इलेक्ट्रॉन-गणना: Difference between revisions
m (→उदाहरण) |
m (→यह भी देखें) |
||
Line 130: | Line 130: | ||
<!-- A bimetallic species with sharing ligands --> | <!-- A bimetallic species with sharing ligands --> | ||
<!-- A bimetallic species with a metal-metal bond --> | <!-- A bimetallic species with a metal-metal bond --> | ||
ये उदाहरण इलेक्ट्रॉन-गणना के तरीकों को दिखाते हैं, वे एक औपचारिकता हैं, और वास्तविक जीवन के रासायनिक परिवर्तनों से कोई लेना-देना नहीं है। ऊपर वर्णित अधिकांश 'टुकड़े' इस तरह मौजूद नहीं हैं; उन्हें एक बोतल में नहीं रखा जा सकता: उदा। तटस्थ सी, टेट्रा-आयनिक सी, तटस्थ टीआई, और टेट्रा-केशनिक टीआई मुक्त प्रजातियां नहीं हैं, वे हमेशा किसी चीज से बंधे होते हैं, तटस्थ सी के लिए, यह आमतौर पर ग्रेफाइट, चारकोल, हीरा (इलेक्ट्रॉनों के साथ साझा करना) में पाया जाता है। पड़ोसी कार्बन), टीआई के लिए जो इसकी धातु के रूप में पाया जा सकता है (जहां यह पड़ोसी टीआई परमाणुओं के साथ अपने इलेक्ट्रॉनों को साझा करता है), सी<sup>4−</sup> और Ti<sup>4+</sup> केवल उपयुक्त काउंटरों के साथ 'अस्तित्व' है (जिसके साथ वे संभवतः इलेक्ट्रॉनों को साझा करते हैं)। तो इन औपचारिकताओं का उपयोग केवल यौगिकों की स्थिरता या गुणों की भविष्यवाणी करने के लिए किया जाता है! | ये उदाहरण इलेक्ट्रॉन-गणना के तरीकों को दिखाते हैं, वे एक औपचारिकता हैं, और वास्तविक जीवन के रासायनिक परिवर्तनों से कोई लेना-देना नहीं है। ऊपर वर्णित अधिकांश 'टुकड़े' इस तरह मौजूद नहीं हैं; उन्हें एक बोतल में नहीं रखा जा सकता: उदा। तटस्थ सी, टेट्रा-आयनिक सी, तटस्थ टीआई, और टेट्रा-केशनिक टीआई मुक्त प्रजातियां नहीं हैं, वे हमेशा किसी चीज से बंधे होते हैं, तटस्थ सी के लिए, यह आमतौर पर ग्रेफाइट, चारकोल, हीरा (इलेक्ट्रॉनों के साथ साझा करना) में पाया जाता है। पड़ोसी कार्बन), टीआई के लिए जो इसकी धातु के रूप में पाया जा सकता है (जहां यह पड़ोसी टीआई परमाणुओं के साथ अपने इलेक्ट्रॉनों को साझा करता है), सी<sup>4−</sup> और Ti<sup>4+</sup> केवल उपयुक्त काउंटरों के साथ 'अस्तित्व' है (जिसके साथ वे संभवतः इलेक्ट्रॉनों को साझा करते हैं)। तो इन औपचारिकताओं का उपयोग केवल यौगिकों की स्थिरता या गुणों की भविष्यवाणी करने के लिए किया जाता है! These examples show the methods of electron counting, they are a ''formalism'', and don't have anything to do with ''real life'' chemical transformations. Most of the 'fragments' mentioned above do '''not''' exist as such; they cannot be kept in a bottle: e.g. the neutral C, the tetra-anionic C, the neutral Ti, and the tetra-cationic Ti are not ''free'' species, they are always bound to something, for neutral C, it is commonly found in graphite, charcoal, diamond (sharing electrons with the neighboring carbons), as for Ti which can be found as its metal (where it shares its electrons with neighboring Ti atoms), C<sup>4−</sup> and Ti<sup>4+</sup> 'exist' only with appropriate counterions (with which they probably share electrons). So these formalisms are only used to predict stabilities or properties of compounds! | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 13:25, 16 November 2022
