अनुरूप किलिंग सदिश क्षेत्र: Difference between revisions
m (Abhishekkshukla moved page अनुरूप किलिंग वेक्टर क्षेत्र to अनुरूप किलिंग सदिश क्षेत्र without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Vector field in conformal geometry}} | {{Short description|Vector field in conformal geometry}} | ||
[[अनुरूप ज्यामिति]] में, रीमैनियन मीट्रिक <math>g</math> के साथ [[आयाम]] ''n'' के [[कई गुना|मैनीफोल्ड]] पर अनुरूप किलिंग | [[अनुरूप ज्यामिति]] में, रीमैनियन मीट्रिक <math>g</math> के साथ [[आयाम]] ''n'' के [[कई गुना|मैनीफोल्ड]] पर '''अनुरूप किलिंग सदिश क्षेत्र''' <math>X</math> होता है (जिसे सीकेवी या अनुरूप कॉलिनेशन भी कहा जाता है), जिसका (स्थानीय रूप से परिभाषित) [[प्रवाह (गणित)]] [[अनुरूप परिवर्तन|अनुरूप परिवर्तनों]] को परिभाषित करता है, अर्थात अनुरूप संरचना को स्केल करने एवं संरक्षित करने के लिए g को संरक्षित करता है। कई समतुल्य सूत्रीकरण, जिन्हें कंफर्मल किलिंग समीकरण कहा जाता है, प्रवाह के [[झूठ व्युत्पन्न|लाइ व्युत्पन्न]] के संदर्भ में उपस्थित हैं, उदाहरण के लिए <math>\mathcal{L}_{X}g = \lambda g</math> कुछ फलन के लिए <math>\lambda</math> मैनीफोल्ड पर उपस्थित हैं। <math>n \ne 2</math> के लिए समाधानों की सीमित संख्या होती है, जो उस स्थान की [[अनुरूप समरूपता]] को निर्दिष्ट करती है, किन्तु दो आयामों में समाधानों की अनंतता होती है। किलिंग नाम [[ विल्हेम हत्या |विल्हेम किलिंग]] को संदर्भित करता है, जिसने सबसे पूर्व किलिंग सदिश क्षेत्रों का अन्वेषण किया है। | ||
== डेंसिटाइज़्ड मेट्रिक टेन्सर | == डेंसिटाइज़्ड मेट्रिक टेन्सर एवं अनुरूप किलिंग सदिश == | ||
सदिश क्षेत्र <math>X</math> किलिंग सदिश क्षेत्र है यदि इसका प्रवाह मीट्रिक टेन्सर <math>g</math> को संरक्षित करता है (मैनीफोल्ड प्रवाह के प्रत्येक कॉम्पैक्ट सबसेट के लिए केवल सीमित समय के लिए परिभाषित किया जाना चाहिए)। गणितीय रूप से प्रस्तुत <math>X</math> किलिंग है यदि यह निम्नलिखित संतुष्ट करता है- | |||
:<math>\mathcal{L}_X g = 0.</math> | :<math>\mathcal{L}_X g = 0.</math> | ||
जहाँ <math>\mathcal{L}_X</math> लाइ व्युत्पन्न है। | जहाँ <math>\mathcal{L}_X</math> लाइ व्युत्पन्न है। | ||
सामान्यतः, w-किलिंग | सामान्यतः, w-किलिंग सदिश क्षेत्र <math>X</math> को सदिश क्षेत्र के रूप में परिभाषित करें, जिसका (स्थानीय) प्रवाह घनत्वित मीट्रिक <math>g\mu_g^w</math> को संरक्षित करता है, जहाँ <math>\mu_g</math>, <math>g</math> द्वारा परिभाषित आयतन घनत्व है (अर्थात स्थानीय रूप से<math>\mu_g = \sqrt{|\det(g)|} \, dx^1\cdots dx^n </math>) एवं <math>w \in \mathbf{R}</math> इसका भार है। ध्यान दें कि किलिंग सदिश क्षेत्र <math>\mu_g</math> को संरक्षित करता है एवं इसीलिए स्वचालित रूप से यह सामान्य समीकरण को भी संतुष्ट करता है। यह भी ध्यान दें कि <math>w = -2/n</math> अद्वितीय भार है जो मीट्रिक के स्केलिंग के अंतर्गत संयोजन <math>g \mu_g^w</math> को अपरिवर्तनीय बनाता है। इसलिए यह स्थिति मात्र [[अनुरूप संरचना]] पर निर्भर करती है। | ||
