विवर्तन-सीमित प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Optical system with resolution performance at the instrument's theoretical limit}}
{{short description|Optical system with resolution performance at the instrument's theoretical limit}}
[[File:Ernst Abbe memorial.JPG|thumb|right|[[अर्नेस्ट कार्ल अब्बे]] को स्मारक, जिन्होंने सूक्ष्मदर्शी की विवर्तन सीमा का अनुमान लगाया था <math>d=\frac{\lambda}{2n\sin{\theta}}</math>, जहां डी रिजोल्वेबल फीचर साइज है, λ प्रकाश की तरंग दैर्ध्य है, एन छवि में माध्यम के अपवर्तन का सूचकांक है, एवं θ (शिलालेख में α के रूप में दर्शाया गया है)प्रकाशिक उद्देश्य लेंस द्वारा घटाया गया आधा कोण है (संख्यात्मक एपर्चर का प्रतिनिधित्व)।]]
[[File:Ernst Abbe memorial.JPG|thumb|right|[[अर्नेस्ट कार्ल अब्बे]] को स्मारक, जिन्होंने सूक्ष्मदर्शी की विवर्तन सीमा का अनुमान लगाया था, <math>d=\frac{\lambda}{2n\sin{\theta}}</math>, जहां d समाधान योग्य सुविधा का आकार है, λ प्रकाश की तरंग दैर्ध्य है, n छवि में माध्यम के अपवर्तन का सूचकांक है, एवं θ (शिलालेख में α के रूप में दर्शाया गया है) प्रकाशिक उद्देश्य लेंस द्वारा घटाया गया अर्द्ध कोण है (संख्यात्मक मुख का प्रतिनिधित्व)।]]
[[File:Diffraction limit diameter vs angular resolution.svg|thumb|विभिन्न खगोलीय उपकरणों की तुलना में विभिन्न प्रकाश तरंग दैर्ध्य के लिए विवर्तन सीमा पर एपर्चर व्यास बनाम कोणीय संकल्प का लॉग-लॉग प्लॉट। उदाहरण के लिए, नीला तारा दिखाता है कि हबल स्पेस टेलीस्कॉप 0.1 आर्कसेक पर दृश्य स्पेक्ट्रम में लगभग विवर्तन-सीमित है, जबकि लाल वृत्त दर्शाता है कि मानव आँख में सिद्धांत रूप में 20 आर्कसेक की संकल्प शक्ति होनी चाहिए, चूंकि सामान्य रूप से केवल 60 आर्कसेक .]]प्रकाशिक [[ऑप्टिकल उपकरण|उपकरण]] का संकल्प{{spaced ndash}} [[माइक्रोस्कोप|सूक्ष्मदर्शी]], [[ दूरबीन ]], या [[कैमरा]]{{spaced ndash}}प्रकाशिक [[ऑप्टिकल विपथन|विपथन]] द्वारा सीमित किया जा सकता है, जैसे कि लेंस या मिसलिग्न्मेंट में त्रुटिया चूंकि, [[विवर्तन]] की भौतिकी के कारण किसी भी प्रकाशीय प्रणाली के विभेदन की प्रमुख सीमा होती है। उपकरण की सैद्धांतिक सीमा पर  प्रदर्शन वाली प्रकाशिक प्रणाली को विवर्तन-सीमित कहा जाता है।<ref>{{cite book | first = Max | last = Born |author2=Emil Wolf | title = [[Principles of Optics]] | publisher = [[Cambridge University Press]] | year = 1997 | isbn = 0-521-63921-2 }}</ref>
[[File:Diffraction limit diameter vs angular resolution.svg|thumb|विभिन्न खगोलीय उपकरणों की तुलना में विभिन्न प्रकाश तरंग दैर्ध्य के लिए विवर्तन सीमा पर मुख व्यास के प्रति कोणीय संकल्प का लॉग-लॉग प्लॉट, उदाहरण के लिए, नीला तारा दिखाता है, कि हबल अंतरिक्ष सूक्ष्मदर्शी 0.1 आर्कसेक पर दृश्य वर्णक्रम में लगभग विवर्तन-सीमित है, जबकि लाल वृत्त दर्शाता है कि मानव आँख में सिद्धांत रूप में 20 आर्कसेक की संकल्प शक्ति होनी चाहिए, चूंकि सामान्य रूप से केवल 60 आर्कसेक होता हैI]]प्रकाशिक [[ऑप्टिकल उपकरण|उपकरण]] का संकल्प{{spaced ndash}} [[माइक्रोस्कोप|सूक्ष्मदर्शी]], [[ दूरबीन |दूरबीन]] या [[कैमरा]]{{spaced ndash}}प्रकाशिक [[ऑप्टिकल विपथन|विपथन]] द्वारा सीमित किया जा सकता है, जैसे कि लेंस या मिसलिग्न्मेंट में त्रुटिया चूंकि, [[विवर्तन]] की भौतिकी के प्रकाशीय प्रणाली के विभेदन की प्रमुख सीमा होती है। उपकरण की सैद्धांतिक सीमा पर  प्रदर्शन वाली प्रकाशिक प्रणाली को विवर्तन-सीमित कहा जाता है।<ref>{{cite book | first = Max | last = Born |author2=Emil Wolf | title = [[Principles of Optics]] | publisher = [[Cambridge University Press]] | year = 1997 | isbn = 0-521-63921-2 }}</ref>
किसी उपकरण का विवर्तन-सीमित कोणीय विभेदन, रेडियन में, देखे जा रहे प्रकाश की [[तरंग दैर्ध्य]] के समानुपाती होता है, एवं इसके उद्देश्य (प्रकाशिकी) के प्रवेश द्वार की पुतली व्यास के व्युत्क्रमानुपाती होता है। वृत्ताकार छिद्रों वाली दूरबीनों के लिए, छवि में सबसे अल्प विशेषता का आकार जो विवर्तन सीमित है, [[हवादार डिस्क]] का आकार है। जैसे-जैसे टेलीस्कोपिक [[लेज़र]] (प्रकाशिकी) के एपर्चर का आकार घटता जाता है, वैसे-वैसे विवर्तन बढ़ता जाता है। एफ-स्टॉप, एफ/22 जैसे अल्प छिद्रों पर, अधिकांश आधुनिक लेंस केवल विवर्तन द्वारा सीमित होते हैं, न कि विपथन या निर्माण में अन्य खामियों से होता है।
किसी उपकरण का विवर्तन-सीमित कोणीय विभेदन, रेडियन में देखे जा रहे प्रकाश की [[तरंग दैर्ध्य]] के समानुपाती होता है, एवं इसके उद्देश्य (प्रकाशिकी) के प्रवेश द्वार की पुतली व्यास के व्युत्क्रमानुपाती होता है। वृत्ताकार छिद्रों वाली दूरबीनों के लिए, छवि में सबसे अल्प विशेषता का आकार जो विवर्तन सीमित है, [[हवादार डिस्क|वायुदार बिंब]] का आकार होता है। जैसे-जैसे दूरदर्शकिक [[लेज़र]] (प्रकाशिकी) के मुख का आकार घटता जाता है, वैसे-वैसे विवर्तन बढ़ता जाता है। f-स्टॉप, f/22 जैसे अल्प छिद्रों पर, अधिकांश आधुनिक लेंस केवल विवर्तन द्वारा सीमित होते हैं, न कि विपथन या निर्माण में अन्य अभाव से होता है।


सूक्ष्म उपकरणों के लिए, विवर्तन-सीमित [[स्थानिक संकल्प]] प्रकाश तरंग दैर्ध्य के लिए आनुपातिक होता है, एवं उद्देश्य या वस्तु रोशनी स्रोत के संख्यात्मक एपर्चर के लिए, जो भी छोटा होता है।
सूक्ष्म उपकरणों के लिए, विवर्तन-सीमित [[स्थानिक संकल्प]] प्रकाश तरंग दैर्ध्य के लिए आनुपातिक होता है, एवं उद्देश्य या वस्तु रोशनी स्रोत के संख्यात्मक मुख के लिए होता है।


[[खगोल]] विज्ञान में, एक विवर्तन-सीमित अवलोकन वह है जो उपयोग किए गए उपकरण के आकार में सैद्धांतिक रूप से आदर्श उद्देश्य के संकल्प को प्राप्त करता है। चूंकि, पृथ्वी से अधिकांश अवलोकन पृथ्वी के वातावरण के प्रभाव के कारण खगोलीय दृश्य-सीमित हैं। पृथ्वी परप्रकाशिक टेलीस्कोप विवर्तन सीमा की तुलना में बहुत कम प्रस्ताव पर काम करते हैं क्योंकि विक्षोभ वातावरण के कई किलोमीटर के माध्यम से प्रकाश के पारित होने से शुरू हुई विकृति। उन्नत वेधशालाओं ने [[अनुकूली प्रकाशिकी]] प्रौद्योगिकी का उपयोग करना शुरू कर दिया है, जिसके परिणामस्वरूप धुंधले लक्ष्यों के लिए अधिक छवि प्रस्ताव प्राप्त हुआ है, लेकिन अनुकूली प्रकाशिकी का उपयोग करके विवर्तन सीमा तक पहुंचना अभी भी मुश्किल है।
[[खगोल]] विज्ञान में, विवर्तन-सीमित प्रेक्षण वह है, जो उपयोग किए गए उपकरण के आकार में सैद्धांतिक रूप से आदर्श उद्देश्य के संकल्प को प्राप्त करता है। चूंकि, पृथ्वी से अधिकांश प्रेक्षणपृथ्वी के वातावरण के प्रभाव के कारण खगोलीय दृश्य-सीमित हैं। पृथ्वी पर प्रकाशिक दूरदर्शक विवर्तन सीमा की तुलना में अधिक अर्घ्य प्रस्ताव पर कार्य करते हैं क्योंकि विक्षोभ वातावरण के कई किलोमीटर के माध्यम से प्रकाश के पारित होने से प्रारम्भ हुई विकृति उन्नत वेधशालाओं ने [[अनुकूली प्रकाशिकी]] प्रौद्योगिकी का उपयोग करना प्रारम्भ कर दिया है, जिसके परिणाम स्वरूप धुंधले लक्ष्यों के लिए अधिक छवि प्रस्ताव प्राप्त हुआ है, किन्तु अनुकूली प्रकाशिकी का उपयोग करके विवर्तन सीमा तक पहुंचना अभी भी कठिन होता है।


