधिक आंतरिक परिभाषा, जो निर्देशांक का उपयोग नहीं करती है, ज़रिस्की स्पर्शरेखा स्थान द्वारा दी गई है।
अधिक आंतरिक परिभाषा, जो निर्देशांक का उपयोग नहीं करती है, ज़रिस्की टेंगेंट स्पेस द्वारा दी गई है।


== जारिस्की टोपोलॉजी ==
== जारिस्की सांस्थिति ==
{{main|Zariski topology}}
{{main|जरिस्की टोपोलॉजी}}
के के affine बीजगणितीय सेट<sup>n</sup> k पर टोपोलॉजी के बंद सेट बनाते हैं<sup>n</sup>, जिसे 'ज़ारिस्की टोपोलॉजी' कहा जाता है। यह इस तथ्य से अनुसरण करता है कि <math>V(0)=k[x_1,\ldots, x_n],</math> <math>V(1)=\emptyset,</math> <math>V(S)\cup V(T)=V(ST),</math> और <math>V(S)\cap V(T)=V(S+T)</math> (वास्तव में, affine बीजगणितीय सेटों का एक गणनीय प्रतिच्छेदन एक affine बीजगणितीय सेट है)।


ज़ारिस्की टोपोलॉजी को बेस (टोपोलॉजी) के माध्यम से भी वर्णित किया जा सकता है, जहाँ ज़ारिस्की-ओपन सेट फॉर्म के सेटों के गणनीय संघ हैं <math>U_f = \{p\in k^n:f(p)\neq 0\}</math> के लिए <math>f\in k[x_1,\ldots, x_n].</math> ये बुनियादी खुले सेट k में पूरक हैं<sup>n</sup> बंद सेटों में से <math>V(f)=D_f=\{p\in k^n:f(p)=0\},</math> एकल बहुपद का शून्य लोकी। यदि k नोथेरियन वलय है (उदाहरण के लिए, यदि k एक फ़ील्ड (गणित) या एक [[प्रमुख आदर्श डोमेन]] है), तो k का प्रत्येक आदर्श अंतिम रूप से उत्पन्न होता है, इसलिए प्रत्येक खुला सेट बुनियादी खुले सेटों का एक परिमित संघ है।
''k<sup>n</sup>'' के संबध बीजगणितीय समुच्चय ''k<sup>n</sup>'' पर एक सांस्थिति के संवृत  समुच्चय बनाते हैं, जिसे 'ज़ारिस्की सांस्थिति' कहा जाता है। यह इस तथ्य से अनुसरण करता है कि <math>V(0)=k[x_1,\ldots, x_n],</math> <math>V(1)=\emptyset,</math> <math>V(S)\cup V(T)=V(ST),</math> और <math>V(S)\cap V(T)=V(S+T)</math> (वास्तव में, सजातीय बीजगणितीय समुच्चय का गणनीय प्रतिच्छेदन सजातीय बीजगणितीय समुच्चय है)।


यदि V, k की एक सजातीय उप-किस्म है<sup>n</sup> V पर ज़ारिस्की टोपोलॉजी केवल k पर ज़ारिस्की टोपोलॉजी से विरासत में मिली सबस्पेस टोपोलॉजी है<sup>एन</sup>.
ज़ारिस्की सांस्थिति को मूलभूत खुले समुच्चय के माध्यम से भी वर्णित किया जा सकता है, जहाँ ज़ारिस्की-खुले समुच्चयफॉर्म के समुच्चय के गणनीय संघ हैं <math>U_f = \{p\in k^n:f(p)\neq 0\}</math> के लिए <math>f\in k[x_1,\ldots, x_n].</math> ये मूलभूत खुले समुच्चय संवृत  समुच्चय ''k<sup>n</sup>'' में पूरक हैं <math>V(f)=D_f=\{p\in k^n:f(p)=0\},</math> बहुपद का शून्य लोकी। यदि k नोथेरियन वलय है (उदाहरण के लिए, यदि k क्षेत्र या [[प्रमुख आदर्श डोमेन]] है), k का प्रत्येक आदर्श अंतिम रूप से उत्पन्न होता है, इसलिए प्रत्येक विवृत समुच्चयमूलभूत खुले समुच्चय का परिमित संघ है।
 
यदि V, ''k<sup>n</sup>'' संबधित उप-संस्कृति है, V पर ज़ारिस्की सांस्थिति एकमात्र ''k<sup>n</sup>'' पर ज़ारिस्की सांस्थिति से विरासत में मिली अंतरिक्ष सांस्थिति है।.


== ज्यामिति-बीजगणित पत्राचार ==
== ज्यामिति-बीजगणित पत्राचार ==
एक सजातीय किस्म की ज्यामितीय संरचना इसके समन्वय वलय की बीजगणितीय संरचना से गहरे तरीके से जुड़ी हुई है। I और J को k [V] के आदर्श होने दें, जो एक affine किस्म V का समन्वय वलय है। I (V) को सभी बहुपदों का समुच्चय होने दें <math>k[x_1, \ldots, x_n],</math> जो वी पर गायब हो जाता है, और जाने दो <math>\sqrt{I}</math> आदर्श I के एक आदर्श के रेडिकल को निरूपित करें, बहुपद f का सेट जिसके लिए f की कुछ शक्ति I में है। आधार क्षेत्र को बीजगणितीय रूप से बंद करने की आवश्यकता का कारण यह है कि affine किस्में स्वचालित रूप से हिल्बर्ट के नलस्टेलेंसैट्ज को संतुष्ट करती हैं: एक आदर्श के लिए जे में <math>k[x_1, \ldots, x_n],</math> जहाँ k एक बीजगणितीय रूप से बंद क्षेत्र है, <math>I(V(J))=\sqrt{J}.</math>
सजातीय विविधता की ज्यामितीय संरचना इसके समन्वय वलय की बीजगणितीय संरचना से गहरे तरीके से जुड़ी हुई है। I और J को k [V] के आदर्श होने दें, जो सजातीय विविधता V का समन्वय वलय है। I (V) को सभी बहुपदों का समुच्चय होने दें <math>k[x_1, \ldots, x_n],</math> जो वी पर लुप्त हो जाता है, और जाने दो <math>\sqrt{I}</math> आदर्श I के मूलांक को दर्शाता है, बहुपद f का समुच्चय जिसके लिए f की कुछ शक्ति I में है। आधार क्षेत्र को बीजगणितीय रूप से संवृत  करने का कारण यह है कि सजातीय विविधताओं स्वचालित रूप से हिल्बर्ट के नलस्टेलेंसैट्ज को संतुष्ट करती हैं: आदर्श के लिए जे में <math>k[x_1, \ldots, x_n],</math> जहाँ k बीजगणितीय रूप से संवृत  क्षेत्र है, <math>I(V(J))=\sqrt{J}.</math>
के [वी] के कट्टरपंथी आदर्श (आदर्श जो अपने स्वयं के कट्टरपंथी हैं) वी के बीजगणितीय उपसमुच्चय के अनुरूप हैं। वास्तव में, कट्टरपंथी आदर्शों I और J के लिए, <math>I\subseteq J</math> अगर और केवल अगर <math>V(J)\subseteq V(I).</math> इसलिए V(I)=V(J) अगर और केवल अगर I=J. इसके अलावा, फलन बीजगणितीय सेट W को ग्रहण करता है और I(W) लौटाता है, सभी कार्यों का सेट जो W के सभी बिंदुओं पर भी गायब हो जाता है, फ़ंक्शन का व्युत्क्रम होता है, जो बीजगणितीय सेट को कट्टरपंथी आदर्श के लिए निर्दिष्ट करता है, नलस्टेलेंसैट द्वारा। इसलिए affine बीजगणितीय सेट और कट्टरपंथी आदर्शों के बीच पत्राचार एक आपत्ति है। एक affine बीजगणितीय सेट का समन्वय रिंग कम रिंग (nilpotent-free) है, एक रिंग R में एक आदर्श I के रूप में कट्टरपंथी है अगर और केवल अगर भागफल रिंग R/I कम हो जाता है।


समन्वयित वलय के प्रधान आदर्श एफ़िन उप-किस्मों के अनुरूप होते हैं। एक सजातीय बीजीय समुच्चय V(I) को दो अन्य बीजगणितीय समुच्चयों के मिलन के रूप में लिखा जा सकता है यदि और केवल यदि I=JK उचित आदर्शों के लिए J और K I के बराबर नहीं है (किस मामले में <math>V(I)=V(J)\cup V(K)</math>). यह मामला है अगर और केवल अगर मैं प्रधान नहीं हूं। Affine उपप्रकार ठीक वे हैं जिनकी समन्वय रिंग एक अभिन्न डोमेन है। ऐसा इसलिए है क्योंकि एक आदर्श प्रधान है अगर और केवल अगर आदर्श द्वारा रिंग का भागफल एक अभिन्न डोमेन है।
''k[V]'' के मौलिक आदर्श (आदर्श जो अपने स्वयं के मौलिकहैं) ''V'' के बीजगणितीय उपसमुच्चय के अनुरूप हैं। वास्तव में, मौलिक आदर्शों I और J के लिए, <math>I\subseteq J</math> यदि <math>V(J)\subseteq V(I).</math> इसलिए V(I)=V(J) यदि I=J इसके अतिरिक्त, फलन बीजगणितीय समुच्चय W को ग्रहण करता है और I(W) लौटाता है, सभी फलनों का समुच्चयजो W के सभी बिंदुओं पर भी गायब हो जाता है, फलन का व्युत्क्रम होता है, जो बीजगणितीय समुच्चयको मौलिक आदर्श के लिए निर्दिष्ट करता है, नलस्टेलेंसैट द्वारा। इसलिए सजातीय बीजगणितीय समुच्चय और मौलिक आदर्शों के मध्य पत्राचार आपत्ति है। सजातीय बीजगणितीय समुच्चयका समन्वय वलय कम हो जाती है (शून्य से मुक्त) ,वलय R में आदर्श I के रूप में मौलिकहै यदि भागफल वलय R/I कम हो जाता है।