अब <math>X</math>, ''w''-किलिंग | अब <math>X</math>, ''w''-किलिंग सदिश क्षेत्र है यदि, | ||
:<math>\mathcal{L}_X \left(g\mu_g^{w}\right) = (\mathcal{L}_X g) \mu_g^{w} + w g \mu_g^{w -1} \mathcal{L}_X \mu_g = 0.</math> | :<math>\mathcal{L}_X \left(g\mu_g^{w}\right) = (\mathcal{L}_X g) \mu_g^{w} + w g \mu_g^{w -1} \mathcal{L}_X \mu_g = 0.</math> | ||
चूँकि <math>\mathcal{L}_X \mu_g = \operatorname{div}(X) \mu_g</math>, <math> \mathcal{L}_X g = - w\operatorname{div}(X) g.</math> के तुल्य है। | चूँकि <math>\mathcal{L}_X \mu_g = \operatorname{div}(X) \mu_g</math>, <math> \mathcal{L}_X g = - w\operatorname{div}(X) g.</math> के तुल्य है। | ||
:दोनों पक्षों के अंशों को लेते हुए हम <math>2\mathop{\mathrm{div}}(X) = -w n \operatorname{div}(X)</math> निष्कर्ष प्राप्त करते हैं। इसलिए <math>w \ne -2/n</math> के लिए, अनिवार्य रूप से <math>\operatorname{div}(X) = 0 </math> | :दोनों पक्षों के अंशों को लेते हुए हम <math>2\mathop{\mathrm{div}}(X) = -w n \operatorname{div}(X)</math> निष्कर्ष प्राप्त करते हैं। इसलिए <math>w \ne -2/n</math> के लिए, अनिवार्य रूप से <math>\operatorname{div}(X) = 0 </math> एवं ''w''-किलिंग सदिश क्षेत्र, सामान्य किलिंग सदिश क्षेत्र है जिसका प्रवाह मीट्रिक को संरक्षित करता है। चूँकि, <math>w = -2/n</math> के लिए, <math>X</math> का प्रवाह अनुरूप संरचना को संरक्षित करता है एवं परिभाषा के अनुसार, अनुरूप किलिंग सदिश क्षेत्र है। | ||
== समतुल्य सूत्रीकरण == | == समतुल्य सूत्रीकरण == | ||
Line 25: | Line 25: | ||
चूँकि, अंतिम दो रूप भी समतुल्य हैं, संकेत से ज्ञात होता है कि आवश्यक रूप से <math>\lambda = (2/n) \operatorname{div}(X)</math> होता है। | चूँकि, अंतिम दो रूप भी समतुल्य हैं, संकेत से ज्ञात होता है कि आवश्यक रूप से <math>\lambda = (2/n) \operatorname{div}(X)</math> होता है। | ||
अंतिम रूप यह स्पष्ट करता है कि कोई भी किलिंग | अंतिम रूप यह स्पष्ट करता है कि कोई भी किलिंग सदिश <math>\lambda \cong 0</math> के साथ अनुरूप किलिंग सदिश भी है। | ||
== अनुरूप किलिंग समीकरण == | == अनुरूप किलिंग समीकरण == | ||