[[ रेडियो दूरबीन ]] अक्सर विवर्तन-सीमित होते हैं, क्योंकि उनके द्वारा उपयोग की जाने वाली तरंग दैर्ध्य (मिलीमीटर से मीटर तक) इतनी लंबी होती है कि वायुमंडलीय विकृति नगण्य होती है। अंतरिक्ष-आधारित टेलीस्कोप (जैसे [[ हबल अंतरिक्ष सूक्ष्मदर्शी ]], या कई गैर-ऑप्टिकल टेलीस्कोप) हमेशा अपनी विवर्तन सीमा पर काम करते हैं, यदि उनका डिज़ाइनप्रकाशिक विपथन से मुक्त हो।
[[ रेडियो दूरबीन ]] प्रायः विवर्तन-सीमित होते हैं, क्योंकि उनके द्वारा उपयोग की जाने वाली तरंग दैर्ध्य (मिलीमीटर से मीटर तक) इतनी लंबी होती है, कि वायुमंडलीय विकृति नगण्य होती है। अंतरिक्ष-आधारित दूरदर्शक (जैसे [[ हबल अंतरिक्ष सूक्ष्मदर्शी ]], या कई गैर-प्रकाशिक दूरदर्शक) सदैव अपनी विवर्तन सीमा पर कार्य करते हैं, यदि उनकी आकृति प्रकाशिक विपथन से मुक्त होती है।


निकट-आदर्श बीम प्रसार गुणों वाले लेजर से बीम को विवर्तन-सीमित होने के रूप में वर्णित किया जा सकता है। विवर्तन-सीमित प्रकाशिकी के माध्यम से पारित एक विवर्तन-सीमित लेजर बीम, विवर्तन-सीमित रहेगा, एवं लेजर के तरंग दैर्ध्य पर प्रकाशिकी के संकल्प के बराबर अनिवार्य रूप से एक स्थानिक या कोणीय सीमा होगी।
निकट-आदर्श बीम प्रसार गुणों वाले लेजर से बीम को विवर्तन-सीमित होने के रूप में वर्णित किया जा सकता है। विवर्तन-सीमित प्रकाशिकी के माध्यम से पारित विवर्तन-सीमित लेजर बीम, विवर्तन-सीमित रहेगा, एवं लेजर के तरंग दैर्ध्य पर प्रकाशिकी के संकल्प के समान अनिवार्य रूप से स्थानिक या कोणीय सीमा होती हैं।


== विवर्तन सीमा की गणना ==
== विवर्तन सीमा की गणना ==


=== सूक्ष्मदर्शी के लिए अब्बे विवर्तन सीमा ===
=== सूक्ष्मदर्शी के लिए अब्बे विवर्तन सीमा ===
अब्बे विवर्तन सीमा के कारण सूक्ष्मदर्शी के साथ उप-तरंग दैर्ध्य संरचनाओं का अवलोकन मुश्किल है। [[अर्नेस्ट अब्बे]] ने 1873 में उस प्रकाश को तरंग दैर्ध्य के साथ पाया <math>\lambda</math>, अपवर्तक सूचकांक वाले माध्यम में यात्रा करना <math>n</math> एवं आधे कोण वाले स्थान पर अभिसरण करना <math>\theta</math> की न्यूनतम हल करने योग्य दूरी होगी
अब्बे विवर्तन सीमा के कारण सूक्ष्मदर्शी के साथ उप-तरंग दैर्ध्य संरचनाओं का प्रेक्षण कठिन है। [[अर्नेस्ट अब्बे]] ने 1873 में उस प्रकाश को तरंग दैर्ध्य के साथ <math>\lambda</math> पाया, अपवर्तक <math>n</math> सूचकांक वाले माध्यम में यात्रा करना एवं अर्द्ध कोण वाले स्थान पर अभिसरण <math>\theta</math> न्यूनतम हल करने योग्य दूरी होगी।
:<math>d=\frac{ \lambda}{2 n \sin \theta} = \frac{\lambda}{2\mathrm{NA}}</math><ref>{{cite book|last=Lipson, Lipson and Tannhauser|title=ऑप्टिकल भौतिकी|year=1998|publisher=Cambridge|location=United Kingdom|isbn=978-0-521-43047-0|pages=340}}</ref>
:<math>d=\frac{ \lambda}{2 n \sin \theta} = \frac{\lambda}{2\mathrm{NA}}</math><ref>{{cite book|last=Lipson, Lipson and Tannhauser|title=ऑप्टिकल भौतिकी|year=1998|publisher=Cambridge|location=United Kingdom|isbn=978-0-521-43047-0|pages=340}}</ref>
भाजक का भाग <math> n\sin \theta </math> संख्यात्मक छिद्र (NA) कहा जाता है एवं आधुनिक प्रकाशिकी में लगभग 1.4-1.6 तक पहुंच सकता है, इसलिए अब्बे की सीमा है <math>d=\frac{\lambda}{2.8}</math>. 500 एनएम के आसपास हरे रंग की रोशनी एवं 1 के एनए को ध्यान में रखते हुए, अब्बे की सीमा मोटे तौर पर है <math>d=\frac{\lambda}{2}=250 \text{ nm}</math> (0.25 माइक्रोन), जो अधिकांश जैविक कोशिकाओं (1 माइक्रोन से 100 माइक्रोन) की तुलना में छोटा है, लेकिन वायरस (100 एनएम), प्रोटीन (10 एनएम) एवं कम जटिल अणुओं (1 एनएम) की तुलना में बड़ा है। प्रस्ताव बढ़ाने के लिए, यूवी एवं एक्स-रे सूक्ष्मदर्शी जैसे अल्प तरंग दैर्ध्य का उपयोग किया जा सकता है। ये तकनीकें बेहतर प्रस्ताव प्रदान करती हैं, लेकिन महंगी हैं, जैविक नमूनों में विपरीतता की कमी से ग्रस्त हैं एवं नमूने को नुकसान पहुंचा सकती हैं।
भाजक का भाग <math> n\sin \theta </math> संख्यात्मक छिद्र (NA) कहा जाता है एवं आधुनिक प्रकाशिकी में लगभग 1.4-1.6 तक पहुंच सकता है, इसलिए अब्बे की सीमा <math>d=\frac{\lambda}{2.8}</math> है। 500 NA के निकट हरे रंग की रोशनी एवं 1 के NA को ध्यान में रखते हुए, अब्बे की सीमा स्थूल रूप से  <math>d=\frac{\lambda}{2}=250 \text{ nm}</math> है । (0.25 माइक्रोन), जो अधिकांश जैविक कोशिकाओं (1 माइक्रोन से 100 माइक्रोन) की तुलना में अल्प है, किन्तु वायरस (100 NM), प्रोटीन (10NM) एवं अर्घ्य जटिल अणुओं (1 NM) की तुलना में बड़ा है। प्रस्ताव बढ़ाने के लिए, UV एवं X-ray सूक्ष्मदर्शी जैसे अल्प तरंग दैर्ध्य का उपयोग किया जा सकता है। ये प्रविधियां श्रेष्ठ प्रस्ताव प्रदान करती हैं।  जैविक प्रतिरूपो में विपरीतता की हीनता से ग्रस्त हैं एवं प्रतिरूप को हानि पहुंचा सकती हैं।


===डिजिटल फोटोग्राफी===
===डिजिटल फोटोग्राफी===


एक डिजिटल कैमरे में, विवर्तन प्रभाव नियमित पिक्सेल ग्रिड के प्रभावों के साथ परस्पर क्रिया करते हैं। एकप्रकाशिक सिस्टम के विभिन्न भागों का संयुक्त प्रभाव पॉइंट स्प्रेड फ़ंक्शंस (PSF) के [[कनवल्शन]] द्वारा निर्धारित किया जाता है। एक विवर्तन सीमित लेंस का बिंदु प्रसार कार्य केवल हवादार डिस्क है। कैमरे का [[ बिंदु फैलाव समारोह ]], जिसे इंस्ट्रूमेंट रिस्पॉन्स फंक्शन (IRF) कहा जाता है, को पिक्सेल पिच के बराबर चौड़ाई के साथ एक आयत फ़ंक्शन द्वारा अनुमानित किया जा सकता है। इमेज सेंसर के मॉडुलन ट्रांसफर फ़ंक्शन (पीएसएफ से प्राप्त) का एक एवं पूर्ण व्युत्पत्ति Fliegel द्वारा दिया गया है।<ref>{{cite journal|last1=Fliegel|first1=Karel|title=छवि संवेदक विशेषताओं की मॉडलिंग और मापन|journal=Radioengineering|date=December 2004|volume=13|issue=4|url=http://www.radioeng.cz/fulltexts/2004/04_04_27_34.pdf}}</ref> सटीक उपकरण प्रतिक्रिया कार्य चाहे जो भी हो, यह काफी हद तक लेंस के f-संख्या से स्वतंत्र है। इस प्रकार अलग-अलग एफ-नंबरों पर एक कैमरा तीन अलग-अलग व्यवस्थाओं में काम कर सकता है, निम्नानुसार:
डिजिटल कैमरे में, विवर्तन प्रभाव नियमित पिक्सेल ग्रिड के प्रभावों के साथ परस्पर क्रिया करते हैं। प्रकाशिक प्रणाली के विभिन्न भागों का संयुक्त प्रभाव बिंदु प्रसार कार्य (PSF) के [[कनवल्शन]] द्वारा निर्धारित किया जाता है। विवर्तन सीमित लेंस का बिंदु प्रसार कार्य केवल वायुदार बिंब है। कैमरे का [[ बिंदु फैलाव समारोह | साधन प्रतिक्रिया फ़ंक्शन]] (IRF) कहा जाता है, को पिक्सेल पिच के समान चौड़ाई के साथ आयत फ़ंक्शन द्वारा अनुमानित किया जा सकता है। छवि सेंसर के मॉडुलन स्थानांतरण फ़ंक्शन (PSF से प्राप्त) का पूर्ण व्युत्पत्ति फ्लिगेल द्वारा दिया गया है।<ref>{{cite journal|last1=Fliegel|first1=Karel|title=छवि संवेदक विशेषताओं की मॉडलिंग और मापन|journal=Radioengineering|date=December 2004|volume=13|issue=4|url=http://www.radioeng.cz/fulltexts/2004/04_04_27_34.pdf}}</ref> स्थिर उपकरण प्रतिक्रिया कार्य चाहे जो भी हो, यह अधिक सीमा तक लेंस के f-संख्या से स्वतंत्र है। इस प्रकार भिन्न-भिन्न f-नंबरों पर कैमरा तीन भिन्न-भिन्न व्यवस्थाओं में कार्य कर सकता है। निम्नानुसार:


# ऐसे मामले में जहां विवर्तन PSF के प्रसार के संबंध में IRF का प्रसार छोटा है, उस स्थिति में सिस्टम को अनिवार्य रूप से विवर्तन सीमित कहा जा सकता है (जब तक लेंस स्वयं विवर्तन सीमित है)।
# ऐसी स्थिति में जहां विवर्तन PSF के प्रसार के संबंध में IRF का प्रसार होता है, उस स्थिति में प्रणाली को अनिवार्य रूप से विवर्तन सीमित कहा जा सकता है (जब तक लेंस स्वयं विवर्तन सीमित है)।
# ऐसे मामले में जहां आईआरएफ के संबंध में विवर्तन पीएसएफ का प्रसार छोटा है, उस मामले में सिस्टम साधन सीमित है।
# ऐसी स्थिति में जहां आईआरएफ के संबंध में विवर्तन पीएसएफ का प्रसार अल्प है, उस मामले में प्रणाली साधन सीमित है।
# उस मामले में जहां पीएसएफ एवं आईआरएफ का प्रसार समान है, उस स्थिति में दोनों सिस्टम के उपलब्ध समाधान को प्रभावित करते हैं।
# उस स्थिति में जहां PSF एवं IRF का प्रसार समान है, उस स्थिति में दोनों प्रणाली के उपलब्ध समाधान को प्रभावित करते हैं।


विवर्तन-सीमित PSF का प्रसार हवादार डिस्क के पहले नल के व्यास द्वारा अनुमानित है,
विवर्तन-सीमित PSF का प्रसार वायुदार बिंब के पूर्व नल के व्यास द्वारा अनुमानित है।


:<math> d/2 = 1.22 \lambda N,\, </math>
:<math> d/2 = 1.22 \lambda N,\, </math>
जहां λ प्रकाश की तरंग दैर्ध्य है एवं एन इमेजिंग प्रकाशिकी की [[एफ संख्या]] है। f/8 एवं हरे (0.5 μm वेवलेंथ) प्रकाश के लिए, d = 9.76 μm। यह व्यावसायिक रूप से उपलब्ध 'पूर्ण फ्रेम' (43 मिमी सेंसर विकर्ण) कैमरों के बहुमत के लिए पिक्सेल आकार के समान है एवं इसलिए ये लगभग 8 के f-नंबरों के लिए शासन 3 में काम करेंगे (कुछ लेंस f-संख्या अल्प पर सीमित विवर्तन के करीब हैं) 8 से अधिक)। अल्प सेंसर वाले कैमरों में अल्प पिक्सेल होते हैं, लेकिन उनके लेंस अल्प एफ-नंबरों पर उपयोग के लिए डिज़ाइन किए जाएंगे एवं यह संभावना है कि वे उन एफ-नंबरों के लिए शासन 3 में भी काम करेंगे जिनके लिए उनके लेंस विवर्तन सीमित हैं।
जहां λ प्रकाश की तरंग दैर्ध्य एवं n इमेजिंग प्रकाशिकी की f [[एफ संख्या|संख्या]] है। f/8 एवं हरे (0.5 μm वेवलेंथ) प्रकाश के लिए, d = 9.76 μm है । यह व्यावसायिक रूप से उपलब्ध 'पूर्ण फ्रेम' (43 मिमी सेंसर विकर्ण) कैमरों के बहुमत के लिए पिक्सेल आकार के समान है एवं इसलिए ये लगभग 8 के f-नंबरों के लिए शासन 3 में कार्य करेंगे (कुछ लेंस f-संख्या अल्प पर सीमित विवर्तन के निकट हैं) 8 से अधिक)। अल्प सेंसर वाले कैमरों में अल्प पिक्सेल होते हैं, किन्तु उनके लेंस अल्प f-नंबरों पर उपयोग के लिए चित्रित किए जाएंगे एवं यह संभावना है कि वे उन f-नंबरों के लिए शासन 3 में भी कार्य करेंगे जिनके लिए उनके लेंस विवर्तन सीमित हैं।


== उच्च संकल्प प्राप्त करना ==
== उच्च संकल्प प्राप्त करना ==
{{See also|Super-resolution microscopy}}
{{See also|श्रेष्ठ-संकल्प अणुवीक्षण यंत्र का प्रयोग}}
विवर्तन-सीमित प्रकाशिकी के सरल उपयोग द्वारा अनुमत की तुलना में उच्च प्रस्ताव वाली छवियां बनाने की तकनीकें हैं।<ref name="U2">{{cite journal
 
विवर्तन-सीमित प्रकाशिकी के सरल उपयोग द्वारा अनुमत की तुलना में उच्च प्रस्ताव वाली छवियां बनाने की प्रविधिया हैं।<ref name="U2">{{cite journal
| url=http://www.opfocus.org/index.php?topic=story&v=4&s=1
| url=http://www.opfocus.org/index.php?topic=story&v=4&s=1
| author=Niek van Hulst
| author=Niek van Hulst
Line 42: Line 43:
| issue=1
| issue=1
| year=2009
| year=2009
}}</ref> चूंकि ये तकनीकें संकल्प के कुछ पहलू में सुधार करती हैं, आम तौर पर वे लागत एवं जटिलता में भारी वृद्धि पर आते हैं। आमतौर पर तकनीक केवल इमेजिंग समस्याओं के एक अल्प उपसमुच्चय के लिए उपयुक्त होती है, जिसमें कई सामान्य दृष्टिकोण नीचे दिए गए हैं।
}}</ref> चूंकि ये प्रविधिया संकल्प के कुछ दृष्टिकोण में सुधार करती हैं, सामान्यतः वे वित्त एवं कठिनाई में भारी वृद्धि पर आते हैं। सामान्यतः प्रविधिया केवल चित्रित समस्याओं के अल्प उपसमुच्चय के लिए उपयुक्त होती है, जिसमें कई सामान्य दृष्टिकोण नीचे दिए गए हैं।


=== संख्यात्मक एपर्चर का विस्तार ===
=== संख्यात्मक मुख का विस्तार ===


सूक्ष्मदर्शी के प्रभावी प्रस्ताव को साइड से रोशन करके बेहतर बनाया जा सकता है।
सूक्ष्मदर्शी के प्रभावी प्रस्ताव को अतिरिक्त रोशन करके श्रेष्ठ बनाया जा सकता है।


पारंपरिक सूक्ष्मदर्शी जैसे ब्राइट-फील्ड या डिफरेंशियल_इंटरफेरेंस_कॉन्ट्रास्ट_सूक्ष्मदर्शीी में, यह एक कंडेनसर का उपयोग करके प्राप्त किया जाता है। स्थानिक रूप से असंगत स्थितियों के तहत, छवि को कंडेनसर पर प्रत्येक बिंदु से प्रकाशित छवियों के संयोजन के रूप में समझा जाता है, जिनमें से प्रत्येक वस्तु के स्थानिक आवृत्तियों के एक अलग हिस्से को कवर करता है।<ref>{{cite journal |first=Norbert |last=Streibl |title=माइक्रोस्कोप द्वारा त्रि-आयामी इमेजिंग|journal=Journal of the Optical Society of America A |volume=2 |issue=2 |date=February 1985 |pages=121–127 |doi=10.1364/JOSAA.2.000121 |bibcode=1985JOSAA...2..121S}}</ref> यह प्रभावी रूप से संकल्प में सुधार करता है, अधिकतर, दो का कारक।
पारंपरिक सूक्ष्मदर्शी जैसे उज्ज्वल क्षेत्र या विभेदक हस्तक्षेप अंतर सूक्ष्मदर्शीी में, यह संघनित्र का उपयोग करके प्राप्त किया जाता है। स्थानिक रूप से असंगत स्थितियों के अनुसार, छवि को संघनित्र पर प्रत्येक बिंदु से प्रकाशित छवियों के संयोजन के रूप में समझा जाता है, जिनमें से प्रत्येक वस्तु के स्थानिक आवृत्तियों के भिन्न भागो को कवर करता है।<ref>{{cite journal |first=Norbert |last=Streibl |title=माइक्रोस्कोप द्वारा त्रि-आयामी इमेजिंग|journal=Journal of the Optical Society of America A |volume=2 |issue=2 |date=February 1985 |pages=121–127 |doi=10.1364/JOSAA.2.000121 |bibcode=1985JOSAA...2..121S}}</ref> यह प्रभावी रूप से संकल्प में सुधार करता है।