के [वी] के अधिकतम आदर्श वी के बिंदुओं के अनुरूप हैं। यदि मैं और जे कट्टरपंथी आदर्श हैं, तो <math>V(J)\subseteq V(I)</math> अगर और केवल अगर <math>I\subseteq J.</math> जैसा कि अधिकतम आदर्श कट्टरपंथी हैं, अधिकतम आदर्श न्यूनतम बीजगणितीय सेट (जिनमें कोई उचित बीजगणितीय उपसमुच्चय नहीं है) के अनुरूप हैं, जो V में बिंदु हैं। यदि V समन्वय वलय के साथ एक परिशोधित किस्म है <math>R=k[x_1, \ldots, x_n]/\langle f_1, \ldots, f_m\rangle,</math> यह पत्राचार मानचित्र के माध्यम से स्पष्ट हो जाता है <math>(a_1,\ldots, a_n) \mapsto \langle \overline{x_1-a_1}, \ldots, \overline{x_n-a_n}\rangle,</math> कहाँ <math>\overline{x_i-a_i}</math> बहुपद के भागफल बीजगणित आर में छवि को दर्शाता है <math>x_i-a_i.</math> एक बीजगणितीय उपसमुच्चय एक बिंदु है यदि और केवल यदि उपसमुच्चय का समन्वय वलय एक क्षेत्र है, क्योंकि एक अधिकतम आदर्श द्वारा एक वलय का भागफल एक क्षेत्र है।
समन्वयित वलय के प्रधान आदर्श सजातीय उप- विविधताओं के अनुरूप होते हैं। सजातीय बीजीय समुच्चय V(I) को दो अन्य बीजगणितीय समुच्चयों के मिलन के रूप में लिखा जा सकता है यदि I=JK उचित आदर्शों के लिए J और K I  <math>V(I)=V(J)\cup V(K)</math>). यह स्तिथि है यदि मैं प्रधान नहीं हूं। सजातीय उपप्रकार ठीक वे हैं जिनकी समन्वय वलयअभिन्न डोमेन है। ऐसा इसलिए है क्योंकि आदर्श प्रधान है यदि आदर्श द्वारावलयका भागफल अभिन्न डोमेन है।


निम्न तालिका इस पत्राचार को सारांशित करती है, एक सजातीय विविधता के बीजगणितीय उपसमुच्चय और संबंधित समन्वय अंगूठी के आदर्शों के लिए:
''k[V]'' के अधिकतम आदर्श ''V'' के बिंदुओं के अनुरूप हैं। यदि ''I'' और ''J'' मौलिक आदर्श हैं, तो <math>V(J)\subseteq V(I)</math> यदि <math>I\subseteq J.</math> जैसा कि अधिकतम आदर्श मौलिकहैं, अधिकतम आदर्श न्यूनतम बीजगणितीय समुच्चय (जिनमें कोई उचित बीजगणितीय उपसमुच्चय नहीं होते है) के अनुरूप हैं, जो V में बिंदु हैं। यदि V समन्वय वलय के साथ परिशोधित विविधता है <math>R=k[x_1, \ldots, x_n]/\langle f_1, \ldots, f_m\rangle,</math> यह पत्राचार मानचित्र के माध्यम से स्पष्ट हो जाता है <math>(a_1,\ldots, a_n) \mapsto \langle \overline{x_1-a_1}, \ldots, \overline{x_n-a_n}\rangle,</math> कहाँ <math>\overline{x_i-a_i}</math> बहुपद के भागफल बीजगणित ''R'' में छवि को दर्शाता है <math>x_i-a_i.</math> बीजगणितीय उपसमुच्चय बिंदु है यदि उपसमुच्चय का समन्वय वलय क्षेत्र है, क्योंकि अधिकतम आदर्श द्वारा वलय का भागफल क्षेत्र है।
 
निम्न तालिका इस पत्राचार को सारांशित करती है, सजातीय विविधता के बीजगणितीय उपसमुच्चय और संबंधित समन्वय वलय के आदर्शों के लिए:
{| class="wikitable"
{| class="wikitable"
|-
|-
! Type of algebraic set !! Type of ideal !! Type of coordinate ring
! बीजगणितीय समुच्चयका प्रकार !! आदर्श प्रकार !! समन्वय की वलय का प्रकार
|-
|-
| affine algebraic subset || radical ideal || reduced ring
| सजातीय बीजगणितीय उपसमुच्चय || मौलिक आदर्श || कम वलय
|-
|-
| affine subvariety || prime ideal || integral domain
| सजातीय उप-विविधताओं || प्रधान आदर्श || अभिन्न डोमेन
|-
|-
| point || maximal ideal || field
| बिंदु || अधिकतम आदर्श || क्षेत्र
|}
|}


==सजातीय विविधताओं के उत्पाद==
सजातीय विविधताओं के उत्पाद को समरूपता {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''+''m''</sup>}} का उपयोग करके परिभाषित किया जा सकता है, तब उत्पाद को इस आधुनिक सजातीय समिष्ट में एम्बेड किया जा सकता है। मान लीजिए {{math|'''A'''<sup>''n''</sup>}} और {{math|'''A'''<sup>''m''</sup>}} के निर्देशांक वलय {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} और {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} हैं, जिससे कि उनके गुणनफल {{math|'''A'''<sup>''n''+''m''</sup>}} में निर्देशांक वलय है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}}. मान लीजिए {{math|''V''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>)}} {{math|'''A'''<sup>''n''</sup>}}का बीजगणितीय उपसमुच्चय हो और {{math|''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}}{{math|'''A'''<sup>''m''</sup>}} का बीजगणितीय उपसमुच्चय है। तबप्रत्येक {{math|''f''<sub>''i''</sub>}} {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में बहुपद है,और प्रत्येक {{math|''g''<sub>''j''</sub>}} {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} में है। {{mvar|''V''}} और {{mvar|''W''}} के गुणनफल को {{math|'''A'''<sup>''n''+''m''</sup>}} में बीजीय समुच्चय {{math|''V''&nbsp;×&nbsp;''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>,&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}} के रूप में परिभाषित किया गया है। उत्पाद अलघुकरणीय है यदि प्रत्येक {{mvar|''V''}}, {{mvar|''W''}} अलघुकरणीय है।<ref>This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see [[integral domain#Properties]].</ref>


==एफ़ाइन किस्मों के उत्पाद==
{{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}}पर जरिस्की सांस्थिति दो स्थानों पर ज़ारिस्की सांस्थिति का [[उत्पाद टोपोलॉजी|उत्पाद सांस्थिति]] नहीं है। यथार्थतः, उत्पाद सांस्थिति मूल खुले समुच्चय के उत्पादों द्वारा उत्पन्न होती है {{math|''U''<sub>''f''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''</sup>&nbsp;−&nbsp;''V''(&nbsp;''f''&nbsp;)}} और {{math|''T''<sub>''g''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''m''</sup>&nbsp;−&nbsp;''V''(&nbsp;''g''&nbsp;)}} इसलिए, बहुपद जो {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} में हैं लेकिन {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है जिसमें बहुपद के साथ {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} उन बीजगणितीय समुच्चय को परिभाषित करेगा जो ज़रिस्की सांस्थिति में {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}}हैं लेकिन उत्पाद सांस्थिति में नहीं हैं।
समरूप किस्मों के उत्पाद को समरूपता का उपयोग करके परिभाषित किया जा सकता है {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''+''m''</sup>,}} फिर उत्पाद को इस नए affine स्थान में एम्बेड करना। होने देना {{math|'''A'''<sup>''n''</sup>}} और {{math|'''A'''<sup>''m''</sup>}} में समन्वय के छल्ले हैं {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} और {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} क्रमशः, ताकि उनका उत्पाद {{math|'''A'''<sup>''n''+''m''</sup>}} में निर्देशांक वलय है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}}. होने देना {{math|''V''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>)}} का एक बीजगणितीय उपसमुच्चय हो {{math|'''A'''<sup>''n''</sup>,}} और {{math|''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}} का एक बीजगणितीय उपसमुच्चय {{math|'''A'''<sup>''m''</sup>.}} फिर प्रत्येक {{math|''f''<sub>''i''</sub>}} में एक बहुपद है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}}, और प्रत्येक {{math|''g''<sub>''j''</sub>}} में है {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}}. का उत्पाद {{mvar|''V''}} और {{mvar|''W''}} को बीजगणितीय सेट के रूप में परिभाषित किया गया है {{math|''V''&nbsp;×&nbsp;''W''&nbsp;{{=}}&nbsp;''V''(&nbsp;''f''<sub>1</sub>,...,&nbsp;''f''<sub>''N''</sub>,&nbsp;''g''<sub>1</sub>,...,&nbsp;''g''<sub>''M''</sub>)}} में {{math|'''A'''<sup>''n''+''m''</sup>.}} यदि प्रत्येक उत्पाद अप्रासंगिक है {{mvar|''V''}}, {{mvar|''W''}} अलघुकरणीय है।<ref>This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see [[integral domain#Properties]].</ref>
जरिस्की टोपोलॉजी ऑन {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;}} दो स्थानों पर ज़ारिस्की टोपोलॉजी का [[उत्पाद टोपोलॉजी]] नहीं है। दरअसल, उत्पाद टोपोलॉजी मूल खुले सेट के उत्पादों द्वारा उत्पन्न होती है {{math|''U''<sub>''f''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''n''</sup>&nbsp;−&nbsp;''V''(&nbsp;''f''&nbsp;)}} और {{math|''T''<sub>''g''</sub>&nbsp;{{=}}&nbsp;'''A'''<sup>''m''</sup>&nbsp;−&nbsp;''V''(&nbsp;''g''&nbsp;).}} इसलिए, बहुपद जो अंदर हैं {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>,&nbsp;''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} लेकिन एक बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है {{math|''k''[''x''<sub>1</sub>,...,&nbsp;''x''<sub>''n''</sub>]}} में एक बहुपद के साथ {{math|''k''[''y''<sub>1</sub>,...,&nbsp;''y''<sub>''m''</sub>]}} उन बीजगणितीय सेटों को परिभाषित करेगा जो ज़रिस्की टोपोलॉजी में हैं {{math|'''A'''<sup>''n''</sup>&nbsp;×&nbsp;'''A'''<sup>''m''</sup>&nbsp;,}} लेकिन उत्पाद टोपोलॉजी में नहीं।