<math>\mathcal{L}_X g = 2 \left(\nabla X^\flat \right)^{\mathrm{symm}}</math> का उपयोग करके जहां <math>\nabla</math>, <math>g</math> लेवी सिविटा का व्युत्पन्न (सहपरिवर्ती व्युत्पन्न) है, | <math>\mathcal{L}_X g = 2 \left(\nabla X^\flat \right)^{\mathrm{symm}}</math> का उपयोग करके जहां <math>\nabla</math>, <math>g</math> लेवी सिविटा का व्युत्पन्न (सहपरिवर्ती व्युत्पन्न) है, एवं <math>X^{\flat}=g(X,\cdot)</math>, <math>X</math> का युग्म 1 रूप है (संबद्ध सहपरिवर्ती व्युत्पन्न निम्न सूचकांकों के साथ), एवं <math>{}^{\mathrm{symm}}</math> सममित भाग पर प्रक्षेपण है, अनुरूप किलिंग समीकरण लिखने के लिए निम्नलिखित सूचकांक संकेतन है- | ||
:<math>\nabla_a X_b + \nabla_b X_a = \frac{2}{n}g_{ab}\nabla_{c}X^c.</math> | :<math>\nabla_a X_b + \nabla_b X_a = \frac{2}{n}g_{ab}\nabla_{c}X^c.</math> | ||
अनुरूप किलिंग समीकरण लिखने के लिए अन्य सूचकांक संकेतन है- | अनुरूप किलिंग समीकरण लिखने के लिए अन्य सूचकांक संकेतन है- | ||
Line 41: | Line 41: | ||
<math>n</math>-डायमेंशनल समतल समष्टि में जो कि [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्पेस]] या छद्म-यूक्लिडियन स्पेस है, वहां विश्व स्तर पर फ्लैट निर्देशांक उपस्थित हैं जिसमें हमारे निकट स्थिर मीट्रिक <math>g_{\mu\nu} = \eta_{\mu\nu}</math> है जहां हस्ताक्षर <math>(p,q)</math> के साथ समष्टि में, हमारे निकट घटक <math>(\eta_{\mu\nu}) = \text{diag}(+1,\cdots,+1,-1,\cdots,-1)</math> हैं। इन निर्देशांकों में, कनेक्शन घटक विलुप्त हो जाते हैं, इसलिए सहपरिवर्ती व्युत्पन्न समन्वय व्युत्पन्न होते है। समतल समष्टि में अनुरूप किलिंग समीकरण है- | <math>n</math>-डायमेंशनल समतल समष्टि में जो कि [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्पेस]] या छद्म-यूक्लिडियन स्पेस है, वहां विश्व स्तर पर फ्लैट निर्देशांक उपस्थित हैं जिसमें हमारे निकट स्थिर मीट्रिक <math>g_{\mu\nu} = \eta_{\mu\nu}</math> है जहां हस्ताक्षर <math>(p,q)</math> के साथ समष्टि में, हमारे निकट घटक <math>(\eta_{\mu\nu}) = \text{diag}(+1,\cdots,+1,-1,\cdots,-1)</math> हैं। इन निर्देशांकों में, कनेक्शन घटक विलुप्त हो जाते हैं, इसलिए सहपरिवर्ती व्युत्पन्न समन्वय व्युत्पन्न होते है। समतल समष्टि में अनुरूप किलिंग समीकरण है- | ||
:<math>\partial_\mu X_\nu + \partial_\nu X_\mu = \frac{2}{n}\eta_{\mu\nu} \partial_\rho X^\rho.</math> | :<math>\partial_\mu X_\nu + \partial_\nu X_\mu = \frac{2}{n}\eta_{\mu\nu} \partial_\rho X^\rho.</math> | ||