इसके साथ ही सभी कोणों से प्रकाशित (पूरी तरह से खुला संघनित्र) इंटरफेरोमेट्रिक कंट्रास्ट को कम करता है। पारंपरिक सूक्ष्मदर्शी में, अधिकतम प्रस्ताव (पूरी तरह से खुला कंडेनसर, एन = 1 पर) का शायद ही कभी उपयोग किया जाता है। इसके अलावा, आंशिक रूप से सुसंगत स्थितियों के तहत, रिकॉर्ड की गई छवि अक्सर वस्तु की बिखरने की क्षमता के साथ गैर-रैखिक होती है - विशेष रूप से गैर-स्व-चमकदार (गैर-फ्लोरोसेंट) वस्तुओं को देखते समय।<ref>{{cite journal |first1=C.J.R. |last1=Sheppard |author-link1=Colin Sheppard |first2=X.Q. |last2=Mao |title=माइक्रोस्कोप में त्रि-आयामी इमेजिंग|journal=Journal of the Optical Society of America A |volume=6 |issue=9 |date=September 1989 |pages=1260–1269 |doi=10.1364/JOSAA.6.001260 |bibcode=1989JOSAA...6.1260S }}</ref> कंट्रास्ट को बढ़ावा देने के लिए, एवं कभी-कभी सिस्टम को रैखिक बनाने के लिए, अपरंपरागत सूक्ष्मदर्शी ([[संरचित प्रकाश]] के साथ) ज्ञात रोशनी मापदंडों के साथ छवियों के अनुक्रम को प्राप्त करके कंडेनसर रोशनी को संश्लेषित करते हैं। आमतौर पर, इन छवियों को पूरी तरह से बंद कंडेनसर (जो कि शायद ही कभी उपयोग किया जाता है) की तुलना में ऑब्जेक्ट की स्थानिक आवृत्तियों के एक बड़े हिस्से को कवर करने वाले डेटा के साथ एकल छवि बनाने के लिए मिश्रित किया जाता है।
इसके साथ ही सभी कोणों से प्रकाशित इंटरफेरोमेट्रिक अंतर को अर्घ्य करता है। पारंपरिक सूक्ष्मदर्शी में, अधिकतम प्रस्ताव का सम्भावित ही कभी उपयोग किया जाता है। इसके अतिरिक्त, आंशिक रूप से सुसंगत स्थितियों के अनुसार, अभिलेख की गई छवि प्रायः वस्तु की विस्तृत होने की क्षमता के साथ गैर-रैखिक होती है। विशेष रूप से गैर-स्व-चमकदार (गैर-फ्लोरोसेंट) वस्तुओं को देखते समय <ref>{{cite journal |first1=C.J.R. |last1=Sheppard |author-link1=Colin Sheppard |first2=X.Q. |last2=Mao |title=माइक्रोस्कोप में त्रि-आयामी इमेजिंग|journal=Journal of the Optical Society of America A |volume=6 |issue=9 |date=September 1989 |pages=1260–1269 |doi=10.1364/JOSAA.6.001260 |bibcode=1989JOSAA...6.1260S }}</ref> विषमता को बढ़ावा देने के लिए, एवं कभी-कभी प्रणाली को रैखिक बनाने के लिए, अपरंपरागत सूक्ष्मदर्शी ([[संरचित प्रकाश]] के साथ) ज्ञात रोशनी मापदंडों के साथ छवियों के अनुक्रम को प्राप्त करके रोशनी को संश्लेषित करते हैं। सामान्यतः इन छवियों को पूर्ण रूप से बंद संघनित्र (जो कि सम्भवता ही कभी उपयोग किया जाता है) की तुलना में वस्तु की स्थानिक आवृत्तियों के बड़े भागो को कवर करने वाले डेटा के साथ एकल छवि बनाने के लिए मिश्रित किया जाता है।


एक अन्य तकनीक, [[4पीआई माइक्रोस्कोप|4पीआई सूक्ष्मदर्शी]], प्रभावी संख्यात्मक छिद्र को दोगुना करने के लिए दो विरोधी उद्देश्यों का उपयोग करती है, आगे एवं पीछे बिखरे हुए प्रकाश को एकत्रित करके विवर्तन सीमा को प्रभावी ढंग से आधा कर देती है। असंगत या संरचित रोशनी के संयोजन के साथ एक पारदर्शी नमूने की इमेजिंग करते समय, साथ ही आगे एवं पीछे दोनों तरह के बिखरे हुए प्रकाश को एकत्रित करते हुए, पूरे इवाल्ड के गोले की छवि बनाना संभव है।
अन्य प्रविधि, [[4पीआई माइक्रोस्कोप|4Pi सूक्ष्मदर्शी]], प्रभावी संख्यात्मक छिद्र को दोगुना करने के लिए दो विरोधी उद्देश्यों का उपयोग करती है, आगे एवं पीछे असंगठित हुए प्रकाश को एकत्रित करके विवर्तन सीमा को प्रभावी ढंग से अर्द्ध कर देती है। असंगत या संरचित रोशनी के संयोजन के साथ पारदर्शी प्रारूप की कल्पना करते समय, साथ ही आगे एवं पीछे दोनों प्रकार के असंगठित हुए प्रकाश को एकत्रित करते हुए, पूर्ण इवाल्ड के वृत्त की छवि बनाना संभव है।


सुपर-प्रस्ताव सूक्ष्मदर्शीी # लोकलाइज़ेशन सूक्ष्मदर्शीी पर निर्भर तरीकों के विपरीत, ऐसी प्रणालियाँ अभी भी रोशनी (कंडेनसर) एवं संग्रह प्रकाशिकी (उद्देश्य) की विवर्तन सीमा तक सीमित हैं, चूंकि व्यवहार में वे पारंपरिक तरीकों की तुलना में पर्याप्त प्रस्ताव सुधार प्रदान कर सकते हैं।
सुपर-प्रस्ताव सूक्ष्मदर्शीी स्थानीयकरण सूक्ष्मदर्शीी पर निर्भर प्रविधियों के विपरीत, ऐसी प्रणालियाँ अभी भी रोशनी (संघनित्र) एवं संग्रह प्रकाशिकी (उद्देश्य) की विवर्तन सीमा तक सीमित हैं, चूंकि व्यवहार में वे पारंपरिक प्रविधियों की तुलना में पर्याप्त प्रस्ताव सुधार प्रदान कर सकते हैं।


=== नियर-फील्ड तकनीक ===
=== निकट-क्षेत्र प्रविधि ===


विवर्तन सीमा केवल सुदूर क्षेत्र में मान्य है क्योंकि यह मानता है कि कोई भी [[क्षणभंगुर क्षेत्र]] डिटेक्टर तक नहीं पहुंचता है। विभिन्न [[निकट और दूर का मैदान|निकट एवं दूर का मैदान]] | नियर-फील्ड तकनीकें जो इमेज प्लेन से दूर प्रकाश की ≈1 तरंग दैर्ध्य से कम संचालित करती हैं, काफी अधिक प्रस्ताव प्राप्त कर सकती हैं। ये तकनीकें इस तथ्य का फायदा उठाती हैं कि क्षणभंगुर क्षेत्र में विवर्तन सीमा से परे की जानकारी होती है, जिसका उपयोग बहुत उच्च प्रस्ताव की छवियों के निर्माण के लिए किया जा सकता है, सिद्धांत रूप में विवर्तन सीमा को आनुपातिक रूप से हराकर एक विशिष्ट इमेजिंग सिस्टम निकट-क्षेत्र संकेत का पता लगा सकता है। . बिखरी हुई प्रकाश इमेजिंग के लिए, [[निकट-क्षेत्र स्कैनिंग ऑप्टिकल माइक्रोस्कोप|निकट-क्षेत्र स्कैनिंगप्रकाशिक सूक्ष्मदर्शी]] एवं नैनो-एफटीआईआर जैसे उपकरण, जो [[परमाणु बल माइक्रोस्कोपी|परमाणु बल सूक्ष्मदर्शीी]] सिस्टम के ऊपर बनाए गए हैं, का उपयोग 10-50 एनएम प्रस्ताव तक प्राप्त करने के लिए किया जा सकता है। ऐसे उपकरणों द्वारा रिकॉर्ड किए गए डेटा को अक्सर पर्याप्त प्रसंस्करण की आवश्यकता होती है, अनिवार्य रूप से प्रत्येक छवि के लिएप्रकाशिक उलटा समस्या को हल करना।
विवर्तन सीमा केवल सुदूर क्षेत्र में मान्य है क्योंकि यह मानता है कि कोई भी [[क्षणभंगुर क्षेत्र]] संसूचक  तक नहीं पहुंचता है। विभिन्न [[निकट और दूर का मैदान|निकट एवं दूर का मैदान]] प्रविधिया जो छवि प्लेन से दूर प्रकाश की ≈1 तरंग दैर्ध्य से अर्घ्य संचालित करती हैं, अधिक प्रस्ताव प्राप्त कर सकती हैं। ये प्रविधिया इस तथ्य का लाभ उठाती हैं, कि क्षणभंगुर क्षेत्र में विवर्तन सीमा से परे की जानकारी होती है, जिसका उपयोग अधिक उच्च प्रस्ताव की छवियों के निर्माण के लिए किया जा सकता है, सिद्धांत रूप में विवर्तन सीमा को आनुपातिक रूप से हराकर विशिष्ट कल्पना प्रणाली निकट-क्षेत्र संकेत की जानकारी प्राप्त कर सकता है। असंगठित हुई प्रकाश छवियो के लिए, [[निकट-क्षेत्र स्कैनिंग ऑप्टिकल माइक्रोस्कोप|निकट-क्षेत्र स्कैनिंग प्रकाशिक सूक्ष्मदर्शी]] एवं नैनो-FTIR जैसे उपकरण, जो [[परमाणु बल माइक्रोस्कोपी|परमाणु बल सूक्ष्मदर्शीी]] प्रणाली के ऊपर बनाए गए हैं, इनका उपयोग 10-50 nm प्रस्ताव तक प्राप्त करने के लिए किया जा सकता है। ऐसे उपकरणों द्वारा अभिलेख किए गए डेटा को प्रायः पर्याप्त प्रसंस्करण की आवश्यकता होती है, अनिवार्य रूप से प्रत्येक छवि के लिए प्रकाशिक समस्या को हल करना हैं।