== सजातीय किस्मों की रूपात्मकता ==
== सजातीय विविधताओं की रूपात्मकता ==
{{main|Morphism of algebraic varieties}}
{{main|बीजगणितीय विविधताओं का रूपवाद}}


एफ़िन किस्मों का एक रूपवाद, या नियमित मानचित्र, एफ़िन किस्मों के बीच एक कार्य है जो प्रत्येक समन्वय में बहुपद है: अधिक सटीक रूप से, एफ़िन किस्मों के लिए {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}}, एक रूपवाद से {{math| ''V''}} को {{math| ''W''}} एक नक्शा है {{math | ''φ'' : ''V'' → ''W''}} फॉर्म का {{math | ''φ''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)),}} कहाँ {{math | ''f''<sub>''i''</sub> ∈ ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} प्रत्येक के लिए {{math | ''i'' {{=}} 1, ..., ''m''.}} ये एफ़ाइन किस्मों की [[श्रेणी (गणित)]] में आकारिकी हैं।
सजातीय विविधताओं का रूपवाद, या नियमित मानचित्र, सजातीय विविधताओं के मध्य फलन है जो प्रत्येक समन्वय में बहुपद है: अधिक त्रुटिहीन रूप से, सजातीय विविधताओं के लिए {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}}, {{math| ''V''}} को {{math| ''W''}} तक आकारिकी नक्शा {{math | ''φ'' : ''V'' → }} हैं {{math | ''φ''(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>))}} के रूप का W, कहाँ {{math | ''f''<sub>''i''</sub> ∈ ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} प्रत्येक के लिए {{math | ''i'' {{=}} 1, ..., ''m''.}}ये सजातीय विविधताओं की [[श्रेणी (गणित)]] में आकारिकी हैं।


एक बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन किस्मों के आकारिकी के बीच एक-से-एक पत्राचार होता है {{math|''k'',}} और affine किस्मों के समन्वय के छल्ले के समरूपता {{math|''k''}} विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँ affine किस्मों के बीच एक-से-एक पत्राचार है {{math|''k''}} और उनके निर्देशांक के छल्ले, affine किस्मों की श्रेणी {{math|''k''}} affine किस्मों के समन्वय के छल्ले की श्रेणी के लिए [[दोहरी (श्रेणी सिद्धांत)]] है {{math|''k''.}} affine किस्मों के समन्वय के छल्ले की श्रेणी {{math|''k''}} ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है {{math|''k''.}}
बीजगणितीय रूप से संवृत  क्षेत्र पर सजातीय विविधताओं के आकारिकी के मध्य से पत्राचार होता है और विपरीत दिशा में जाने वाले {{math|''k''}} पर सजातीय विविधताओं के समन्वय के छल्ले के समरूपता है। इस कारण से, इस तथ्य के साथ {{math|''k''}} और उनके समन्वय के छल्ले के मध्य सजातीय विविधताओं के मध्य से पत्राचार होता है, {{math|''k''}} से अधिक सजातीय विविधताओं की श्रेणी {{math|''k''}} से अधिक सजातीय विविधताओं के समन्वय के छल्ले की श्रेणी के [[दोहरी (श्रेणी सिद्धांत)]] होती है। {{math|''k''}} से अधिक सजातीय विविधताओं के समन्वय के छल्ले की श्रेणी उचित जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है।


अधिक सटीक, प्रत्येक रूपवाद के लिए {{math | ''φ'' : ''V'' → ''W''}} affine किस्मों में, एक समरूपता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस तरह के प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी किस्मों का एक रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} कोआर्डिनेट रिंग्स के साथ एफिन किस्में बनें {{math| ''k''[''V''] {{=}} ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} और {{math| ''k''[''W''] {{=}} ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J''}} क्रमश। होने देना {{math | ''φ'' : ''V'' → ''W''}} रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच एक समरूपता {{math | ''θ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} अंगूठी के माध्यम से अद्वितीय कारक {{math | ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>],}} और एक समरूपता {{math | ''ψ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है {{math | ''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>.}} इसलिए, प्रत्येक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है {{math | ''Y''<sub>''i''</sub>}}. फिर कोई रूपवाद दिया {{math | ''φ'' {{=}} (''f''<sub>1</sub>, ..., ''f''<sub>''m''</sub>)}} से {{math | ''V''}} को {{math | ''W'',}} एक समरूपता का निर्माण किया जा सकता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} जो भेजता है {{math | ''Y''<sub>''i''</sub>}} को <math>\overline{f_i},</math> कहाँ <math>\overline{f_i}</math> का तुल्यता वर्ग है {{math | ''f''<sub>''i''</sub>}} में {{math | ''k''[''V''].}}
त्रुटिहीन, प्रत्येक आकृतिवाद के लिए {{math | ''φ'' : ''V'' → ''W''}} सजातीय विविधताओं में, समाकारिता होती है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} समन्वय वलयों (विपरीत दिशा में में जाने) के मध्य, और इस प्रकार के प्रत्येक समरूपता के लिए, निर्देशांक वलयों से जुड़ी विविधताओं का आकार है। इसे स्पष्ट रूप से दिखाया जा सकता है: मान लीजिए {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} समन्वय के छल्ले {{math| ''k''[''V''] {{=}} ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} और {{math| ''k''[''W''] {{=}} ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J''}} क्रमशः। मान लीजिए {{math | ''φ'' : ''V'' → ''W''}} आकारिकी है। यथार्थतः, बहुपद के छल्ले के मध्य समरूपता {{math | ''θ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} कारक अद्वितीय से वलय {{math | ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} के माध्यम से, और समरूपता {{math | ''ψ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} विशिष्ट रूप से {{math | ''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>}} की छवियों द्वारा निर्धारित किया जाता है। इसलिए, प्रत्येक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} विशिष्ट रूप से प्रत्येक के लिए छवि पसंद से मिलता है z है {{math | ''Y''<sub>''i''</sub>}}. तब {{math | ''V''}} से {{math | ''W''}} तक किसी भी आकारिकी {{math | ''φ'' {{=}} (''f''<sub>1</sub>, ..., ''f''<sub>''m''</sub>)}} देखते हुए, समाकारिता का निर्माण किया जा सकता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} जो {{math | ''Y''<sub>''i''</sub>}} भेजता है <math>\overline{f_i},</math> कहाँ{{math | ''k''[''V'']}} में <math>\overline{f_i}</math> का तुल्यता वर्ग है।


इसी तरह, समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार किस्मों का एक रूपवाद बनाया जा सकता है। उपरोक्त पैराग्राफ को प्रतिबिंबित करना, एक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} भेजता है {{math | ''Y''<sub>''i''</sub>}} एक बहुपद के लिए <math>f_i(X_1,\dots,X_n)</math> में {{math | ''k''[''V'']}}. यह किस्मों के आकारिकी से मेल खाता है {{math | ''φ'' : ''V'' → ''W''}} द्वारा परिभाषित {{math | ''φ''(''a''<sub>1</sub>, ... , ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)).}}
इसी प्रकार ,समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त अनुच्छेद को प्रतिबिंबित करते हुए, समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} {{math | ''Y''<sub>''i''</sub>}} को बहुपद में भेजता है <math>f_i(X_1,\dots,X_n)</math> में {{math | ''k''[''V'']}}. यह {{math | ''φ'' : ''V'' → ''W''}} {{math | ''φ''(''a''<sub>1</sub>, ... , ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>))}} द्वारा परिभाषित विविधताओं के आकारिकी से मिलता है। 


== संरचना शीफ ​​==
== संरचना शीफ ​​==
नीचे वर्णित संरचना शीफ ​​से सुसज्जित, एक सजातीय किस्म स्थानीय रूप से चक्राकार स्थान है।
नीचे वर्णित संरचना शीफ ​​से सुसज्जित, सजातीय विविधता स्थानीय रूप से चक्राकार समिष्ट है।


कोऑर्डिनेट रिंग A के साथ affine वैरायटी X दी गई है, जो k-अलजेब्रस का शीफ ​​है <math>\mathcal{O}_X</math> देकर परिभाषित किया गया है <math>\mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_X)</math> यू पर नियमित कार्यों की अंगूठी बनें।
समन्वय की वलय A के साथ सजातीय विविधता X दी गई है, जो k-बीजगणित का शीफ ​​है <math>\mathcal{O}_X</math> देकर परिभाषित किया गया है <math>\mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_X)</math> ''U'' पर नियमित फलनों की वलय बनें।