इलेक्ट्रॉन-गणना एक औपचारिकता है जिसका उपयोग यौगिकों को वर्गीकृत करने और इलेक्ट्रॉनिक संरचना और रासायनिक बंध को समझाने या पूर्व-सूचना देने के लिए किया जाता है।[1] रसायन विज्ञान में कई नियम इलेक्ट्रॉन-गणना पर निर्भर करते हैं:
- अष्टक नियम का उपयोग लुईस संरचनाओं के साथ मुख्य समूह तत्वों के लिए किया जाता है, विशेष रूप से हल्के वाले जैसे कार्बन,नाइट्रोजन और ऑक्सीजन ,
- अकार्बनिक रसायन विज्ञान में 18-इलेक्ट्रॉन नियम और संक्रमण धातुओं के कार्बधात्विक रसायन शास्त्र,
- ऐरोमैटिक यौगिकों का पाई इलेक्ट्रॉन के लिए हकल का नियम,
- बहुफलकीय संकुल यौगिकों के लिए बहुफलकीय कंकाल इलेक्ट्रॉन युग्म सिद्धांत, जिसमें संक्रमण धातु और मुख्य समूह तत्व और मिश्रण शामिल हैं, जैसे बोरेन
परमाणुओं को इलेक्ट्रॉन की कमी कहा जाता है। इलेक्ट्रॉन की कमी तब होती है जब उनके संबंधित नियमों की तुलना में बहुत कम इलेक्ट्रॉन होते हैं, या जब उनके पास बहुत अधिक इलेक्ट्रॉन होते हैं तो उन्हें हाइपरवेलेंट अणु कहते हैं। चूंकि ये यौगिक उन यौगिकों की तुलना में अधिक अभिक्रियाशील होते हैं जो उनके नियम का पालन करते हैं, इलेक्ट्रॉन-गणना अणुओं कीअभिक्रिया शीलता की पहचान करने के लिए एक महत्वपूर्ण साधन है।
गणना नियम
इलेक्ट्रॉन गणना के दो तरीके लोकप्रिय हैं और दोनों एक ही परिणाम देते हैं।
- तटस्थ गणना दृष्टिकोण मानता है कि अध्ययन किए जा रहे अणु या टुकड़े में पूर्ण रूप से सहसंयोजक बंध होते हैं। इसेमैल्कम ग्रीन (रसायनज्ञ) द्वारा L और X लिगेंड संकेत चिन्ह के साथ लोकप्रिय बनाया गया था।[2][3] यह आमतौर पर विशेष रूप से कम-संयोजक संक्रमण धातुओं के लिए आसान माना जाता है।[citation needed]
- आयनिक गणना दृष्टिकोण बताता है कि परमाणुओं के बीच पूर्ण रूप से आयनिक बंध है। दोनों तरीकों को अपनाकर कोई गणना की जांच कर सकता है।
हालांकि, यह जानना महत्वपूर्ण है कि अधिकांश रासायनिक यौगिक पूर्ण रूप से सहसंयोजक और आयनिक यौगिकों के बीच मौजूद हैं।
तटस्थ गिनती
- यह विधि आवर्त सारणी पर केंद्रीय परमाणु का पता लगाने और उसके संयोजक इलेक्ट्रॉनों की संख्या निर्धारित करने से शुरू होती है। संक्रमण धातुओं से अलग मुख्य समूह तत्वों के लिए संयोजक इलेक्ट्रॉनों की गणना की जाती है।
- जैसे आवर्त 2 में: B, C, N, O, और F में क्रमशः 3, 4, 5, 6 और 7 संयोजक इलेक्ट्रॉन हैं।
- जैसे आवर्त 4 में: K, Ca, Sc, Ti, V, Cr, Fe, Ni में क्रमशः 1, 2, 3, 4, 5, 6, 8, 10 संयोजक इलेक्ट्रॉन होते हैं।
- प्रत्येक हैलाइड या अन्य ऋणात्मक लिगेंड के लिए 1 जोड़ा जाता है यह केंद्रीय परमाणु से एक सिग्मा बंध बनाता है।
- इलेक्ट्रान युग्म और धातु से बनने वाले बंध के लिए 2 जोड़ा जाता है दो इलेक्ट्रॉन युग्म धातु से बंध बनाते हैं (उदाहरण के लिए प्रत्येक लुईस क्षार एकाकी इलक्र्ट्रॉन युग्म के साथ बंध बनाता है)। असंतृप्त हाइड्रोकार्बन जैसे एल्कीन और एल्काइन्स को लुईस क्षार माना जाता है। इसी तरह लुईस और ब्रोंस्टेड अम्ल (प्रोटॉन) कुछ भी योगदान नहीं देते हैं।