मेटामटेरियल-आधारित [[ app ]] वस्तु के बहुत करीब (आमतौर पर सैकड़ों नैनोमीटर) लेंस का पता लगाकर विवर्तन सीमा से बेहतर प्रस्ताव के साथ छवि बना सकते हैं।
मेटामटेरियल-आधारित [[ app ]] वस्तु के अधिक करीब (सामान्यतः सैकड़ों नैनोमीटर) लेंस की जानकारी प्राप्त करके विवर्तन सीमा से उत्तम प्रस्ताव के साथ छवि बना सकते हैं।


प्रतिदीप्ति सूक्ष्मदर्शीी में उत्तेजना एवं उत्सर्जन आमतौर पर विभिन्न तरंग दैर्ध्य पर होते हैं। कुल आंतरिक परावर्तन प्रतिदीप्ति सूक्ष्मदर्शीी में नमूना का एक पतला हिस्सा तुरंत कवर ग्लास पर स्थित होता है, जो एक क्षणभंगुर क्षेत्र से उत्साहित होता है, एवं एक पारंपरिक विवर्तन-सीमित उद्देश्य के साथ रिकॉर्ड किया जाता है, जिससे अक्षीय प्रस्ताव में सुधार होता है।
प्रतिदीप्ति सूक्ष्मदर्शीी में उत्तेजना एवं उत्सर्जन सामान्यतः विभिन्न तरंग दैर्ध्य पर होते हैं। कुल आंतरिक परावर्तन प्रतिदीप्ति सूक्ष्मदर्शीी में प्रारूप का पतला भाग तत्काल कवर ग्लास पर स्थित होता है, जो क्षणभंगुर क्षेत्र से उत्साहित होता है, एवं पारंपरिक विवर्तन-सीमित उद्देश्य के साथ अभिलेख किया जाता है, जिससे अक्षीय प्रस्ताव में सुधार होता है।


चूंकि, क्योंकि ये तकनीकें 1 तरंग दैर्ध्य से परे छवि नहीं बना सकती हैं, उनका उपयोग 1 तरंग दैर्ध्य से अधिक मोटी वस्तुओं में छवि के लिए नहीं किया जा सकता है जो उनकी प्रयोज्यता को सीमित करता है।
चूंकि, क्योंकि ये प्रविधिया 1 तरंग दैर्ध्य से परे छवि नहीं बना सकती हैं, उनका उपयोग 1 तरंग दैर्ध्य से अधिक मोटी वस्तुओं में छवि के लिए नहीं किया जा सकता है जो उनकी प्रयोज्यता को सीमित करता है।


=== दूर-क्षेत्र की तकनीक ===
=== दूर-क्षेत्र की प्रविधि ===


दूर-क्षेत्र इमेजिंग तकनीक इमेजिंग ऑब्जेक्ट्स के लिए सबसे अधिक वांछनीय हैं जो रोशनी तरंग दैर्ध्य की तुलना में बड़ी हैं लेकिन इसमें ठीक संरचना होती है। इसमें लगभग सभी जैविक अनुप्रयोग शामिल हैं जिनमें कोशिकाएं कई तरंग दैर्ध्य फैलाती हैं लेकिन संरचना आणविक पैमानों तक होती है। हाल के वर्षों में कई तकनीकों ने दिखाया है कि मैक्रोस्कोपिक दूरी पर उप-विवर्तन सीमित इमेजिंग संभव है। विवर्तन सीमा से परे प्रस्ताव उत्पन्न करने के लिए ये तकनीकें आमतौर पर सामग्री के परावर्तित प्रकाश मेंप्रकाशिक [[नॉनलाइनियर ऑप्टिक्स|नॉनलाइनियर प्रकाशिकी]] का शोषण करती हैं।
दूर-क्षेत्र छविया प्रविधि छवि वस्तु के लिए सबसे अधिक वांछनीय हैं जो रोशनी तरंग दैर्ध्य की तुलना में बड़ी हैं, किन्तु इसमें उचित संरचना होती है। इसमें लगभग सभी जैविक अनुप्रयोग सम्मिलित हैं जिनमें कोशिकाएं कई तरंग दैर्ध्य विस्तृत करती हैं, किन्तु संरचना आणविक स्तरों तक होती है। शीर्घ के वर्षों में कई प्रविधिों ने दिखाया है कि मैक्रोस्कोपिक दूरी पर उप-विवर्तन सीमित छवि संभव है। विवर्तन सीमा से भिन्न प्रस्ताव उत्पन्न करने के लिए, ये प्रविधिया सामान्यतः सामग्री के परावर्तित प्रकाश में प्रकाशिक [[नॉनलाइनियर ऑप्टिक्स|अरैखिकता प्रकाशिकी]] का शोषण करती हैं।


इन तकनीकों में, [[STED माइक्रोस्कोप|STED सूक्ष्मदर्शी]] सबसे सफल तकनीकों में से एक रही है। एसटीईडी में, कई लेजर बीम का उपयोग पहले उत्तेजित करने के लिए किया जाता है, एवं फिर [[फ्लोरोसेंट]] रंगों को बुझाया जाता है। क्वेंचिंग प्रक्रिया के कारण रोशनी के लिए गैर-रैखिक प्रतिक्रिया जिसमें अधिक प्रकाश जोड़ने से छवि कम उज्ज्वल हो जाती है, डाई अणुओं के स्थान के बारे में उप-विवर्तन सीमित जानकारी उत्पन्न होती है, विवर्तन सीमा से परे संकल्प की अनुमति देता है बशर्ते उच्च रोशनी तीव्रता का उपयोग किया जाता है।
इन प्रविधिों में, (STED) [[STED माइक्रोस्कोप|एसटीईडी सूक्ष्मदर्शी]] सबसे सफल प्रविधिों में से रही है। एसटीईडी में, कई लेजर बीम का उपयोग पूर्व उत्तेजित करने के लिए किया जाता है, एवं [[फ्लोरोसेंट|प्रतिदीप्ति]] रंगों को बुझाया जाता है। क्वेंचिंग प्रक्रिया के कारण रोशनी के लिए गैर-रैखिक प्रतिक्रिया जिसमें अधिक प्रकाश जोड़ने से छवि अर्घ्य उज्ज्वल हो जाती है, डाई अणुओं के स्थान के विषय में उप-विवर्तन सीमित जानकारी उत्पन्न होती है, विवर्तन सीमा से परे संकल्प की अनुमति देता है उच्च रोशनी तीव्रता का उपयोग किया जाता है।


== लेजर बीम ==
== लेजर बीम ==


लेजर बीम पर ध्यान केंद्रित करने या टकराने की सीमाएं सूक्ष्मदर्शी या टेलीस्कोप के साथ इमेजिंग की सीमाओं के समान ही होती हैं। फर्क सिर्फ इतना है कि लेजर बीम आमतौर पर सॉफ्ट-एज बीम होते हैं। प्रकाश वितरण में यह गैर-एकरूपता इमेजिंग में परिचित 1.22 मान से थोड़ा अलग गुणांक की ओर ले जाती है। चूंकि, वेवलेंथ एवं अपर्चर के साथ स्केलिंग बिल्कुल समान है।
लेजर बीम पर ध्यान केंद्रित करने या टकराने की सीमाएं सूक्ष्मदर्शी या दूरदर्शक के साथ छवियो की सीमाओं के समान ही होती हैं। अंतर इतना है कि लेजर बीम सामान्यतः नरम-एज बीम होते हैं। प्रकाश वितरण में यह गैर-एकरूपता छवियो में परिचित 1.22 मान से थोड़ा भिन्न गुणांक की ओर ले जाती है। चूंकि, तरंग दैर्ध्य एवं छिद्र के साथ स्केलिंग बिल्कुल समान होती है।


लेजर बीम की बीम गुणवत्ता की विशेषता यह है कि इसका प्रचार एक ही तरंग दैर्ध्य पर एक आदर्श [[गॉसियन बीम]] से कितनी अच्छी तरह मेल खाता है। बीम गुणवत्ता कारक [[एम चुकता]] (एम<sup>2</sup>) इसकी कमर पर बीम के आकार को मापकर एवं कमर से दूर इसका विचलन पाया जाता है, एवं दोनों के उत्पाद को [[बीम पैरामीटर उत्पाद]] के रूप में जाना जाता है। इस मापा बीम पैरामीटर उत्पाद का आदर्श के अनुपात को एम के रूप में परिभाषित किया गया है<sup>2</sup>, ताकि एम<sup>2</sup>=1 एक आदर्श बीम का वर्णन करता है। उन्हें<sup>2</sup> बीम का मान तब संरक्षित होता है जब इसे विवर्तन-सीमित प्रकाशिकी द्वारा रूपांतरित किया जाता है।
लेजर बीम की गुणवत्ता की विशेषता यह है, कि इसका प्रचार तरंग दैर्ध्य पर आदर्श [[गॉसियन बीम|गाऊसी बीम]] से कितने उचित रूप युग्मित होता है। बीम गुणवत्ता कारक [[एम चुकता|M चुकता]] (M<sup>2</sup>) इसके अभाव पर बीम के आकार को मापकर एवं अभाव से दूर इसका विचलन पाया जाता है। एवं दोनों के उत्पाद को [[बीम पैरामीटर उत्पाद]] के रूप में जाना जाता है। इस मापा बीम पैरामीटर उत्पाद का आदर्श के अनुपात को M<sup>2</sup> के रूप में परिभाषित किया गया है, जिससे M<sup>2</sup>=1<sup>2</sup> आदर्श बीम का वर्णन करता है। उन्हें बीम का मान तब संरक्षित होता है, जब इसे विवर्तन-सीमित प्रकाशिकी द्वारा रूपांतरित किया जाता है।