माना D(f) = { x | में प्रत्येक एफ के लिए एफ (एक्स) ≠ 0}। वे एक्स के टोपोलॉजी के लिए आधार बनाते हैं और इसलिए <math>\mathcal{O}_X</math> खुले सेट डी (एफ) पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ#मॉड्यूल से जुड़ा शीफ।)
माना D(f) = { x | ''A'' में प्रत्येक ''f'' के लिए ''f''(''x'') ≠ 0}। वे ''X'' के सांस्थिति के लिए आधार बनाते हैं और इसलिए <math>\mathcal{O}_X</math> खुले समुच्चय ''D''(''f )'' पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ मॉड्यूल से जुड़ा शीफ)


मुख्य तथ्य, जो आवश्यक रूप से [[हिल्बर्ट शून्य प्रमेय]] पर निर्भर करता है, निम्नलिखित है:
मुख्य तथ्य, जो आवश्यक रूप से [[हिल्बर्ट शून्य प्रमेय]] पर निर्भर करता है, निम्नलिखित है:
{{math_theorem|name=Claim|math_statement=<math>\Gamma(D(f), \mathcal{O}_X) = A[f^{-1}]</math> for any ''f'' in ''A''.}}
{{math_theorem|name=Claim|math_statement=<math>\Gamma(D(f), \mathcal{O}_X) = A[f^{-1}]</math> for any ''f'' in ''A''.}}
सबूत:<ref>{{harvnb|Mumford|1999|loc=Ch. I, § 4. Proposition 1.}}</ref> समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, जी को बाएं हाथ की ओर होने दें और <math>J = \{ h \in A | hg \in A \}</math>है, जो एक आदर्श है। यदि एक्स डी (एफ) में है, तो चूंकि जी एक्स के पास नियमित है, एक्स के कुछ खुले संबंध पड़ोस डी (एच) हैं जैसे कि <math>g \in k[D(h)] = A[h^{-1}]</math>; वह है, एच<sup>m</sup> g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, <math>V(J) \subset \{ x | f(x) = 0 \}</math> और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि एफ जे के रेडिकल में है; अर्थात।, <math>f^n g \in A</math>. <math>\square</math>
सबूत:<ref>{{harvnb|Mumford|1999|loc=Ch. I, § 4. Proposition 1.}}</ref> समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, ''g'' को बाएं हाथ की ओर होने दें और <math>J = \{ h \in A | hg \in A \}</math> है, जो आदर्श है। यदि ''x'' ''D''(''f'') में है, चूंकि ''g, x'' के पास नियमित है, ''x'' के कुछ खुले संबंध पड़ोस ''D''(''h'') हैं जैसे कि <math>g \in k[D(h)] = A[h^{-1}]</math>; अर्थात्, ''h<sup>m</sup>'' g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, <math>V(J) \subset \{ x | f(x) = 0 \}</math> और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि ''f,J'' के रेडिकल में है; अर्थात, <math>f^n g \in A</math>. <math>\square</math>
दावा, सबसे पहले, यह दर्शाता है कि X तब से स्थानीय रूप से रिंग किया हुआ स्थान है
 
प्रमाणित है, सबसे पूर्व, यह दर्शाता है कि X तब से स्थानीय रूप से वलय किया हुआ समिष्ट है।
:<math>\mathcal{O}_{X, x} = \varinjlim_{f(x) \ne 0} A[f^{-1}] = A_{\mathfrak{m}_x}</math>
:<math>\mathcal{O}_{X, x} = \varinjlim_{f(x) \ne 0} A[f^{-1}] = A_{\mathfrak{m}_x}</math>
कहाँ <math>\mathfrak{m}_x = \{ f \in A | f(x) = 0 \}</math>. दूसरे, दावा का तात्पर्य है <math>\mathcal{O}_X</math> एक पुलिया है; वास्तव में, यह कहता है कि यदि कोई फ़ंक्शन डी (एफ) पर नियमित (बिंदुवार) है, तो यह डी (एफ) की समन्वय अंगूठी में होना चाहिए; यानी, रेगुलर-नेस को एक साथ पैच किया जा सकता है।
कहाँ <math>\mathfrak{m}_x = \{ f \in A | f(x) = 0 \}</math>. दूसरे, प्रमाणित का तात्पर्य है <math>\mathcal{O}_X</math> पुलिंदा है; वास्तव में, यह कहता है कि यदि कोई समारोह ''D''(''f )'' पर नियमित (बिंदुवार) है, तो यह ''D''(''f )'' की समन्वय वलय में होना चाहिए; तात्यर्य "नियमित-नेस को साथ पैच किया जा सकता है।
 
इस तरह, <math>(X, \mathcal{O}_X)</math> स्थानीय रूप से चक्राकार स्थान है।<!--
'''Remark''': One might wonder if the claim can be taken as an axiom (so that for example the use of Hilbert nullstellensatz is avoided and one can work over an arbitrary field). The idea would work and the resulting theory is a part of the [[scheme theory]].-->


इस प्रकार, <math>(X, \mathcal{O}_X)</math> स्थानीय रूप से चक्राकार समिष्ट है।
== सजातीयता पर सेरे का प्रमेय ==
{{main|सजातीयता पर सेरे की प्रमेय}}


== आत्मीयता पर सेरे का प्रमेय ==
आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का कोहोमोलॉजिकल लक्षण वर्णन है; यह कहता है कि बीजगणितीय विविधता सजातीय है यदि <math>H^i(X, F) = 0</math> किसी के लिए भी <math>i > 0</math> और X पर कोई भी [[अर्ध-सुसंगत शीफ]] F (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी स्तिथि के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह होते हैं, गैर-अस्तित्व में सजातीय विविधता का कोहोलॉजिकल अध्ययन करता है।  
{{main|Serre's theorem on affineness}}
आत्मीयता पर एक सेरे की प्रमेय एक सजातीय विविधता का एक कोहोमोलॉजिकल लक्षण वर्णन देती है; यह कहता है कि एक बीजगणितीय विविधता affine है अगर और केवल अगर <math>H^i(X, F) = 0</math> किसी के लिए <math>i > 0</math> और एक्स पर कोई भी [[अर्ध-सुसंगत शीफ]] एफ। (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी मामले के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह केंद्रीय हित के होते हैं, के विपरीत, गैर-अस्तित्व में एक एफ़ाइन किस्म का कोहोलॉजिकल अध्ययन करता है। .


== Affine बीजगणितीय समूह ==
== सजातीय बीजगणितीय समूह ==
{{main|linear algebraic group}}
{{main|रैखिक बीजगणितीय समूह}}
एक एफ़िन किस्म {{math|''G''}} बीजगणितीय रूप से बंद फ़ील्ड पर {{math|''k''}} को affine बीजगणितीय समूह कहा जाता है यदि इसमें:
बीजगणितीय रूप से संवृत  क्षेत्र पर {{math|''k''}} पर सजातीय विविधता {{math|''G''}} को सजातीय बीजगणितीय समूह कहा जाता है यदि इसमें:
* एक '' गुणन '' {{math|''μ'':&nbsp;''G''&nbsp;×&nbsp;''G''&nbsp;→&nbsp;''G''}}, जो एक नियमित रूपवाद है जो सहयोगीता स्वयंसिद्ध का पालन करता है-अर्थात्, ऐसा है {{math|''μ''(''μ''(''f'',&nbsp;''g''),&nbsp;''h'')&nbsp;{{=}}&nbsp;''μ''(''f'',&nbsp;''μ''(''g'',&nbsp;''h''))}} सभी बिंदुओं के लिए {{math|''f''}}, {{math|''g''}} और {{math|''h''}} में {{math|''G'';}}
* '' गुणन'' {{math|''μ'':&nbsp;''G''&nbsp;×&nbsp;''G''&nbsp;→&nbsp;''G''}}, जो नियमित रूपवाद है जो सहयोगीता स्वयंसिद्ध का अनुसरण करता है-अर्थात्, जैसे कि {{math|''μ''(''μ''(''f'',&nbsp;''g''),&nbsp;''h'')&nbsp;{{=}}&nbsp;''μ''(''f'',&nbsp;''μ''(''g'',&nbsp;''h''))}} के लिए {{math|''G''}} में सभी बिंदु {{math|''f''}}, {{math|''g''}} और {{math|''h''}} है ;
* एक पहचान तत्व {{math|''e''}} ऐसा है कि {{math|''μ''(''e'',&nbsp;''g'')&nbsp;{{=}}&nbsp;''μ''(''g'',&nbsp;''e'')&nbsp;{{=}}&nbsp;''g''}} हरएक के लिए {{math|''g''}} में {{math|''G'';}}
* पहचान तत्व {{math|''e''}} ऐसा है कि {{math|''G''}} के लिए {{math|''μ''(''e'',&nbsp;''g'')&nbsp;{{=}}&nbsp;''μ''(''g'',&nbsp;''e'')&nbsp;{{=}}&nbsp;''g''}} है;
* एक व्युत्क्रम रूपवाद, एक नियमित आक्षेप {{math|''ι'':&nbsp;''G''&nbsp;→&nbsp;''G''}} ऐसा है कि {{math|''μ''(''ι''(''g''),&nbsp;''g'')&nbsp;{{=}}&nbsp;''μ''(''g'',&nbsp;''ι''(''g''))&nbsp;{{=}}&nbsp;''e''}} हरएक के लिए {{math|''g''}} में {{math|''G''.}}
* व्युत्क्रम रूपवाद, नियमित आक्षेप {{math|''ι'':&nbsp;''G''&nbsp;→&nbsp;''G''}} ऐसा है कि {{math|''μ''(''ι''(''g''),&nbsp;''g'')&nbsp;{{=}}&nbsp;''μ''(''g'',&nbsp;''ι''(''g''))&nbsp;{{=}}&nbsp;''e''}} {{math|''G''}} में प्रत्येक {{math|''g''}} के लिए है;