समतल समष्टि अनुरूप किलिंग समीकरण के समाधान में समतल समष्टि किलिंग समीकरण के समाधान सम्मिलित हैं, जिसका वर्णन किलिंग | समतल समष्टि अनुरूप किलिंग समीकरण के समाधान में समतल समष्टि किलिंग समीकरण के समाधान सम्मिलित हैं, जिसका वर्णन किलिंग सदिश क्षेत्र के लेख में किया गया है। ये समतल समष्टि के आइसोमेट्रीज़ के पोंकारे समूह को उत्पन्न करते हैं। दृष्टिकोण <math>X^\mu = M^{\mu\nu}x_\nu,</math> को ध्यान में रखते हुए हम <math>M^{\mu\nu}</math> के विषम भाग को विस्थापित कर देते हैं क्योंकि यह ज्ञात समाधानों से युग्मित होता है एवं हम नए समाधानों का अनुसंधान कर रहे हैं। तब <math>M^{\mu\nu}</math> सममित है। इस प्रकार यह वास्तविक <math>\lambda</math> के लिए <math>M^\mu_\nu = \lambda\delta^\mu_\nu</math> के साथ समानता है एवं संबंधित किलिंग सदिश <math>X^\mu = \lambda x^\mu</math>है। | ||
सामान्य समाधान से <math>n</math> अधिक उत्पादक हैं जिन्हें [[विशेष अनुरूप परिवर्तन|विशेष अनुरूप परिवर्तनों]] के रूप में जाना जाता है, जो निम्नलिखित समीकरण द्वारा प्राप्त है- | सामान्य समाधान से <math>n</math> अधिक उत्पादक हैं जिन्हें [[विशेष अनुरूप परिवर्तन|विशेष अनुरूप परिवर्तनों]] के रूप में जाना जाता है, जो निम्नलिखित समीकरण द्वारा प्राप्त है- | ||
Line 50: | Line 50: | ||
हम टेलर का विस्तार करते हैं <math>X_\mu</math> में <math>x^\mu</math> प्रपत्र की शर्तों का (अनंत) रैखिक संयोजन प्राप्त करने के लिए | हम टेलर का विस्तार करते हैं <math>X_\mu</math> में <math>x^\mu</math> प्रपत्र की शर्तों का (अनंत) रैखिक संयोजन प्राप्त करने के लिए | ||
:<math>X_\mu = a_{\mu\mu_1\cdots\mu_n}x^{\mu_1}\cdots x^{\mu_n},</math> | :<math>X_\mu = a_{\mu\mu_1\cdots\mu_n}x^{\mu_1}\cdots x^{\mu_n},</math> | ||
जहां टेंसर <math>\mathbf{a}</math> के आदान-प्रदान के तहत सममित है <math>\mu_i,\mu_j</math> | जहां टेंसर <math>\mathbf{a}</math> के आदान-प्रदान के तहत सममित है <math>\mu_i,\mu_j</math> किन्तु आवश्यक नहीं <math>\mu</math> साथ <math>\mu_i</math>. | ||
सादगी के लिए, हम तक सीमित हैं <math>n = 2</math>, जो | सादगी के लिए, हम तक सीमित हैं <math>n = 2</math>, जो पश्चात में उच्च आदेश शर्तों के लिए सूचनात्मक होगा। अनुरूप हत्या समीकरण देता है | ||
:<math>a_{\mu\nu\rho} + a_{\nu\mu\rho} - \frac{2}{n}\eta_{\mu\nu}a^\sigma{}_{\sigma\rho} = 0.</math> | :<math>a_{\mu\nu\rho} + a_{\nu\mu\rho} - \frac{2}{n}\eta_{\mu\nu}a^\sigma{}_{\sigma\rho} = 0.</math> | ||
अब हम प्रोजेक्ट करते हैं <math>a_{\mu\nu\rho}</math> दो स्वतंत्र टेंसरों में: इसके पूर्व दो सूचकांकों पर ट्रेसलेस और शुद्ध ट्रेस भाग। शुद्ध अंश स्वचालित रूप से समीकरण को संतुष्ट करता है और वह है <math>c_{\mu\nu\rho}</math> उत्तर में। ट्रेसलेस पार्ट <math>\tilde a_{\mu\nu\rho}</math> दिखाते हुए नियमित किलिंग समीकरण को संतुष्ट करता है <math>\tilde\mathbf{a}</math>पूर्व दो सूचकांकों पर विषम है। यह दूसरे दो सूचकांकों पर सममित है। इससे पता चलता है कि सूचकांकों के चक्रीय क्रमचय केअंतर्गत, <math>\tilde\mathbf{a}</math> | अब हम