कई कम एवं मध्यम शक्ति वाले लेज़रों के आउटपुट में एम<sup>2</sup> 1.2 या उससे कम के मान, एवं अनिवार्य रूप से विवर्तन-सीमित हैं।
कई अर्घ्य एवं मध्यम शक्ति वाले लेज़रों के आउटपुट में M<sup>2</sup> 1.2 या उससे अर्घ्य के मान, एवं अनिवार्य रूप से विवर्तन-सीमित हैं।


== अन्य तरंगें ==
== अन्य तरंगें ==
अन्य तरंग-आधारित सेंसर, जैसे कि रडार एवं मानव कान पर समान समीकरण लागू होते हैं।
अन्य तरंग-आधारित सेंसर, जैसे कि रडार एवं मानव कान पर समान समीकरण प्रारम्भ होते हैं।


प्रकाश तरंगों (अर्थात्, फोटॉन) के विपरीत, विशाल कणों का उनके क्वांटम यांत्रिक तरंग दैर्ध्य एवं उनकी ऊर्जा के बीच एक अलग संबंध होता है। यह संबंध इंगित करता है कि प्रभावी डी ब्रोगली वेवलेंथ | डी ब्रोगली तरंग दैर्ध्य कण की गति के व्युत्क्रमानुपाती होता है। उदाहरण के लिए, 10 keV की ऊर्जा पर एक इलेक्ट्रॉन में 0.01 nm का तरंग दैर्ध्य होता है, जिससे इलेक्ट्रॉन सूक्ष्मदर्शी ([[स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप|स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी]] या [[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी|ट्रांसमिशन इलेक्ट्रॉन सूक्ष्मदर्शीी]]) को उच्च प्रस्ताव की छवियां प्राप्त करने की अनुमति मिलती है। हीलियम, नियोन एवं गैलियम आयन जैसे अन्य विशाल कणों का उपयोग दृश्यमान प्रकाश से प्राप्त किए जा सकने वाले संकल्पों से परे छवियों का निर्माण करने के लिए किया गया है। इस तरह के उपकरण सिस्टम जटिलता की कीमत पर नैनोमीटर स्केल इमेजिंग, विश्लेषण एवं निर्माण क्षमता प्रदान करते हैं।
प्रकाश तरंगों (अर्थात्, फोटॉन) के विपरीत, विशाल कणों का उनके क्वांटम यांत्रिक तरंग दैर्ध्य एवं उनकी ऊर्जा के मध्य भिन्न संबंध होता है। यह संबंध इंगित करता है कि प्रभावी डी ब्रोगली तरंग दैर्ध्य कण की गति के व्युत्क्रमानुपाती होता है। उदाहरण के लिए, 10 keV की ऊर्जा पर इलेक्ट्रॉन में 0.01 nm का तरंग दैर्ध्य होता है, जिससे इलेक्ट्रॉन सूक्ष्मदर्शी ([[स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप|स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी]] या [[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी|संचरण इलेक्ट्रॉन सूक्ष्मदर्शीी]]) को उच्च प्रस्ताव की छवियां प्राप्त करने की अनुमति मिलती है। हीलियम, नियोन एवं गैलियम आयन जैसे अन्य विशाल कणों का उपयोग दृश्यमान प्रकाश से प्राप्त किए जा सकने वाले संकल्पों से परे छवियों का निर्माण करने के लिए किया गया है। इस प्रकार के उपकरण प्रणाली कठिनाई के मूल्य पर नैनोमीटर स्केल इमेजिंग, विश्लेषण एवं निर्माण क्षमता प्रदान करते हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 95: Line 96:
* {{cite web|first=Erwin |last=Puts |work=Leica R-Lenses |date=September 2003 |format=PDF |publisher=[[Leica Camera]] |url=http://en.leica-camera.com/assets/file/download.php?filename=file_1864.pdf |title=Chapter 3: 180 mm and 280 mm lenses |url-status=dead |archive-url=https://web.archive.org/web/20081217074256/http://en.leica-camera.com/assets/file/download.php?filename=file_1864.pdf |archive-date=December 17, 2008 }} Describes the Leica APO-Telyt-R 280mm f/4, a diffraction-limited photographic lens.
* {{cite web|first=Erwin |last=Puts |work=Leica R-Lenses |date=September 2003 |format=PDF |publisher=[[Leica Camera]] |url=http://en.leica-camera.com/assets/file/download.php?filename=file_1864.pdf |title=Chapter 3: 180 mm and 280 mm lenses |url-status=dead |archive-url=https://web.archive.org/web/20081217074256/http://en.leica-camera.com/assets/file/download.php?filename=file_1864.pdf |archive-date=December 17, 2008 }} Describes the Leica APO-Telyt-R 280mm f/4, a diffraction-limited photographic lens.


{{Optical microscopy}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: विवर्तन]] [[Category: दूरबीन]] [[Category: माइक्रोस्कोप]]  
[[Category:Collapse templates]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 27/03/2023]]
[[Category:Created On 27/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:दूरबीन]]
[[Category:माइक्रोस्कोप]]
[[Category:विवर्तन]]

Latest revision as of 13:18, 30 October 2023

अर्नेस्ट कार्ल अब्बे को स्मारक, जिन्होंने सूक्ष्मदर्शी की विवर्तन सीमा का अनुमान लगाया था, , जहां d समाधान योग्य सुविधा का आकार है, λ प्रकाश की तरंग दैर्ध्य है, n छवि में माध्यम के अपवर्तन का सूचकांक है, एवं θ (शिलालेख में α के रूप में दर्शाया गया है) प्रकाशिक उद्देश्य लेंस द्वारा घटाया गया अर्द्ध कोण है (संख्यात्मक मुख का प्रतिनिधित्व)।
विभिन्न खगोलीय उपकरणों की तुलना में विभिन्न प्रकाश तरंग दैर्ध्य के लिए विवर्तन सीमा पर मुख व्यास के प्रति कोणीय संकल्प का लॉग-लॉग प्लॉट, उदाहरण के लिए, नीला तारा दिखाता है, कि हबल अंतरिक्ष सूक्ष्मदर्शी 0.1 आर्कसेक पर दृश्य वर्णक्रम में लगभग विवर्तन-सीमित है, जबकि लाल वृत्त दर्शाता है कि मानव आँख में सिद्धांत रूप में 20 आर्कसेक की संकल्प शक्ति होनी चाहिए, चूंकि सामान्य रूप से केवल 60 आर्कसेक होता हैI

प्रकाशिक उपकरण का संकल्प – सूक्ष्मदर्शी, दूरबीन या कैमरा – प्रकाशिक विपथन द्वारा सीमित किया जा सकता है, जैसे कि लेंस या मिसलिग्न्मेंट में त्रुटिया चूंकि, विवर्तन की भौतिकी के प्रकाशीय प्रणाली के विभेदन की प्रमुख सीमा होती है। उपकरण की सैद्धांतिक सीमा पर प्रदर्शन वाली प्रकाशिक प्रणाली को विवर्तन-सीमित कहा जाता है।[1]

किसी उपकरण का विवर्तन-सीमित कोणीय विभेदन, रेडियन में देखे जा रहे प्रकाश की तरंग दैर्ध्य के समानुपाती होता है, एवं इसके उद्देश्य (प्रकाशिकी) के प्रवेश द्वार की पुतली व्यास के व्युत्क्रमानुपाती होता है। वृत्ताकार छिद्रों वाली दूरबीनों के लिए, छवि में सबसे अल्प विशेषता का आकार जो विवर्तन सीमित है, वायुदार बिंब का आकार होता है। जैसे-जैसे दूरदर्शकिक लेज़र (प्रकाशिकी) के मुख का आकार घटता जाता है, वैसे-वैसे विवर्तन बढ़ता जाता है। f-स्टॉप, f/22 जैसे अल्प छिद्रों पर, अधिकांश आधुनिक लेंस केवल विवर्तन द्वारा सीमित होते हैं, न कि विपथन या निर्माण में अन्य अभाव से होता है।

सूक्ष्म उपकरणों के लिए, विवर्तन-सीमित स्थानिक संकल्प प्रकाश तरंग दैर्ध्य के लिए आनुपातिक होता है, एवं उद्देश्य या वस्तु रोशनी स्रोत के संख्यात्मक मुख के लिए होता है।

खगोल विज्ञान में, विवर्तन-सीमित प्रेक्षण वह है, जो उपयोग किए गए उपकरण के आकार में सैद्धांतिक रूप से आदर्श उद्देश्य के संकल्प को प्राप्त करता है। चूंकि, पृथ्वी से अधिकांश प्रेक्षणपृथ्वी के वातावरण के प्रभाव के कारण खगोलीय दृश्य-सीमित हैं। पृथ्वी पर प्रकाशिक दूरदर्शक विवर्तन सीमा की तुलना में अधिक अर्घ्य प्रस्ताव पर कार्य करते हैं क्योंकि विक्षोभ वातावरण के कई किलोमीटर के माध्यम से प्रकाश के पारित होने से प्रारम्भ हुई विकृति उन्नत वेधशालाओं ने अनुकूली प्रकाशिकी प्रौद्योगिकी का उपयोग करना प्रारम्भ कर दिया है, जिसके परिणाम स्वरूप धुंधले लक्ष्यों के लिए अधिक छवि प्रस्ताव प्राप्त हुआ है, किन्तु अनुकूली प्रकाशिकी का उपयोग करके विवर्तन सीमा तक पहुंचना अभी भी कठिन होता है।