साथ में, ये विविधता पर एक [[समूह (गणित)]] को परिभाषित करते हैं। उपरोक्त morphisms अक्सर साधारण समूह संकेतन का उपयोग करते हुए लिखा जाता है: {{math|''μ''(''f'',&nbsp;''g'')}} के रूप में लिखा जा सकता है {{math|''f''&nbsp;+&nbsp;''g''}}, {{math|''f''&sdot;''g'',}} या {{math|''fg''}}; उलटा {{math|''ι''(''g'')}} के रूप में लिखा जा सकता है {{math|−''g''}} या {{math|''g''<sup>−1</sup>.}} गुणात्मक संकेतन का उपयोग करके, साहचर्य, पहचान और व्युत्क्रम कानूनों को फिर से लिखा जा सकता है: {{math|''f''(''gh'')&nbsp;{{=}}&nbsp;(''fg'')''h''}}, {{math|''ge''&nbsp;{{=}}&nbsp;''eg''&nbsp;{{=}}&nbsp;''g''}} और {{math|''gg''<sup>−1</sup>&nbsp;{{=}}&nbsp;''g''<sup>−1</sup>''g''&nbsp;{{=}}&nbsp;''e''}}.
इस विविधता पर [[समूह (गणित)|समूह (संरचना)]] को परिभाषित करते हैं। उपरोक्त रूपवाद प्रायः साधारण समूह संकेतन का उपयोग करते हुए लिखा जाता है: {{math|''μ''(''f'',&nbsp;''g'')}} को {{math|''f''&nbsp;+&nbsp;''g''}}, {{math|''f''&sdot;''g'',}} या {{math|''fg''}} के रूप में लिखा जा सकता है; व्युत्क्रम {{math|''ι''(''g'')}} को {{math|−''g''}} या {{math|''g''<sup>−1</sup>}} के रूप में लिखा जा सकता है गुणात्मक संकेतन का उपयोग करके, साहचर्य, पहचान और व्युत्क्रम नियम से लिखा जा सकता है: {{math|''f''(''gh'')&nbsp;{{=}}&nbsp;(''fg'')''h''}}, {{math|''ge''&nbsp;{{=}}&nbsp;''eg''&nbsp;{{=}}&nbsp;''g''}} और {{math|''gg''<sup>−1</sup>&nbsp;{{=}}&nbsp;''g''<sup>−1</sup>''g''&nbsp;{{=}}&nbsp;''e''}}.


एफ़िन बीजगणितीय समूह का सबसे प्रमुख उदाहरण है {{math|GL<sub>''n''</sub>(''k''),}} डिग्री का [[सामान्य रैखिक समूह]] {{math|''n''.}} यह सदिश स्थान के रैखिक परिवर्तनों का समूह है {{math|''k''<sup>''n''</sup>;}} यदि एक [[आधार (रैखिक बीजगणित)]] का {{math|''k''<sup>''n''</sup>,}} नियत है, यह के समूह के समतुल्य है {{math|''n''×''n''}} में प्रविष्टियों के साथ उलटा आव्यूह {{math|''k''.}} यह दिखाया जा सकता है कि कोई भी बीजगणितीय समूह एक उपसमूह के लिए आइसोमोर्फिक है {{math|GL<sub>''n''</sub>(''k'')}}. इस कारण से, affine बीजगणितीय समूहों को अक्सर रैखिक बीजगणितीय समूह कहा जाता है।
सजातीय बीजगणितीय समूह का सबसे प्रमुख उदाहरण {{math|GL<sub>''n''</sub>(''k'')}} है, डिग्री {{math|''n''}} का [[सामान्य रैखिक समूह]] है। यह सदिश समिष्ट {{math|''k''<sup>''n''</sup>}} के रैखिक परिवर्तनों का समूह है; यदि {{math|''k''<sup>''n''</sup>}} का [[आधार (रैखिक बीजगणित)]] नियत है, तो यह {{math|''k''}} में प्रविष्टियों के साथ {{math|''n''×''n''}} व्युत्क्रमणीय आव्यूहों के समूह के समतुल्य होते है। यह दिखाया जा सकता है कि कोई भी बीजगणितीय समूह {{math|GL<sub>''n''</sub>(''k'')}} के उपसमूह के लिए आइसोमोर्फिक होते है। इस कारण से, सजातीय बीजगणितीय समूहों को प्रायः रैखिक बीजगणितीय समूह कहा जाता है।


परिमित बीजगणितीय समूह परिमित सरल समूहों के वर्गीकरण में एक महत्वपूर्ण भूमिका निभाते हैं, क्योंकि झूठ प्रकार के समूह के सभी सेट हैं {{math|'''F'''<sub>''q''</sub>}}-एक सजातीय बीजगणितीय समूह के तर्कसंगत अंक, जहां {{math|'''F'''<sub>''q''</sub>}} परिमित क्षेत्र है।
सजातीय बीजगणितीय समूह परिमित सरल समूहों के वर्गीकरण में महत्वपूर्ण भूमिका निभाते हैं, क्योंकि असत्य प्रकार के समूह सजातीय बीजगणितीय समूह के {{math|'''F'''<sub>''q''</sub>}} तर्कसंगत बिंदुओं के सभी समुच्चय हैं, जहां {{math|'''F'''<sub>''q''</sub>}} परिमित क्षेत्र है।


== सामान्यीकरण ==
== सामान्यीकरण ==
* यदि एक लेखक को बीजगणितीय रूप से बंद होने के लिए affine किस्म के आधार क्षेत्र की आवश्यकता होती है (जैसा कि यह लेख करता है), तो गैर-बीजगणितीय रूप से बंद क्षेत्रों पर इरेड्यूसिबल affine बीजगणितीय सेट affine किस्मों का एक सामान्यीकरण है। इस सामान्यीकरण में विशेष रूप से वास्तविक संख्याओं पर एफ़िन किस्मों को शामिल किया गया है।
* यदि लेखक को बीजगणितीय रूप से संवृत होने के लिए सजातीय विविधता के आधार क्षेत्र की आवश्यकता होती है (जैसा कि यह लेख करता है), तो गैर-बीजगणितीय रूप से संवृत क्षेत्रों पर अलघुकरणीय सजातीय बीजगणितीय समुच्चय सजातीय विविधता का सामान्यीकरण होता है। इस सामान्यीकरण में विशेष रूप से वास्तविक संख्याओं पर सजातीय विविधताओं को सम्मिलित किया गया है।


* बीजगणितीय किस्मों के लिए एक संबधित किस्म एक स्थानीय चार्ट की भूमिका निभाती है; कहने का तात्पर्य यह है कि सामान्य [[बीजगणितीय किस्में]] जैसे कि प्रोजेक्टिव किस्म को ग्लूइंग एफाइन किस्मों द्वारा प्राप्त किया जाता है। रेखीय संरचनाएं जो किस्मों से जुड़ी होती हैं, वे भी (तुच्छ रूप से) एफ़िन किस्में होती हैं; उदाहरण के लिए, स्पर्शरेखा रिक्त स्थान, [[बीजगणितीय वेक्टर बंडल]]ों के तंतु।
* बीजगणितीय विविधताओं के लिए स्थानीय विविधता चार्ट की भूमिका निभाती है; कहने का तात्पर्य यह है कि सामान्य [[बीजगणितीय किस्में|बीजगणितीय विविधताओं]] जैसे कि प्रोजेक्टिव विविधता ग्लूइंग एफाइन विविधताओं द्वारा प्राप्त किया जाता है। रेखीय संरचनाएं जो विविधताओं से जुड़ी होती हैं, वे भी (तुच्छ रूप से) सजातीय विविधता होती हैं; उदाहरण के लिए, स्पर्श रेखा रिक्त समिष्ट, [[बीजगणितीय वेक्टर बंडल|बीजगणितीय वेक्टर बंडलों]] के तंतु होते है।


* एक affine किस्म एक affine स्कीम का एक विशेष मामला है, एक स्थानीय रूप से रिंग वाली जगह जो एक कम्यूटेटिव रिंग ([[श्रेणियों की समानता]] तक) के रिंग के स्पेक्ट्रम के लिए आइसोमोर्फिक है। प्रत्येक affine किस्म से जुड़ी एक [[affine योजना]] होती है: if {{math| ''V(I)''}} में एक एफ़ाइन किस्म है {{math| ''k''<sup>''n''</sup>}} निर्देशांक वलय के साथ {{math| ''R'' {{=}} ''k''[''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>] / ''I'',}} फिर इसके अनुरूप योजना {{math| ''V(I)''}} है {{math| Spec(''R''),}} के प्रमुख आदर्शों का सेट {{math| ''R''.}} एफ़िन योजना में शास्त्रीय बिंदु हैं जो विविधता के बिंदुओं के अनुरूप हैं (और इसलिए विविधता के समन्वय रिंग के अधिकतम आदर्श), और विविधता के प्रत्येक बंद उप-किस्म के लिए एक बिंदु भी है (ये बिंदु प्रधान, गैर-अधिकतम आदर्शों के अनुरूप हैं) समन्वय की अंगूठी की)। यह प्रत्येक बंद उप-किस्म को एक खुला बिंदु निर्दिष्ट करके, जो उप-किस्म में सघन है, एक संबधित किस्म के सामान्य बिंदु की एक अधिक अच्छी तरह से परिभाषित धारणा बनाता है। अधिक आम तौर पर, एक एफ़िन योजना एक एफ़िन किस्म है यदि यह बीजगणितीय ज्यामिति # आर, इर्रेड्यूसबल घटक, और परिमित आकारिकी # बीजगणितीय रूप से बंद क्षेत्र पर परिमित प्रकार की शब्दावली है {{math| ''k''.}}
* सजातीय विविधता योजना की विशेष स्थिति है, कि स्थानीय रूप से वलय वाली समिष्ट जो कम्यूटेटिव वलय ([[श्रेणियों की समानता]] तक) के स्पेक्ट्रम के लिए आइसोमोर्फिक होते है। प्रत्येक सजातीय विविधता से जुड़ी [[affine योजना|योजना]] होती है: यदि {{math| ''V(I)''}}{{math| ''k''<sup>''n''</sup>}} में समन्वयित वलय{{math| ''R'' {{=}} ''k''[''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>] / ''I'',}} के साथ सजातीय विविधता है, तो{{math| ''V(I)''}} संबंधित योजना है I {{math| युक्ति (''R'),}} {{math| ''R''.}} के प्रमुख आदर्शों का समुच्चय है। सजातीय योजना में शास्त्रीय बिंदु होते हैं जो विविधता के बिंदुओं के अनुरूप होते हैं ( इसलिए विविधता के समन्वय वलय के अधिकतम आदर्श), और प्रत्येक संवृत  उप-विविधता के लिए बिंदु हैं (ये बिंदु समन्वय वलय के अभाज्य, गैर-अधिकतम आदर्शों के अनुरूप हैं)। यह प्रत्येक संवृत उप-विविधता को विवृत बिंदु निर्दिष्ट करके, जो उप-विविधता में घना है, सम्बन्धित विविधता के "जेनेरिक बिंदु" की उत्तम प्रकार से परिभाषित धारणा बनाता है। सामान्यतः, सजातीय योजना विविधता में बीजगणितीय रूप से संवृत  क्षेत्र k पर कम, अलघुकरणीय और परिमित प्रकार है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 144: Line 143:


== यह भी देखें ==
== यह भी देखें ==
* [[बीजगणितीय किस्म]]
* [[बीजगणितीय किस्म|बीजगणितीय विविधता]]
* एफ़िन योजना
* सजातीय योजना
* निर्देशांक वलयों पर प्रतिनिधित्व
* समन्वय के छल्ले पर प्रतिनिधित्व


== संदर्भ ==
== संदर्भ ==
Line 162: Line 161:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 13:03, 30 October 2023

घन समतल वक्र

बीजगणितीय ज्यामिति में, संवृत क्षेत्र k पर सजातीय विविधता, k में गुणांक वाले n चर के बहुपदों के कुछ परिमित समूह के सजातीय अंतरिक्ष kn में शून्य-बिंदु होते है जो प्रमुख आदर्श उत्पन्न करता है। यदि अभाज्य गुणज उत्पन्न करने की स्थिति को हटा दिया जाता है, ऐसे समुच्चय को बीजगणितीय समुच्चय (सजातीय) कहा जाता है। सजातीय विविधता की जरिस्की सांस्थिति की उप-विविधता को अर्ध-सजातीय विविधता कहा जाता है।

कुछ ग्रंथों को प्रमुख आदर्श की आवश्यकता नहीं होती है, और प्रधान आदर्श द्वारा परिभाषित बीजगणितीय विविधता को अलघुकरणीय कहते हैं। यह लेख आवश्यक रूप से प्रमुख आदर्शों के शून्य-लोकस को संदर्भित नहीं करता है जैसे कि बीजगणितीय समुच्चय है।

कुछ संदर्भों में, बीजगणितीय रूप से संवृत क्षेत्र K (युक्त k) से भिन्न करना उपयोगी होता है जिसे गुणांक माना जाता है, जिस पर शून्य को लोकस माना जाता है (अर्थात् सजातीय विविधता के बिंदु Kn में हैं)। इस स्तिथि में, विविधता को k पर परिभाषित किया जाता है, और k से संबंधित विविधता बिंदु k को तर्कसंगत कहा जाता है। सामान्य स्थिति में जहाँ k वास्तविक संख्याओं का क्षेत्र है, k- तर्कसंगत बिंदु को वास्तविक बिंदु कहते हैं।[1] जब क्षेत्र k निर्दिष्ट नहीं होता है, तब परिमेय बिंदु वह बिंदु है जो परिमेय संख्याओं पर परिमित होती है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय है कि xn + yn − 1 = 0 द्वारा परिभाषित सजातीय बीजगणितीय विविधता (यह वक्र है) में दो से अधिक पूर्णांक n के लिए कोई परिमेय बिंदु नहीं है।

परिचय

सजातीय बीजगणितीय समुच्चय k में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से संवृत क्षेत्र k में समाधान का समुच्चय है। यदि में गुणांक वाले बहुपद है, वे सजातीय बीजगणितीय समुच्चय को परिभाषित करते हैं

सजातीय (बीजीय) विविधता बीजगणितीय समुच्चय है जो दो उचित सजातीय बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय समुच्चय को प्रायः अलघुकरणीय कहा जाता है।

यदि X सजातीय बीजगणितीय समुच्चय है, और I उन सभी बहुपदों की गुणजावली है जिन X पर शून्य है, तब भागफल वलय को X का ऑर्डिनेट वलय कहा जाता है निर्देशांक वलय R के तत्वों को विविधता पर नियमित फलन या बहुपद फलन भी कहा जाता है। वे विविधता पर नियमित फलनों की वलय बनाते हैं, विविधता की वलय; दूसरे शब्दों में (संरचना शीफ देखें), यह X के संरचना बंड़ल के वैश्विक खंड का अंतरिक्ष है।

विविधता का आयाम प्रत्येक पूर्णांक से जुड़ा है, और प्रत्येक बीजगणितीय समुच्चय के लिए, बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)।

उदाहरण

  • सजातीय विविधता में X (जो कि कुछ बहुपद f के लिए X - { f = 0 } है) में हाइपरसफेस का पूरक सजातीय है। इसके परिभाषित समीकरणों को X के आदर्श f द्वारा संतृप्ति करके प्राप्त किया जाता है। समन्वय वलय का स्थानीयकरण है।
  • विशेष रूप से, (सजातीय रेखा जिसके मूल को हटा दिया गया है) सजातीय है।
  • वहीं दूसरी ओर, (ऐफिन प्लेन जिसकी उत्पत्ति हटा दी गई है) सजातीय विविधता नहीं है।
  • सजातीय अंतरिक्ष में कोडिमेंशन वन की उप-विविधता वास्तव में हाइपरसर्फएक्स हैं, जो कि बहुपद द्वारा परिभाषित विविधता हैं।
  • अलघुकरणीय एफाइन विविधता का सामान्यीकरण एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी प्रकार , प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।)

तर्कसंगत बिंदु

वक्र के वास्तविक बिंदुओं का आरेखण y2 = x3 − x2 − 16x.

सजातीय विविधता के लिए बीजगणितीय रूप से संवृत क्षेत्र K पर, और k का उपक्षेत्र K, V का k-तार्किक बिंदु है अर्थात V का बिंदु जिसके निर्देशांक k के तत्व हैं। सजातीय विविधता V के k- तर्कसंगत बिंदुओं का संग्रह अधिकतर निरूपित किया जाता है अधिकतर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ C हैं, वे बिंदु जो R-तर्कसंगत हैं (जहां R वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और Q-तर्कसंगतबिंदु(Q परिमेय संख्याएँ) अधिकतर परिमेय बिंदु कहलाते हैं।

उदाहरण के लिए, (1, 0) विविधता का Q-तर्कसंगत और R- तर्कसंगत बिंदु क्योंकि यह V में है और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु (2/2, 2/2) V का वास्तविक बिंदु है जो कि Q-तर्कसंगत नहीं है ,और V का बिन्दु है जो कि R-तर्कसंगत नहीं है। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका R-तर्कसंगत बिंदुओं का समुच्चय इकाई वृत्त है। इसमें अपरिमित रूप से अनेक Q-तर्कसंगत बिंदु हैं

जहाँ t परिमेय संख्या है।

वृत्त डिग्री दो के बीजगणितीय वक्र का उदाहरण है जिसमें कोई Q-तर्कसंगत बिंदु नहीं है। यह इस तथ्य से निकाला जा सकता है, मॉड्यूलर 4, दो वर्गों का योग 3 नहीं हो सकता है।

यह सिद्ध किया जा सकता है कि Q तर्कसंगत बिंदु के साथ डिग्री दो का बीजगणितीय वक्र के अपरिमित रूप से कई अन्य Q तर्कसंगतबिंदुहोते हैं; ऐसा प्रत्येक बिंदु वक्र का दूसरा प्रतिच्छेदन बिंदु है और परिमेय बिंदु से गुजरने वाली परिमेय ढलान वाली रेखा है।

जटिल विविधता का कोई R-तर्कसंगत बिंदु नहीं हैं, किंतु कई जटिल बिंदु हैं।

यदि V जटिल संख्या C पर परिभाषित C2 में सजातीय विविधता हैं V के R-तर्कसंगत बिंदु को कागज के समूह पर या रेखांकन सॉफ्टवेयर द्वारा खींचा जा सकता है। दाईं ओर का आंकड़ा R-तर्कसंगत बिंदु दर्शाता है

एकवचन बिंदु और स्पर्शरेखा समिष्ट

मान लीजिए V बहुपदों द्वारा परिभाषित सजातीय विविधता हो और का बिंदु हो .

a पर V का जैकबियन आव्यूह JV(a) आंशिक डेरिवेटिव का आव्यूह है

बिंदु a नियमित है यदि JV(a) की रैंक V बीजगणितीय विविधता के आयाम के समान है,औरअन्यथा एकवचन है ।

यदि a नियमित है, V पर a पर स्पर्शरेखा समिष्ट एफिन उपस्थान है रैखिक समीकरणों द्वारा परिभाषित[2]

यदि बिंदु एकवचन है, तो इन समीकरणों द्वारा परिभाषित सजातीय उप-समिष्ट को कुछ लेखकों द्वारा स्पर्शरेखा समिष्ट भी कहा जाता है, जबकि अन्य लेखकों का कहना है कि एकवचन बिंदु पर कोई स्पर्शरेखा समिष्ट नहीं है।[3]