- प्रत्येक होमो एलिमेंट बंध के लिए एक जोड़ा जाता है।
- प्रत्येक ऋणात्मक आवेश के लिए एक जोड़ा जाता है, और प्रत्येक धनात्मक आवेश के लिए एक घटाया जाता है।
आयनिक गिनती
- यह विधि ऑक्सीकरण अवस्था मानकर तत्व के इलेक्ट्रॉनों की संख्या की गणना करके शुरू होती है
- जैसे एक Fe2+ में 6 इलेक्ट्रॉन होते हैं
- S2− में 8 इलेक्ट्रॉन होते हैं
- प्रत्येक हैलाइड या अन्य आयनिक लिगेंड के लिए 2 जोड़े जाते हैं जो एक सिग्मा बंधन के माध्यम से धातु को बांधता है।
- धातु से जुड़े प्रत्येक एकल जोड़े के लिए 2 जोड़े जाते हैं (उदाहरण के लिए प्रत्येक फॉस्फीन लिगेंड एक अकेले जोड़े के साथ बंध सकता है)। इसी तरह लुईस और ब्रोंस्टेड अम्ल (प्रोटॉन) कुछ भी योगदान नहीं देते हैं।
- असंतृप्त लिगेंड्स जैसे कि एल्केन्स के लिए, धातु से बंधे प्रत्येक कार्बन परमाणु के लिए 1 इलेक्ट्रॉन जोड़ा जाता है।
सामान्य अंशों द्वारा दान किए गए इलेक्ट्रॉन
Ligand | Electrons contributed (neutral counting) |
Electrons contributed (ionic counting) |
Ionic equivalent |
---|---|---|---|
X | 1 | 2 | X−; X = F, Cl, Br, I |
H | 1 | 2 | H− |
H | 1 | 0 | H+ |
O | 2 | 4 | O2− |
N | 3 | 6 | N3− |
NR3 | 2 | 2 | NR3; R = H, alkyl, aryl |
CR2 | 2 | 4 | CR2− 2 |
Ethylene | 2 | 2 | C2H4 |
cyclopentadienyl | 5 | 6 | C 5H− 5 |
benzene | 6 | 6 | C6H6 |
विशेष मामले
कुछ लिगेंड द्वारा दान किए गए इलेक्ट्रॉनों की संख्या धातु-लिगेंड किस प्रकार जुड़े हैं उसकी ज्यामिति पर निर्भर करती है। इस जटिलता का एक उदाहरण M-नाइट्रोसिल इकाई है। जब यह समूह रैखिक होता है, तो NO लिगेंड को तीन-इलेक्ट्रॉन लिगेंड माना जाता है। जब M–NO सबयूनिट N पर दृढ़ता से झुकता है, तो NO को स्यूडोहैलाइड के रूप में माना जाता है और इस प्रकार यह एक इलेक्ट्रॉन लिगेंड (तटस्थ गणना दृष्टिकोण में) होता है। यह स्थिति η3 बनाम η1 एलिल से बहुत अलग नहीं है। इलेक्ट्रॉन-गणना के दृष्टिकोण से एक और असामान्य लिगेंड सल्फर डाइऑक्साइड है।
उदाहरण
- मीथेन (CH4), केंद्रीय C के लिए
- तटस्थ गिनती: C, 1 इलेक्ट्रॉन का योगदान देता है, प्रत्येक H रेडिकल 1 इलेक्ट्रॉन का योगदान देता है: 4 + 4 × 1 = 8 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: C4, 8 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक प्रोटॉन प्रत्येक 0 का योगदान देता है: 8 + 4 × 0 = 8 संयोजक इलेक्ट्रॉन।
- H के समान:
- तटस्थ गिनती: H, 1 इलेक्ट्रॉन का योगदान देता है, C, 1 इलेक्ट्रॉन का योगदान देता है (C के अन्य 3 इलेक्ट्रॉन अन्य 3 हाइड्रोजेन अणु के लिए हैं): 1 + 1 × 1 = 2 संयोजक इलेक्ट्रॉन।
- आयनिक गिनती: H, 0 इलेक्ट्रॉनों का योगदान देता है (H+), C4−, 2 इलेक्ट्रॉनों (प्रति H), 0 + 1 × 2 = 2 संयोजक इलेक्ट्रॉनों का योगदान देता है
- निष्कर्ष: मीथेन कार्बन के लिए ऑक्टेट-नियम और हाइड्रोजन के लिए युगल नियम का पालन करता है, और इसलिए एक स्थायी अणु होने की उम्मीद है (जैसा कि हम दैनिक जीवन से देखते हैं)
- हाइड्रोजन सल्फाइड, केंद्रीय S के लिए
