आव्यूह विभाजन: Difference between revisions

From Vigyanwiki
 
(4 intermediate revisions by 4 users not shown)
Line 293: Line 293:


=== क्रमिक अति-विश्राम विधि ===
=== क्रमिक अति-विश्राम विधि ===
चलो ω = 1.1। विभाजन का उपयोग करना ({{EquationNote|14}}) समस्या में आव्यूह A का ({{EquationNote|10}}) क्रमिक अति-विश्राम विधि के लिए, हमारे पास है
मान लीजिए ω = 1.1 है। चरणबद्ध अधिरोधन विधि के लिए समस्या  ({{EquationNote|10}}) में आव्यूह A के लिए ({{EquationNote|14}}) का विभाजन उपयोग करते हुए, हमारे पासː
 
<!-- (D – wL)–1 -->
:<math>\begin{align}
:<math>\begin{align}
& \mathbf{(D-\omega L)^{-1}} = \frac{1}{12} \begin{pmatrix}
& \mathbf{(D-\omega L)^{-1}} = \frac{1}{12} \begin{pmatrix}
Line 303: Line 301:
\end{pmatrix},
\end{pmatrix},
\end{align}</math>
\end{align}</math>
<!-- (D – wL)–1[(1 – w)D + wU] -->
:<math>\begin{align}
:<math>\begin{align}
& \mathbf{(D-\omega L)^{-1}[(1-\omega )D+\omega U]} = \frac{1}{12} \begin{pmatrix}
& \mathbf{(D-\omega L)^{-1}[(1-\omega )D+\omega U]} = \frac{1}{12} \begin{pmatrix}
Line 312: Line 308:
\end{pmatrix},
\end{pmatrix},
\end{align}</math>
\end{align}</math>
<!-- w(D – wL)–1k -->
:<math>\begin{align}
:<math>\begin{align}
& \mathbf{\omega (D-\omega L)^{-1}k} = \frac{1}{12} \begin{pmatrix}
& \mathbf{\omega (D-\omega L)^{-1}k} = \frac{1}{12} \begin{pmatrix}
Line 321: Line 315:
\end{pmatrix}.
\end{pmatrix}.
\end{align}</math>
\end{align}</math>
लगातार अति-विश्राम विधि ({{EquationNote|9}}) समस्या पर लागू ({{EquationNote|10}}) रूप लेता है
समस्या ({{EquationNote|10}}) पर लागू होने वाली चरणबद्ध अधिरोधन विधि ({{EquationNote|9}}) का रूप लेती है।


{{NumBlk|:|<math> \mathbf x^{(m+1)} =
{{NumBlk|:|<math> \mathbf x^{(m+1)} =
Line 337: Line 331:
\quad m = 0, 1, 2, \ldots</math>|{{EquationRef|16}}}}
\quad m = 0, 1, 2, \ldots</math>|{{EquationRef|16}}}}


समीकरण के लिए पहले कुछ पुनरावृति ({{EquationNote|16}}) से शुरू होकर नीचे दी गई तालिका में सूचीबद्ध हैं {{math|1='''x'''<sup>(0)</sup> = (0.0, 0.0, 0.0)<sup>T</sup>}}. तालिका से कोई भी देख सकता है कि विधि स्पष्ट रूप से समाधान में परिवर्तित हो रही है ({{EquationNote|13}}), ऊपर वर्णित गॉस-सीडेल विधि से थोड़ा तेज।
समीकरण ({{EquationNote|16}}) के लिए पहले कुछ अवरोहण निर्णय  x(0) = (0.0, 0.0, 0.0)T से आरंभ करके नीचे की तालिका में सूचीबद्ध किए गए हैं। तालिका से कोई भी देख सकता है कि विधि ऊपर वर्णित गॉस-सीडेल विधि से थोड़ी तीव्रता से समाधान ({{EquationNote|13}}) में परिवर्तित हो रही है।