अधिक आंतरिक परिभाषा, जो निर्देशांक का उपयोग नहीं करती है, ज़रिस्की टेंगेंट स्पेस द्वारा दी गई है।

जारिस्की सांस्थिति

kn के संबध बीजगणितीय समुच्चय kn पर एक सांस्थिति के संवृत समुच्चय बनाते हैं, जिसे 'ज़ारिस्की सांस्थिति' कहा जाता है। यह इस तथ्य से अनुसरण करता है कि और (वास्तव में, सजातीय बीजगणितीय समुच्चय का गणनीय प्रतिच्छेदन सजातीय बीजगणितीय समुच्चय है)।

ज़ारिस्की सांस्थिति को मूलभूत खुले समुच्चय के माध्यम से भी वर्णित किया जा सकता है, जहाँ ज़ारिस्की-खुले समुच्चयफॉर्म के समुच्चय के गणनीय संघ हैं के लिए ये मूलभूत खुले समुच्चय संवृत समुच्चय kn में पूरक हैं बहुपद का शून्य लोकी। यदि k नोथेरियन वलय है (उदाहरण के लिए, यदि k क्षेत्र या प्रमुख आदर्श डोमेन है), k का प्रत्येक आदर्श अंतिम रूप से उत्पन्न होता है, इसलिए प्रत्येक विवृत समुच्चयमूलभूत खुले समुच्चय का परिमित संघ है।

यदि V, kn संबधित उप-संस्कृति है, V पर ज़ारिस्की सांस्थिति एकमात्र kn पर ज़ारिस्की सांस्थिति से विरासत में मिली अंतरिक्ष सांस्थिति है।.

ज्यामिति-बीजगणित पत्राचार

सजातीय विविधता की ज्यामितीय संरचना इसके समन्वय वलय की बीजगणितीय संरचना से गहरे तरीके से जुड़ी हुई है। I और J को k [V] के आदर्श होने दें, जो सजातीय विविधता V का समन्वय वलय है। I (V) को सभी बहुपदों का समुच्चय होने दें जो वी पर लुप्त हो जाता है, और जाने दो आदर्श I के मूलांक को दर्शाता है, बहुपद f का समुच्चय जिसके लिए f की कुछ शक्ति I में है। आधार क्षेत्र को बीजगणितीय रूप से संवृत करने का कारण यह है कि सजातीय विविधताओं स्वचालित रूप से हिल्बर्ट के नलस्टेलेंसैट्ज को संतुष्ट करती हैं: आदर्श के लिए जे में जहाँ k बीजगणितीय रूप से संवृत क्षेत्र है,

k[V] के मौलिक आदर्श (आदर्श जो अपने स्वयं के मौलिकहैं) V के बीजगणितीय उपसमुच्चय के अनुरूप हैं। वास्तव में, मौलिक आदर्शों I और J के लिए, यदि इसलिए V(I)=V(J) यदि I=J इसके अतिरिक्त, फलन बीजगणितीय समुच्चय W को ग्रहण करता है और I(W) लौटाता है, सभी फलनों का समुच्चयजो W के सभी बिंदुओं पर भी गायब हो जाता है, फलन का व्युत्क्रम होता है, जो बीजगणितीय समुच्चयको मौलिक आदर्श के लिए निर्दिष्ट करता है, नलस्टेलेंसैट द्वारा। इसलिए सजातीय बीजगणितीय समुच्चय और मौलिक आदर्शों के मध्य पत्राचार आपत्ति है। सजातीय बीजगणितीय समुच्चयका समन्वय वलय कम हो जाती है (शून्य से मुक्त) ,वलय R में आदर्श I के रूप में मौलिकहै यदि भागफल वलय R/I कम हो जाता है।

समन्वयित वलय के प्रधान आदर्श सजातीय उप- विविधताओं के अनुरूप होते हैं। सजातीय बीजीय समुच्चय V(I) को दो अन्य बीजगणितीय समुच्चयों के मिलन के रूप में लिखा जा सकता है यदि I=JK उचित आदर्शों के लिए J और K I ). यह स्तिथि है यदि मैं प्रधान नहीं हूं। सजातीय उपप्रकार ठीक वे हैं जिनकी समन्वय वलयअभिन्न डोमेन है। ऐसा इसलिए है क्योंकि आदर्श प्रधान है यदि आदर्श द्वारावलयका भागफल अभिन्न डोमेन है।

k[V] के अधिकतम आदर्श V के बिंदुओं के अनुरूप हैं। यदि I और J मौलिक आदर्श हैं, तो यदि जैसा कि अधिकतम आदर्श मौलिकहैं, अधिकतम आदर्श न्यूनतम बीजगणितीय समुच्चय (जिनमें कोई उचित बीजगणितीय उपसमुच्चय नहीं होते है) के अनुरूप हैं, जो V में बिंदु हैं। यदि V समन्वय वलय के साथ परिशोधित विविधता है यह पत्राचार मानचित्र के माध्यम से स्पष्ट हो जाता है कहाँ बहुपद के भागफल बीजगणित R में छवि को दर्शाता है बीजगणितीय उपसमुच्चय बिंदु है यदि उपसमुच्चय का समन्वय वलय क्षेत्र है, क्योंकि अधिकतम आदर्श द्वारा वलय का भागफल क्षेत्र है।

निम्न तालिका इस पत्राचार को सारांशित करती है, सजातीय विविधता के बीजगणितीय उपसमुच्चय और संबंधित समन्वय वलय के आदर्शों के लिए:

बीजगणितीय समुच्चयका प्रकार आदर्श प्रकार समन्वय की वलय का प्रकार
सजातीय बीजगणितीय उपसमुच्चय मौलिक आदर्श कम वलय
सजातीय उप-विविधताओं प्रधान आदर्श अभिन्न डोमेन
बिंदु अधिकतम आदर्श क्षेत्र

सजातीय विविधताओं के उत्पाद

सजातीय विविधताओं के उत्पाद को समरूपता An × Am = An+m का उपयोग करके परिभाषित किया जा सकता है, तब उत्पाद को इस आधुनिक सजातीय समिष्ट में एम्बेड किया जा सकता है। मान लीजिए An और Am के निर्देशांक वलय k[x1,..., xn] और k[y1,..., ym] हैं, जिससे कि उनके गुणनफल An+m में निर्देशांक वलय है k[x1,..., xny1,..., ym]. मान लीजिए V = Vf1,..., fN) Anका बीजगणितीय उपसमुच्चय हो और W = Vg1,..., gM)Am का बीजगणितीय उपसमुच्चय है। तबप्रत्येक fi k[x1,..., xn] में बहुपद है,और प्रत्येक gj k[y1,..., ym] में है। V और W के गुणनफल को An+m में बीजीय समुच्चय V × W = Vf1,..., fNg1,..., gM) के रूप में परिभाषित किया गया है। उत्पाद अलघुकरणीय है यदि प्रत्येक V, W अलघुकरणीय है।[4]

An × Am पर जरिस्की सांस्थिति दो स्थानों पर ज़ारिस्की सांस्थिति का उत्पाद सांस्थिति नहीं है। यथार्थतः, उत्पाद सांस्थिति मूल खुले समुच्चय के उत्पादों द्वारा उत्पन्न होती है Uf = An − Vf ) और Tg = Am − Vg )। इसलिए, बहुपद जो k[x1,..., xny1,..., ym] में हैं लेकिन k[x1,..., xn] में बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है जिसमें बहुपद के साथ k[y1,..., ym] उन बीजगणितीय समुच्चय को परिभाषित करेगा जो ज़रिस्की सांस्थिति में An × Am हैं लेकिन उत्पाद सांस्थिति में नहीं हैं।

सजातीय विविधताओं की रूपात्मकता

सजातीय विविधताओं का रूपवाद, या नियमित मानचित्र, सजातीय विविधताओं के मध्य फलन है जो प्रत्येक समन्वय में बहुपद है: अधिक त्रुटिहीन रूप से, सजातीय विविधताओं के लिए Vkn और Wkm, V को W तक आकारिकी नक्शा φ : V हैं φ(a1, ..., an) = (f1(a1, ..., an), ..., fm(a1, ..., an)) के रूप का W, कहाँ fik[X1, ..., Xn] प्रत्येक के लिए i = 1, ..., m.। ये सजातीय विविधताओं की श्रेणी (गणित) में आकारिकी हैं।

बीजगणितीय रूप से संवृत क्षेत्र पर सजातीय विविधताओं के आकारिकी के मध्य से पत्राचार होता है और विपरीत दिशा में जाने वाले k पर सजातीय विविधताओं के समन्वय के छल्ले के समरूपता है। इस कारण से, इस तथ्य के साथ k और उनके समन्वय के छल्ले के मध्य सजातीय विविधताओं के मध्य से पत्राचार होता है, k से अधिक सजातीय विविधताओं की श्रेणी k से अधिक सजातीय विविधताओं के समन्वय के छल्ले की श्रेणी के दोहरी (श्रेणी सिद्धांत) होती है। k से अधिक सजातीय विविधताओं के समन्वय के छल्ले की श्रेणी उचित जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है।