रेडियो दूरबीन प्रायः विवर्तन-सीमित होते हैं, क्योंकि उनके द्वारा उपयोग की जाने वाली तरंग दैर्ध्य (मिलीमीटर से मीटर तक) इतनी लंबी होती है, कि वायुमंडलीय विकृति नगण्य होती है। अंतरिक्ष-आधारित दूरदर्शक (जैसे हबल अंतरिक्ष सूक्ष्मदर्शी , या कई गैर-प्रकाशिक दूरदर्शक) सदैव अपनी विवर्तन सीमा पर कार्य करते हैं, यदि उनकी आकृति प्रकाशिक विपथन से मुक्त होती है।

निकट-आदर्श बीम प्रसार गुणों वाले लेजर से बीम को विवर्तन-सीमित होने के रूप में वर्णित किया जा सकता है। विवर्तन-सीमित प्रकाशिकी के माध्यम से पारित विवर्तन-सीमित लेजर बीम, विवर्तन-सीमित रहेगा, एवं लेजर के तरंग दैर्ध्य पर प्रकाशिकी के संकल्प के समान अनिवार्य रूप से स्थानिक या कोणीय सीमा होती हैं।

विवर्तन सीमा की गणना

सूक्ष्मदर्शी के लिए अब्बे विवर्तन सीमा

अब्बे विवर्तन सीमा के कारण सूक्ष्मदर्शी के साथ उप-तरंग दैर्ध्य संरचनाओं का प्रेक्षण कठिन है। अर्नेस्ट अब्बे ने 1873 में उस प्रकाश को तरंग दैर्ध्य के साथ पाया, अपवर्तक सूचकांक वाले माध्यम में यात्रा करना एवं अर्द्ध कोण वाले स्थान पर अभिसरण न्यूनतम हल करने योग्य दूरी होगी।

[2]

भाजक का भाग संख्यात्मक छिद्र (NA) कहा जाता है एवं आधुनिक प्रकाशिकी में लगभग 1.4-1.6 तक पहुंच सकता है, इसलिए अब्बे की सीमा है। 500 NA के निकट हरे रंग की रोशनी एवं 1 के NA को ध्यान में रखते हुए, अब्बे की सीमा स्थूल रूप से है । (0.25 माइक्रोन), जो अधिकांश जैविक कोशिकाओं (1 माइक्रोन से 100 माइक्रोन) की तुलना में अल्प है, किन्तु वायरस (100 NM), प्रोटीन (10NM) एवं अर्घ्य जटिल अणुओं (1 NM) की तुलना में बड़ा है। प्रस्ताव बढ़ाने के लिए, UV एवं X-ray सूक्ष्मदर्शी जैसे अल्प तरंग दैर्ध्य का उपयोग किया जा सकता है। ये प्रविधियां श्रेष्ठ प्रस्ताव प्रदान करती हैं। जैविक प्रतिरूपो में विपरीतता की हीनता से ग्रस्त हैं एवं प्रतिरूप को हानि पहुंचा सकती हैं।

डिजिटल फोटोग्राफी

डिजिटल कैमरे में, विवर्तन प्रभाव नियमित पिक्सेल ग्रिड के प्रभावों के साथ परस्पर क्रिया करते हैं। प्रकाशिक प्रणाली के विभिन्न भागों का संयुक्त प्रभाव बिंदु प्रसार कार्य (PSF) के कनवल्शन द्वारा निर्धारित किया जाता है। विवर्तन सीमित लेंस का बिंदु प्रसार कार्य केवल वायुदार बिंब है। कैमरे का साधन प्रतिक्रिया फ़ंक्शन (IRF) कहा जाता है, को पिक्सेल पिच के समान चौड़ाई के साथ आयत फ़ंक्शन द्वारा अनुमानित किया जा सकता है। छवि सेंसर के मॉडुलन स्थानांतरण फ़ंक्शन (PSF से प्राप्त) का पूर्ण व्युत्पत्ति फ्लिगेल द्वारा दिया गया है।[3] स्थिर उपकरण प्रतिक्रिया कार्य चाहे जो भी हो, यह अधिक सीमा तक लेंस के f-संख्या से स्वतंत्र है। इस प्रकार भिन्न-भिन्न f-नंबरों पर कैमरा तीन भिन्न-भिन्न व्यवस्थाओं में कार्य कर सकता है। निम्नानुसार:

  1. ऐसी स्थिति में जहां विवर्तन PSF के प्रसार के संबंध में IRF का प्रसार होता है, उस स्थिति में प्रणाली को अनिवार्य रूप से विवर्तन सीमित कहा जा सकता है (जब तक लेंस स्वयं विवर्तन सीमित है)।
  2. ऐसी स्थिति में जहां आईआरएफ के संबंध में विवर्तन पीएसएफ का प्रसार अल्प है, उस मामले में प्रणाली साधन सीमित है।
  3. उस स्थिति में जहां PSF एवं IRF का प्रसार समान है, उस स्थिति में दोनों प्रणाली के उपलब्ध समाधान को प्रभावित करते हैं।

विवर्तन-सीमित PSF का प्रसार वायुदार बिंब के पूर्व नल के व्यास द्वारा अनुमानित है।

जहां λ प्रकाश की तरंग दैर्ध्य एवं n इमेजिंग प्रकाशिकी की f संख्या है। f/8 एवं हरे (0.5 μm वेवलेंथ) प्रकाश के लिए, d = 9.76 μm है । यह व्यावसायिक रूप से उपलब्ध 'पूर्ण फ्रेम' (43 मिमी सेंसर विकर्ण) कैमरों के बहुमत के लिए पिक्सेल आकार के समान है एवं इसलिए ये लगभग 8 के f-नंबरों के लिए शासन 3 में कार्य करेंगे (कुछ लेंस f-संख्या अल्प पर सीमित विवर्तन के निकट हैं) 8 से अधिक)। अल्प सेंसर वाले कैमरों में अल्प पिक्सेल होते हैं, किन्तु उनके लेंस अल्प f-नंबरों पर उपयोग के लिए चित्रित किए जाएंगे एवं यह संभावना है कि वे उन f-नंबरों के लिए शासन 3 में भी कार्य करेंगे जिनके लिए उनके लेंस विवर्तन सीमित हैं।

उच्च संकल्प प्राप्त करना

विवर्तन-सीमित प्रकाशिकी के सरल उपयोग द्वारा अनुमत की तुलना में उच्च प्रस्ताव वाली छवियां बनाने की प्रविधिया हैं।[4] चूंकि ये प्रविधिया संकल्प के कुछ दृष्टिकोण में सुधार करती हैं, सामान्यतः वे वित्त एवं कठिनाई में भारी वृद्धि पर आते हैं। सामान्यतः प्रविधिया केवल चित्रित समस्याओं के अल्प उपसमुच्चय के लिए उपयुक्त होती है, जिसमें कई सामान्य दृष्टिकोण नीचे दिए गए हैं।

संख्यात्मक मुख का विस्तार

सूक्ष्मदर्शी के प्रभावी प्रस्ताव को अतिरिक्त रोशन करके श्रेष्ठ बनाया जा सकता है।

पारंपरिक सूक्ष्मदर्शी जैसे उज्ज्वल क्षेत्र या विभेदक हस्तक्षेप अंतर सूक्ष्मदर्शीी में, यह संघनित्र का उपयोग करके प्राप्त किया जाता है। स्थानिक रूप से असंगत स्थितियों के अनुसार, छवि को संघनित्र पर प्रत्येक बिंदु से प्रकाशित छवियों के संयोजन के रूप में समझा जाता है, जिनमें से प्रत्येक वस्तु के स्थानिक आवृत्तियों के भिन्न भागो को कवर करता है।[5] यह प्रभावी रूप से संकल्प में सुधार करता है।

इसके साथ ही सभी कोणों से प्रकाशित इंटरफेरोमेट्रिक अंतर को अर्घ्य करता है। पारंपरिक सूक्ष्मदर्शी में, अधिकतम प्रस्ताव का सम्भावित ही कभी उपयोग किया जाता है। इसके अतिरिक्त, आंशिक रूप से सुसंगत स्थितियों के अनुसार, अभिलेख की गई छवि प्रायः वस्तु की विस्तृत होने की क्षमता के साथ गैर-रैखिक होती है। विशेष रूप से गैर-स्व-चमकदार (गैर-फ्लोरोसेंट) वस्तुओं को देखते समय [6] विषमता को बढ़ावा देने के लिए, एवं कभी-कभी प्रणाली को रैखिक बनाने के लिए, अपरंपरागत सूक्ष्मदर्शी (संरचित प्रकाश के साथ) ज्ञात रोशनी मापदंडों के साथ छवियों के अनुक्रम को प्राप्त करके रोशनी को संश्लेषित करते हैं। सामान्यतः इन छवियों को पूर्ण रूप से बंद संघनित्र (जो कि सम्भवता ही कभी उपयोग किया जाता है) की तुलना में वस्तु की स्थानिक आवृत्तियों के बड़े भागो को कवर करने वाले डेटा के साथ एकल छवि बनाने के लिए मिश्रित किया जाता है।

अन्य प्रविधि, 4Pi सूक्ष्मदर्शी, प्रभावी संख्यात्मक छिद्र को दोगुना करने के लिए दो विरोधी उद्देश्यों का उपयोग करती है, आगे एवं पीछे असंगठित हुए प्रकाश को एकत्रित करके विवर्तन सीमा को प्रभावी ढंग से अर्द्ध कर देती है। असंगत या संरचित रोशनी के संयोजन के साथ पारदर्शी प्रारूप की कल्पना करते समय, साथ ही आगे एवं पीछे दोनों प्रकार के असंगठित हुए प्रकाश को एकत्रित करते हुए, पूर्ण इवाल्ड के वृत्त की छवि बनाना संभव है।