- तटस्थ गिनती: S, 6 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक हाइड्रोजन रेडिकल 1 इलेक्ट्रॉन योगदान का देता है: 6 + 2 × 1 = 8 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: S2− 8 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक प्रोटॉन 0 इलेक्ट्रॉन योगदान का देता है: 8 + 2 × 0 = 8 संयोजकता इलेक्ट्रॉन
- निष्कर्ष: एक ऑक्टेट इलेक्ट्रॉन गणना (सल्फर पर) के साथ, हम अनुमान लगा सकते हैं कि H2S, यदि दो एकाकी जोड़े पर विचार किया जाए तो S छद्म चतुष्फलकीय होगा।
- सल्फर डाइक्लोराइड | SCl2, केंद्रीय S के लिए
- तटस्थ गिनती: S, 6 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक क्लोरीन रेडिकल प्रत्येक में 1 इलेक्ट्रॉन का योगदान योगदान देता है: 6 + 2 × 1 = 8 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: S2+ 4 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक क्लोराइड आयन 2 इलेक्ट्रॉनों का योगदान देता है : 4 + 2 × 2 = 8 संयोजक इलेक्ट्रॉन
- निष्कर्ष: H2S के लिए ऊपर चर्चा देखें दोनों SCl2 और H2S अष्टक नियम का पालन करता है - हालांकि इन अणुओं का व्यवहार काफी भिन्न होता है।
- सल्फर हेक्साफ्लोराइड SF6, केंद्रीय S के लिए
- तटस्थ गिनती: S, 6 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक फ्लोरीन रेडिकल प्रत्येक में एक इलेक्ट्रॉन का योगदान देता है: 6 + 6 × 1 = 12 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: S6+,0 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक फ्लोराइड आयन 2 इलेक्ट्रॉन का योगदान देता है: 0 + 6 × 2 = 12 संयोजक इलेक्ट्रॉन
- निष्कर्ष: आयनिक गिनती एक अणु को इलेक्ट्रॉनों के अकेले जोड़े की कमी को इंगित करती है, इसलिए इसकी संरचना अष्टफलक होगी, जैसा कि (VSEPR) द्वारा पूर्व-सूचना दी गयी है। जिससे यह निष्कर्ष निकला जा सकता है कि यह अणु अत्यधिकअभिक्रिया शील होगा - लेकिन इसके विपरीत : SF6 निष्क्रिय है, और इस गुण के कारण उद्योग में इसका व्यापक रूप से उपयोग किया जाता है।
- टाइटेनियम टेट्राक्लोराइड (TiCl4), केंद्रीय Ti के लिए
- तटस्थ गिनती: Ti4+,इलेक्ट्रॉनों का योगदान देता है, प्रत्येक क्लोरीन रेडिकल 1 इलेक्ट्रॉन का योगदान देता है: 4 + 4 × 1 = 8 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: Ti4+,0 इलेक्ट्रॉनों का योगदान करता है, प्रत्येक क्लोराइड आयन दो इलेक्ट्रॉनों का योगदान देता है: 0 + 4 × 2 = 8 संयोजक इलेक्ट्रॉन
- निष्कर्ष: केवल 8e (बनाम अठारह इलेक्ट्रॉन नियम संभव) होने पर, हम अनुमान लगा सकते हैं कि TiCl4 एक अच्छा लुईस अम्ल होगा। दरअसल, यह जल, ऐलकोहल, ईथर, एमाइन के साथ (कुछ मामलों में हिंसक रूप से) अभिक्रिया करता है।
- आयरन पेंटाकार्बोनिल Fe (CO)5
- तटस्थ गिनती: Fe, 8 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक CO, 2 इलेक्ट्रॉनों का योगदान देता है: 8 + 2 × 5 = 18 संयोजक इलेक्ट्रॉन
- आयनिक गिनती: Fe(0), 8 इलेक्ट्रॉनों का योगदान देता है, प्रत्येक CO, 2 इलेक्ट्रॉनों का योगदान देता है: 8 + 2 × 5 = 18 संयोजक इलेक्ट्रॉन
- निष्कर्ष: यह एक विशेष मामला है, जहां आयनिक गिनती तटस्थ गिनती के समान होती है, सभी टुकड़े तटस्थ होते हैं। चूंकि यह एक 18-इलेक्ट्रॉन संकुल है, इसलिए इसके आइसोलोबल होने की उम्मीद है।