प्रोजेक्ट करते हैं <math>a_{\mu\nu\rho}</math> दो स्वतंत्र टेंसरों में: इसके पूर्व दो सूचकांकों पर ट्रेसलेस और शुद्ध ट्रेस भाग। शुद्ध अंश स्वचालित रूप से समीकरण को संतुष्ट करता है और वह है <math>c_{\mu\nu\rho}</math> उत्तर में। ट्रेसलेस पार्ट <math>\tilde a_{\mu\nu\rho}</math> दिखाते हुए नियमित किलिंग समीकरण को संतुष्ट करता है <math>\tilde\mathbf{a}</math>पूर्व दो सूचकांकों पर विषम है। यह दूसरे दो सूचकांकों पर सममित है। इससे पता चलता है कि सूचकांकों के चक्रीय क्रमचय केअंतर्गत, <math>\tilde\mathbf{a}</math> ऋण चिह्न उठाता है। तीन चक्रीय क्रमपरिवर्तन के पश्चात, हम सीखते हैं <math>\tilde\mathbf{a} = 0</math>. | ||
उच्च आदेश | उच्च आदेश नियम विल्पुत हो जाते हैं (पूर्ण होने के लिए) | ||
{{Hidden end}} | {{Hidden end}} | ||
साथ में <math>n</math> अनुवाद <math>n(n-1)/2</math> लोरेंत्ज़ ट्रांसफ़ॉर्मेशन 1 डिलेटेशन | साथ में <math>n</math> अनुवाद <math>n(n-1)/2</math> लोरेंत्ज़ ट्रांसफ़ॉर्मेशन 1 डिलेटेशन एवं <math>n</math> विशेष अनुरूप रूपांतरण में अनुरूप बीजगणित सम्मिलित होता है, जो छद्म-यूक्लिडियन समष्टि के [[अनुरूप समूह]] उत्पन्न करता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[Affine वेक्टर क्षेत्र|एफ्फिन | * [[Affine वेक्टर क्षेत्र|एफ्फिन सदिश क्षेत्र]] | ||
* [[वक्रता संरेखन]] | * [[वक्रता संरेखन]] | ||
* [[आइंस्टीन कई गुना|आइंस्टीन]] [[कई गुना|मैनीफोल्ड]] | * [[आइंस्टीन कई गुना|आइंस्टीन]] [[कई गुना|मैनीफोल्ड]] | ||
* [[होमोथेटिक वेक्टर क्षेत्र]] | * [[होमोथेटिक वेक्टर क्षेत्र|होमोथेटिक सदिश क्षेत्र]] | ||
* [[अपरिवर्तनीय अंतर ऑपरेटर]] | * [[अपरिवर्तनीय अंतर ऑपरेटर]] | ||
* किलिंग | * किलिंग सदिश क्षेत्र | ||
* [[पदार्थ संरेखन]] | * [[पदार्थ संरेखन]] | ||
* [[स्पेसटाइम समरूपता]] | * [[स्पेसटाइम समरूपता]] | ||
Line 73: | Line 73: | ||
==संदर्भ== | ==संदर्भ== | ||
* Wald, R. M. (1984). General Relativity. The University of Chicago Press. | * Wald, R. M. (1984). General Relativity. The University of Chicago Press. | ||
[[Category:Created On 02/05/2023]] | [[Category:Created On 02/05/2023]] | ||
Line 83: | Line 78: | ||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | [[Category:Pages with script errors]] | ||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | [[Category:Templates Vigyan Ready]] | ||
[[Category:Templates that add a tracking category]] | [[Category:Templates that add a tracking category]] |
Latest revision as of 15:31, 30 October 2023