त्रुटिहीन, प्रत्येक आकृतिवाद के लिए φ : VW सजातीय विविधताओं में, समाकारिता होती है φ# : k[W] → k[V] समन्वय वलयों (विपरीत दिशा में में जाने) के मध्य, और इस प्रकार के प्रत्येक समरूपता के लिए, निर्देशांक वलयों से जुड़ी विविधताओं का आकार है। इसे स्पष्ट रूप से दिखाया जा सकता है: मान लीजिए Vkn और Wkm समन्वय के छल्ले k[V] = k[X1, ..., Xn] / I और k[W] = k[Y1, ..., Ym] / J क्रमशः। मान लीजिए φ : VW आकारिकी है। यथार्थतः, बहुपद के छल्ले के मध्य समरूपता θ : k[Y1, ..., Ym] / Jk[X1, ..., Xn] / I कारक अद्वितीय से वलय k[X1, ..., Xn] के माध्यम से, और समरूपता ψ : k[Y1, ..., Ym] / Jk[X1, ..., Xn] विशिष्ट रूप से Y1, ..., Ym की छवियों द्वारा निर्धारित किया जाता है। इसलिए, प्रत्येक समरूपता φ# : k[W] → k[V] विशिष्ट रूप से प्रत्येक के लिए छवि पसंद से मिलता है z है Yi. तब V से W तक किसी भी आकारिकी φ = (f1, ..., fm) देखते हुए, समाकारिता का निर्माण किया जा सकता है φ# : k[W] → k[V] जो Yi भेजता है कहाँ k[V] में का तुल्यता वर्ग है।

इसी प्रकार ,समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त अनुच्छेद को प्रतिबिंबित करते हुए, समरूपता φ# : k[W] → k[V] Yi को बहुपद में भेजता है में k[V]. यह φ : VW φ(a1, ... , an) = (f1(a1, ..., an), ..., fm(a1, ..., an)) द्वारा परिभाषित विविधताओं के आकारिकी से मिलता है।

संरचना शीफ ​​

नीचे वर्णित संरचना शीफ ​​से सुसज्जित, सजातीय विविधता स्थानीय रूप से चक्राकार समिष्ट है।

समन्वय की वलय A के साथ सजातीय विविधता X दी गई है, जो k-बीजगणित का शीफ ​​है देकर परिभाषित किया गया है U पर नियमित फलनों की वलय बनें।

माना D(f) = { x | A में प्रत्येक f के लिए f(x) ≠ 0}। वे X के सांस्थिति के लिए आधार बनाते हैं और इसलिए खुले समुच्चय D(f ) पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ मॉड्यूल से जुड़ा शीफ)

मुख्य तथ्य, जो आवश्यक रूप से हिल्बर्ट शून्य प्रमेय पर निर्भर करता है, निम्नलिखित है:

Claim —  for any f in A.

सबूत:[5] समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, g को बाएं हाथ की ओर होने दें और है, जो आदर्श है। यदि x D(f) में है, चूंकि g, x के पास नियमित है, x के कुछ खुले संबंध पड़ोस D(h) हैं जैसे कि ; अर्थात्, hm g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि f,J के रेडिकल में है; अर्थात, .

प्रमाणित है, सबसे पूर्व, यह दर्शाता है कि X तब से स्थानीय रूप से वलय किया हुआ समिष्ट है।

कहाँ . दूसरे, प्रमाणित का तात्पर्य है पुलिंदा है; वास्तव में, यह कहता है कि यदि कोई समारोह D(f ) पर नियमित (बिंदुवार) है, तो यह D(f ) की समन्वय वलय में होना चाहिए; तात्यर्य "नियमित-नेस को साथ पैच किया जा सकता है।

इस प्रकार, स्थानीय रूप से चक्राकार समिष्ट है।

सजातीयता पर सेरे का प्रमेय

आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का कोहोमोलॉजिकल लक्षण वर्णन है; यह कहता है कि बीजगणितीय विविधता सजातीय है यदि किसी के लिए भी और X पर कोई भी अर्ध-सुसंगत शीफ F (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी स्तिथि के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह होते हैं, गैर-अस्तित्व में सजातीय विविधता का कोहोलॉजिकल अध्ययन करता है।

सजातीय बीजगणितीय समूह

बीजगणितीय रूप से संवृत क्षेत्र पर k पर सजातीय विविधता G को सजातीय बीजगणितीय समूह कहा जाता है यदि इसमें:

  • गुणन μG × G → G, जो नियमित रूपवाद है जो सहयोगीता स्वयंसिद्ध का अनुसरण करता है-अर्थात्, जैसे कि μ(μ(fg), h) = μ(fμ(gh)) के लिए G में सभी बिंदु f, g और h है ;
  • पहचान तत्व e ऐसा है कि G के लिए μ(eg) = μ(ge) = g है;
  • व्युत्क्रम रूपवाद, नियमित आक्षेप ιG → G ऐसा है कि μ(ι(g), g) = μ(gι(g)) = e G में प्रत्येक g के लिए है;

इस विविधता पर समूह (संरचना) को परिभाषित करते हैं। उपरोक्त रूपवाद प्रायः साधारण समूह संकेतन का उपयोग करते हुए लिखा जाता है: μ(fg) को f + g, fg, या fg के रूप में लिखा जा सकता है; व्युत्क्रम ι(g) को g या g−1 के रूप में लिखा जा सकता है गुणात्मक संकेतन का उपयोग करके, साहचर्य, पहचान और व्युत्क्रम नियम से लिखा जा सकता है: f(gh) = (fg)h, ge = eg = g और gg−1 = g−1g = e.

सजातीय बीजगणितीय समूह का सबसे प्रमुख उदाहरण GLn(k) है, डिग्री n का सामान्य रैखिक समूह है। यह सदिश समिष्ट kn के रैखिक परिवर्तनों का समूह है; यदि kn का आधार (रैखिक बीजगणित) नियत है, तो यह k में प्रविष्टियों के साथ n×n व्युत्क्रमणीय आव्यूहों के समूह के समतुल्य होते है। यह दिखाया जा सकता है कि कोई भी बीजगणितीय समूह GLn(k) के उपसमूह के लिए आइसोमोर्फिक होते है। इस कारण से, सजातीय बीजगणितीय समूहों को प्रायः रैखिक बीजगणितीय समूह कहा जाता है।

सजातीय बीजगणितीय समूह परिमित सरल समूहों के वर्गीकरण में महत्वपूर्ण भूमिका निभाते हैं, क्योंकि असत्य प्रकार के समूह सजातीय बीजगणितीय समूह के Fq तर्कसंगत बिंदुओं के सभी समुच्चय हैं, जहां Fq परिमित क्षेत्र है।

सामान्यीकरण

  • यदि लेखक को बीजगणितीय रूप से संवृत होने के लिए सजातीय विविधता के आधार क्षेत्र की आवश्यकता होती है (जैसा कि यह लेख करता है), तो गैर-बीजगणितीय रूप से संवृत क्षेत्रों पर अलघुकरणीय सजातीय बीजगणितीय समुच्चय सजातीय विविधता का सामान्यीकरण होता है। इस सामान्यीकरण में विशेष रूप से वास्तविक संख्याओं पर सजातीय विविधताओं को सम्मिलित किया गया है।
  • बीजगणितीय विविधताओं के लिए स्थानीय विविधता चार्ट की भूमिका निभाती है; कहने का तात्पर्य यह है कि सामान्य बीजगणितीय विविधताओं जैसे कि प्रोजेक्टिव विविधता ग्लूइंग एफाइन विविधताओं द्वारा प्राप्त किया जाता है। रेखीय संरचनाएं जो विविधताओं से जुड़ी होती हैं, वे भी (तुच्छ रूप से) सजातीय विविधता होती हैं; उदाहरण के लिए, स्पर्श रेखा रिक्त समिष्ट, बीजगणितीय वेक्टर बंडलों के तंतु होते है।
  • सजातीय विविधता योजना की विशेष स्थिति है, कि स्थानीय रूप से वलय वाली समिष्ट जो कम्यूटेटिव वलय (श्रेणियों की समानता तक) के स्पेक्ट्रम के लिए आइसोमोर्फिक होते है। प्रत्येक सजातीय विविधता से जुड़ी योजना होती है: यदि V(I) kn में समन्वयित वलय R = k[x1, ..., xn] / I, के साथ सजातीय विविधता है, तो V(I) संबंधित योजना है I युक्ति (R'), R. के प्रमुख आदर्शों का समुच्चय है। सजातीय योजना में शास्त्रीय बिंदु होते हैं जो विविधता के बिंदुओं के अनुरूप होते हैं ( इसलिए विविधता के समन्वय वलय के अधिकतम आदर्श), और प्रत्येक संवृत उप-विविधता के लिए बिंदु हैं (ये बिंदु समन्वय वलय के अभाज्य, गैर-अधिकतम आदर्शों के अनुरूप हैं)। यह प्रत्येक संवृत उप-विविधता को विवृत बिंदु निर्दिष्ट करके, जो उप-विविधता में घना है, सम्बन्धित विविधता के "जेनेरिक बिंदु" की उत्तम प्रकार से परिभाषित धारणा बनाता है। सामान्यतः, सजातीय योजना विविधता में बीजगणितीय रूप से संवृत क्षेत्र k पर कम, अलघुकरणीय और परिमित प्रकार है।

टिप्पणियाँ

  1. Reid (1988)
  2. Milne (2017), Ch. 5
  3. Reid (1988), p. 94.
  4. This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see integral domain#Properties.
  5. Mumford 1999, Ch. I, § 4. Proposition 1.


यह भी देखें

संदर्भ

The original article was written as a partial human translation of the corresponding French article.

  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Fulton, William (1969). Algebraic Curves (PDF). Addison-Wesley. ISBN 0-201-510103.
  • Milne, J.S. (2017). "Algebraic Geometry" (PDF). www.jmilne.org. Retrieved 16 July 2021.
  • Milne, Lectures on Étale cohomology
  • Mumford, David (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians. Lecture Notes in Mathematics. Vol. 1358 (2nd ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 354063293X.
  • Reid, Miles (1988). Undergraduate Algebraic Geometry. Cambridge University Press. ISBN 0-521-35662-8.