सुपर-प्रस्ताव सूक्ष्मदर्शीी स्थानीयकरण सूक्ष्मदर्शीी पर निर्भर प्रविधियों के विपरीत, ऐसी प्रणालियाँ अभी भी रोशनी (संघनित्र) एवं संग्रह प्रकाशिकी (उद्देश्य) की विवर्तन सीमा तक सीमित हैं, चूंकि व्यवहार में वे पारंपरिक प्रविधियों की तुलना में पर्याप्त प्रस्ताव सुधार प्रदान कर सकते हैं।

निकट-क्षेत्र प्रविधि

विवर्तन सीमा केवल सुदूर क्षेत्र में मान्य है क्योंकि यह मानता है कि कोई भी क्षणभंगुर क्षेत्र संसूचक तक नहीं पहुंचता है। विभिन्न निकट एवं दूर का मैदान प्रविधिया जो छवि प्लेन से दूर प्रकाश की ≈1 तरंग दैर्ध्य से अर्घ्य संचालित करती हैं, अधिक प्रस्ताव प्राप्त कर सकती हैं। ये प्रविधिया इस तथ्य का लाभ उठाती हैं, कि क्षणभंगुर क्षेत्र में विवर्तन सीमा से परे की जानकारी होती है, जिसका उपयोग अधिक उच्च प्रस्ताव की छवियों के निर्माण के लिए किया जा सकता है, सिद्धांत रूप में विवर्तन सीमा को आनुपातिक रूप से हराकर विशिष्ट कल्पना प्रणाली निकट-क्षेत्र संकेत की जानकारी प्राप्त कर सकता है। असंगठित हुई प्रकाश छवियो के लिए, निकट-क्षेत्र स्कैनिंग प्रकाशिक सूक्ष्मदर्शी एवं नैनो-FTIR जैसे उपकरण, जो परमाणु बल सूक्ष्मदर्शीी प्रणाली के ऊपर बनाए गए हैं, इनका उपयोग 10-50 nm प्रस्ताव तक प्राप्त करने के लिए किया जा सकता है। ऐसे उपकरणों द्वारा अभिलेख किए गए डेटा को प्रायः पर्याप्त प्रसंस्करण की आवश्यकता होती है, अनिवार्य रूप से प्रत्येक छवि के लिए प्रकाशिक समस्या को हल करना हैं।

मेटामटेरियल-आधारित app वस्तु के अधिक करीब (सामान्यतः सैकड़ों नैनोमीटर) लेंस की जानकारी प्राप्त करके विवर्तन सीमा से उत्तम प्रस्ताव के साथ छवि बना सकते हैं।

प्रतिदीप्ति सूक्ष्मदर्शीी में उत्तेजना एवं उत्सर्जन सामान्यतः विभिन्न तरंग दैर्ध्य पर होते हैं। कुल आंतरिक परावर्तन प्रतिदीप्ति सूक्ष्मदर्शीी में प्रारूप का पतला भाग तत्काल कवर ग्लास पर स्थित होता है, जो क्षणभंगुर क्षेत्र से उत्साहित होता है, एवं पारंपरिक विवर्तन-सीमित उद्देश्य के साथ अभिलेख किया जाता है, जिससे अक्षीय प्रस्ताव में सुधार होता है।

चूंकि, क्योंकि ये प्रविधिया 1 तरंग दैर्ध्य से परे छवि नहीं बना सकती हैं, उनका उपयोग 1 तरंग दैर्ध्य से अधिक मोटी वस्तुओं में छवि के लिए नहीं किया जा सकता है जो उनकी प्रयोज्यता को सीमित करता है।

दूर-क्षेत्र की प्रविधि

दूर-क्षेत्र छविया प्रविधि छवि वस्तु के लिए सबसे अधिक वांछनीय हैं जो रोशनी तरंग दैर्ध्य की तुलना में बड़ी हैं, किन्तु इसमें उचित संरचना होती है। इसमें लगभग सभी जैविक अनुप्रयोग सम्मिलित हैं जिनमें कोशिकाएं कई तरंग दैर्ध्य विस्तृत करती हैं, किन्तु संरचना आणविक स्तरों तक होती है। शीर्घ के वर्षों में कई प्रविधिों ने दिखाया है कि मैक्रोस्कोपिक दूरी पर उप-विवर्तन सीमित छवि संभव है। विवर्तन सीमा से भिन्न प्रस्ताव उत्पन्न करने के लिए, ये प्रविधिया सामान्यतः सामग्री के परावर्तित प्रकाश में प्रकाशिक अरैखिकता प्रकाशिकी का शोषण करती हैं।

इन प्रविधिों में, (STED) एसटीईडी सूक्ष्मदर्शी सबसे सफल प्रविधिों में से रही है। एसटीईडी में, कई लेजर बीम का उपयोग पूर्व उत्तेजित करने के लिए किया जाता है, एवं प्रतिदीप्ति रंगों को बुझाया जाता है। क्वेंचिंग प्रक्रिया के कारण रोशनी के लिए गैर-रैखिक प्रतिक्रिया जिसमें अधिक प्रकाश जोड़ने से छवि अर्घ्य उज्ज्वल हो जाती है, डाई अणुओं के स्थान के विषय में उप-विवर्तन सीमित जानकारी उत्पन्न होती है, विवर्तन सीमा से परे संकल्प की अनुमति देता है उच्च रोशनी तीव्रता का उपयोग किया जाता है।

लेजर बीम

लेजर बीम पर ध्यान केंद्रित करने या टकराने की सीमाएं सूक्ष्मदर्शी या दूरदर्शक के साथ छवियो की सीमाओं के समान ही होती हैं। अंतर इतना है कि लेजर बीम सामान्यतः नरम-एज बीम होते हैं। प्रकाश वितरण में यह गैर-एकरूपता छवियो में परिचित 1.22 मान से थोड़ा भिन्न गुणांक की ओर ले जाती है। चूंकि, तरंग दैर्ध्य एवं छिद्र के साथ स्केलिंग बिल्कुल समान होती है।

लेजर बीम की गुणवत्ता की विशेषता यह है, कि इसका प्रचार तरंग दैर्ध्य पर आदर्श गाऊसी बीम से कितने उचित रूप युग्मित होता है। बीम गुणवत्ता कारक M चुकता (M2) इसके अभाव पर बीम के आकार को मापकर एवं अभाव से दूर इसका विचलन पाया जाता है। एवं दोनों के उत्पाद को बीम पैरामीटर उत्पाद के रूप में जाना जाता है। इस मापा बीम पैरामीटर उत्पाद का आदर्श के अनुपात को M2 के रूप में परिभाषित किया गया है, जिससे M2=12 आदर्श बीम का वर्णन करता है। उन्हें बीम का मान तब संरक्षित होता है, जब इसे विवर्तन-सीमित प्रकाशिकी द्वारा रूपांतरित किया जाता है।

कई अर्घ्य एवं मध्यम शक्ति वाले लेज़रों के आउटपुट में M2 1.2 या उससे अर्घ्य के मान, एवं अनिवार्य रूप से विवर्तन-सीमित हैं।

अन्य तरंगें

अन्य तरंग-आधारित सेंसर, जैसे कि रडार एवं मानव कान पर समान समीकरण प्रारम्भ होते हैं।

प्रकाश तरंगों (अर्थात्, फोटॉन) के विपरीत, विशाल कणों का उनके क्वांटम यांत्रिक तरंग दैर्ध्य एवं उनकी ऊर्जा के मध्य भिन्न संबंध होता है। यह संबंध इंगित करता है कि प्रभावी डी ब्रोगली तरंग दैर्ध्य कण की गति के व्युत्क्रमानुपाती होता है। उदाहरण के लिए, 10 keV की ऊर्जा पर इलेक्ट्रॉन में 0.01 nm का तरंग दैर्ध्य होता है, जिससे इलेक्ट्रॉन सूक्ष्मदर्शी (स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी या संचरण इलेक्ट्रॉन सूक्ष्मदर्शीी) को उच्च प्रस्ताव की छवियां प्राप्त करने की अनुमति मिलती है। हीलियम, नियोन एवं गैलियम आयन जैसे अन्य विशाल कणों का उपयोग दृश्यमान प्रकाश से प्राप्त किए जा सकने वाले संकल्पों से परे छवियों का निर्माण करने के लिए किया गया है। इस प्रकार के उपकरण प्रणाली कठिनाई के मूल्य पर नैनोमीटर स्केल इमेजिंग, विश्लेषण एवं निर्माण क्षमता प्रदान करते हैं।

यह भी देखें

संदर्भ

  1. Born, Max; Emil Wolf (1997). Principles of Optics. Cambridge University Press. ISBN 0-521-63921-2.
  2. Lipson, Lipson and Tannhauser (1998). ऑप्टिकल भौतिकी. United Kingdom: Cambridge. p. 340. ISBN 978-0-521-43047-0.
  3. Fliegel, Karel (December 2004). "छवि संवेदक विशेषताओं की मॉडलिंग और मापन" (PDF). Radioengineering. 13 (4).
  4. Niek van Hulst (2009). "Many photons get more out of diffraction". Optics & Photonics Focus. 4 (1).
  5. Streibl, Norbert (February 1985). "माइक्रोस्कोप द्वारा त्रि-आयामी इमेजिंग". Journal of the Optical Society of America A. 2 (2): 121–127. Bibcode:1985JOSAA...2..121S. doi:10.1364/JOSAA.2.000121.
  6. Sheppard, C.J.R.; Mao, X.Q. (September 1989). "माइक्रोस्कोप में त्रि-आयामी इमेजिंग". Journal of the Optical Society of America A. 6 (9): 1260–1269. Bibcode:1989JOSAA...6.1260S. doi:10.1364/JOSAA.6.001260.


बाहरी संबंध