अनुरूप ज्यामिति में, रीमैनियन मीट्रिक के साथ आयाम n के मैनीफोल्ड पर अनुरूप किलिंग सदिश क्षेत्र होता है (जिसे सीकेवी या अनुरूप कॉलिनेशन भी कहा जाता है), जिसका (स्थानीय रूप से परिभाषित) प्रवाह (गणित) अनुरूप परिवर्तनों को परिभाषित करता है, अर्थात अनुरूप संरचना को स्केल करने एवं संरक्षित करने के लिए g को संरक्षित करता है। कई समतुल्य सूत्रीकरण, जिन्हें कंफर्मल किलिंग समीकरण कहा जाता है, प्रवाह के लाइ व्युत्पन्न के संदर्भ में उपस्थित हैं, उदाहरण के लिए कुछ फलन के लिए मैनीफोल्ड पर उपस्थित हैं। के लिए समाधानों की सीमित संख्या होती है, जो उस स्थान की अनुरूप समरूपता को निर्दिष्ट करती है, किन्तु दो आयामों में समाधानों की अनंतता होती है। किलिंग नाम विल्हेम किलिंग को संदर्भित करता है, जिसने सबसे पूर्व किलिंग सदिश क्षेत्रों का अन्वेषण किया है।
डेंसिटाइज़्ड मेट्रिक टेन्सर एवं अनुरूप किलिंग सदिश
सदिश क्षेत्र किलिंग सदिश क्षेत्र है यदि इसका प्रवाह मीट्रिक टेन्सर को संरक्षित करता है (मैनीफोल्ड प्रवाह के प्रत्येक कॉम्पैक्ट सबसेट के लिए केवल सीमित समय के लिए परिभाषित किया जाना चाहिए)। गणितीय रूप से प्रस्तुत किलिंग है यदि यह निम्नलिखित संतुष्ट करता है-
जहाँ लाइ व्युत्पन्न है।
सामान्यतः, w-किलिंग सदिश क्षेत्र को सदिश क्षेत्र के रूप में परिभाषित करें, जिसका (स्थानीय) प्रवाह घनत्वित मीट्रिक को संरक्षित करता है, जहाँ , द्वारा परिभाषित आयतन घनत्व है (अर्थात स्थानीय रूप से) एवं इसका भार है। ध्यान दें कि किलिंग सदिश क्षेत्र को संरक्षित करता है एवं इसीलिए स्वचालित रूप से यह सामान्य समीकरण को भी संतुष्ट करता है। यह भी ध्यान दें कि अद्वितीय भार है जो मीट्रिक के स्केलिंग के अंतर्गत संयोजन को अपरिवर्तनीय बनाता है। इसलिए यह स्थिति मात्र अनुरूप संरचना पर निर्भर करती है।
अब , w-किलिंग सदिश क्षेत्र है यदि,
चूँकि , के तुल्य है।
- दोनों पक्षों के अंशों को लेते हुए हम निष्कर्ष प्राप्त करते हैं। इसलिए के लिए, अनिवार्य रूप से एवं w-किलिंग सदिश क्षेत्र, सामान्य किलिंग सदिश क्षेत्र है जिसका प्रवाह मीट्रिक को संरक्षित करता है। चूँकि, के लिए, का प्रवाह अनुरूप संरचना को संरक्षित करता है एवं परिभाषा के अनुसार, अनुरूप किलिंग सदिश क्षेत्र है।
समतुल्य सूत्रीकरण
निम्नलिखित समकक्ष हैं-
- अनुरूप किलिंग सदिश क्षेत्र है,
- (स्थानीय रूप से परिभाषित) का प्रवाह अनुरूप संरचना को संरक्षित करता है,
- किसी फंक्शन के लिए है।
उपर्युक्त विचार से यह प्रतीत होता है कि सामान्य अंतिम रूप के अतिरिक्त सभी की समानता प्रमाणित होती है।
चूँकि, अंतिम दो रूप भी समतुल्य हैं, संकेत से ज्ञात होता है कि आवश्यक रूप से होता है।
अंतिम रूप यह स्पष्ट करता है कि कोई भी किलिंग सदिश के साथ अनुरूप किलिंग सदिश भी है।
अनुरूप किलिंग समीकरण
का उपयोग करके जहां , लेवी सिविटा का व्युत्पन्न (सहपरिवर्ती व्युत्पन्न) है, एवं , का युग्म 1 रूप है (संबद्ध सहपरिवर्ती व्युत्पन्न निम्न सूचकांकों के साथ), एवं सममित भाग पर प्रक्षेपण है, अनुरूप किलिंग समीकरण लिखने के लिए निम्नलिखित सूचकांक संकेतन है-