- फेरोसिन (C5H5)2Fe, केंद्रीय Fe के लिए:
- तटस्थ गिनती: Fe, 8 इलेक्ट्रॉनों का योगदान देता है, 2 साइक्लोपेंटैडिएनिल कॉम्प्लेक्स 5 इलेक्ट्रॉनों का योगदान करते हैं: 8 + 2 × 5 = 18 इलेक्ट्रॉन
- आयनिक गिनती: Fe2+ 6 इलेक्ट्रॉनों का योगदान करता है, दो एरोमेटिक साइक्लोपेंटैडिएनिल वलय 6 इलेक्ट्रॉनों का योगदान करते हैं: लोहे पर 6 + 2 × 6 = 18 संयोजक इलेक्ट्रॉन।
- निष्कर्ष: फेरोसिन एक आइसोलोबल यौगिक होने की उम्मीद है।
ये उदाहरण इलेक्ट्रॉन-गणना के तरीकों को दिखाते हैं, वे एक औपचारिकता हैं, और वास्तविक जीवन के रासायनिक परिवर्तनों से कोई लेना-देना नहीं है। ऊपर वर्णित अधिकांश 'टुकड़े' इस तरह मौजूद नहीं हैं; उन्हें एक बोतल में नहीं रखा जा सकता: उदा। तटस्थ सी, टेट्रा-आयनिक सी, तटस्थ टीआई, और टेट्रा-केशनिक टीआई मुक्त प्रजातियां नहीं हैं, वे हमेशा किसी चीज से बंधे होते हैं, तटस्थ सी के लिए, यह आमतौर पर ग्रेफाइट, चारकोल, हीरा (इलेक्ट्रॉनों के साथ साझा करना) में पाया जाता है। पड़ोसी कार्बन), टीआई के लिए जो इसकी धातु के रूप में पाया जा सकता है (जहां यह पड़ोसी टीआई परमाणुओं के साथ अपने इलेक्ट्रॉनों को साझा करता है), सी4− और Ti4+ केवल उपयुक्त काउंटरों के साथ 'अस्तित्व' है (जिसके साथ वे संभवतः इलेक्ट्रॉनों को साझा करते हैं)। तो इन औपचारिकताओं का उपयोग केवल यौगिकों की स्थिरता या गुणों की भविष्यवाणी करने के लिए किया जाता है! These examples show the methods of electron counting, they are a formalism, and don't have anything to do with real life chemical transformations. Most of the 'fragments' mentioned above do not exist as such; they cannot be kept in a bottle: e.g. the neutral C, the tetra-anionic C, the neutral Ti, and the tetra-cationic Ti are not free species, they are always bound to something, for neutral C, it is commonly found in graphite, charcoal, diamond (sharing electrons with the neighboring carbons), as for Ti which can be found as its metal (where it shares its electrons with neighboring Ti atoms), C4− and Ti4+ 'exist' only with appropriate counterions (with which they probably share electrons). So these formalisms are only used to predict stabilities or properties of compounds!
यह भी देखें
- डी इलेक्ट्रॉन-गणना
- टॉलमैन का नियम
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- ऑर्गेनोमेटेलिक केमिस्ट्री
- सुगन्धितता
- क्लस्टर कंपाउंड
- ओकटेट नियम
- अतिसंयोजी अणु
- अकार्बनिक रसायन शास्त्र
संदर्भ
- ↑ Parkin, Gerard (2006). "संयोजकता, ऑक्सीकरण संख्या और औपचारिक प्रभार: तीन संबंधित लेकिन मौलिक रूप से भिन्न अवधारणाएं". Journal of Chemical Education. 83 (5): 791. Bibcode:2006JChEd..83..791P. doi:10.1021/ed083p791. ISSN 0021-9584. Retrieved 2009-11-10.
- ↑ Green, M. L. H. (1995-09-20). "तत्वों के सहसंयोजक यौगिकों के औपचारिक वर्गीकरण के लिए एक नया दृष्टिकोण". Journal of Organometallic Chemistry. 500 (1–2): 127–148. doi:10.1016/0022-328X(95)00508-N. ISSN 0022-328X.
- ↑ "एमएलएक्सजेड". www.columbia.edu.