अनुरूप किलिंग समीकरण लिखने के लिए अन्य सूचकांक संकेतन है-
उदाहरण
समतल समष्टि
-डायमेंशनल समतल समष्टि में जो कि यूक्लिडियन स्पेस या छद्म-यूक्लिडियन स्पेस है, वहां विश्व स्तर पर फ्लैट निर्देशांक उपस्थित हैं जिसमें हमारे निकट स्थिर मीट्रिक है जहां हस्ताक्षर के साथ समष्टि में, हमारे निकट घटक हैं। इन निर्देशांकों में, कनेक्शन घटक विलुप्त हो जाते हैं, इसलिए सहपरिवर्ती व्युत्पन्न समन्वय व्युत्पन्न होते है। समतल समष्टि में अनुरूप किलिंग समीकरण है-
समतल समष्टि अनुरूप किलिंग समीकरण के समाधान में समतल समष्टि किलिंग समीकरण के समाधान सम्मिलित हैं, जिसका वर्णन किलिंग सदिश क्षेत्र के लेख में किया गया है। ये समतल समष्टि के आइसोमेट्रीज़ के पोंकारे समूह को उत्पन्न करते हैं। दृष्टिकोण को ध्यान में रखते हुए हम के विषम भाग को विस्थापित कर देते हैं क्योंकि यह ज्ञात समाधानों से युग्मित होता है एवं हम नए समाधानों का अनुसंधान कर रहे हैं। तब सममित है। इस प्रकार यह वास्तविक के लिए के साथ समानता है एवं संबंधित किलिंग सदिश है।
सामान्य समाधान से अधिक उत्पादक हैं जिन्हें विशेष अनुरूप परिवर्तनों के रूप में जाना जाता है, जो निम्नलिखित समीकरण द्वारा प्राप्त है-
जहां पर का ट्रेसलेस भाग विलुप्त हो जाता है, इसलिए द्वारा पैरामीट्रिज किया जा सकता है।
हम टेलर का विस्तार करते हैं में प्रपत्र की शर्तों का (अनंत) रैखिक संयोजन प्राप्त करने के लिए
जहां टेंसर के आदान-प्रदान के तहत सममित है किन्तु आवश्यक नहीं साथ .
सादगी के लिए, हम तक सीमित हैं , जो पश्चात में उच्च आदेश शर्तों के लिए सूचनात्मक होगा। अनुरूप हत्या समीकरण देता है
अब हम प्रोजेक्ट करते हैं दो स्वतंत्र टेंसरों में: इसके पूर्व दो सूचकांकों पर ट्रेसलेस और शुद्ध ट्रेस भाग। शुद्ध अंश स्वचालित रूप से समीकरण को संतुष्ट करता है और वह है उत्तर में। ट्रेसलेस पार्ट दिखाते हुए नियमित किलिंग समीकरण को संतुष्ट करता है पूर्व दो सूचकांकों पर विषम है। यह दूसरे दो सूचकांकों पर सममित है। इससे पता चलता है कि सूचकांकों के चक्रीय क्रमचय केअंतर्गत, ऋण चिह्न उठाता है। तीन चक्रीय क्रमपरिवर्तन के पश्चात, हम सीखते हैं .
उच्च आदेश नियम विल्पुत हो जाते हैं (पूर्ण होने के लिए)
साथ में अनुवाद लोरेंत्ज़ ट्रांसफ़ॉर्मेशन 1 डिलेटेशन एवं विशेष अनुरूप रूपांतरण में अनुरूप बीजगणित सम्मिलित होता है, जो छद्म-यूक्लिडियन समष्टि के अनुरूप समूह उत्पन्न करता है।
यह भी देखें
- एफ्फिन सदिश क्षेत्र
- वक्रता संरेखन
- आइंस्टीन मैनीफोल्ड
- होमोथेटिक सदिश क्षेत्र
- अपरिवर्तनीय अंतर ऑपरेटर
- किलिंग सदिश क्षेत्र
- पदार्थ संरेखन
- स्पेसटाइम समरूपता
संदर्भ
- Wald, R. M. (1984). General Relativity. The University of Chicago Press.