{| class="wikitable" border="1"
{| class="wikitable" border="1"
Line 408: Line 402:
{{Numerical linear algebra}}
{{Numerical linear algebra}}
{{Authority control}}
{{Authority control}}
[[Category: मैट्रिसेस]] [[Category: संख्यात्मक रैखिक बीजगणित]] [[Category: आराम (पुनरावृत्ति के तरीके)]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 23/05/2023]]
[[Category:Created On 23/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:आराम (पुनरावृत्ति के तरीके)]]
[[Category:मैट्रिसेस]]
[[Category:संख्यात्मक रैखिक बीजगणित]]

Latest revision as of 16:08, 30 October 2023

संख्यात्मक रैखिक बीजगणित के गणितीय अध्ययन में, आव्यूह विभाजन एक ऐसी अभिव्यक्ति है जो किसी दिए गए आव्यूह को उनके योग या अंतर के रूप में प्रदर्शित करती है। कई पुनरावृत्त विधियां उदाहरण के लिए, अंतर समीकरणो की प्रणालियां आव्यूह समीकरणों के प्रत्यक्ष समाधान पर निर्भर करती हैं जिसमें त्रिकोणीय आव्यूह की तुलना में अधिक सामान्य आव्यूह सम्मिलित होते हैं। आव्यूह विभाजन के रूप में लिखे जाने पर इन आव्यूह समीकरणों को प्रायः सीधे और कुशलता से हल किया जा सकता है। यह तकनीक 1960 में रिचर्ड एस वर्गा द्वारा तैयार की गई थी।[1]


नियमित विभाजन

हमारा उद्देश्य निम्नलिखित आव्यूह समीकरणों को हल करना हैं

 

 

 

 

(1)

जहाँ A एक n × n गैर-एकल आव्यूह है, और k n घटकों के साथ एक दिया गया खंड सदिश है। हम आव्यूह A को निम्नलिखित रूप में विभाजित करते हैं

 

 

 

 

(2)

जहाँ B और C n × n आव्यूह हैं। यदि किसी ऐसी यादृच्छिक n × n आव्यूह M के लिए, M में गैर-नकारात्मक प्रविष्टियां होती है, तो हम M ≥ 0 लिखते हैं। यदि M में केवल सकारात्मक प्रविष्टियाँ हैं, तो हम M > 0 लिखते हैं। इसी तरह, यदि आव्यूह M1 - M2 में गैर-नकारात्मक प्रविष्टियाँ हैं, हम M1 ≥ M2 लिखते हैं।

परिभाषा: यदि B−1 ≥ 0 और C ≥ 0 है तों A = B - C, A का एक नियमित विभाजन है।

हम मानते हैं कि निम्नलिखित रूप के आव्यूह समीकरण

 

 

 

 

(3)

जहाँ g एक दिया गया खंड सदिश है, सदिश x के लिए सीधे हल किया जा सकता है। यदि (2) A के नियमित विभाजन का प्रतिनिधित्व करता है, फिर पुनरावृत्त विधि कक उपयोग करके

 

 

 

 

(4)

जहां X(0) एक यादृच्छिक सदिश है, किया जा सकता है। समान रूप से, (4) समीकरण में हम लिखते हैं

 

 

 

 

(5)

यदि (2) A के नियमित विभाजन का प्रतिनिधित्व करता है तों आव्यूह D = B−1C में अऋणात्मक प्रविष्टियाँ हैं।[2]

यह प्रदर्शित किया जा सकता है कि यदि A−1 > 0, तो <1, जहां , D के वर्णक्रमीय त्रिज्या का प्रतिनिधित्व करता है, और इस प्रकार D एक अभिसारी आव्यूह है। परिणामस्वरूप, पुनरावृत्ति विधि (5) आवश्यक रूप से जैकोबी विधि अभिसरण है।[3][4]

यदि, इसके अतिरिक्त, विभाजन (2) चुना जाता है जिससे आव्यूह बी एक विकर्ण आव्यूह हो, तों बी को रैखिक समय में व्युत्क्रमित किया जा सकता है।

आव्यूह पुनरावृत्ति विधि

कई पुनरावृत्ति विधियों को आव्यूह विभाजन के रूप में वर्णित किया जा सकता है। यदि आव्यूह A की विकर्ण प्रविष्टियाँ सभी गैर शून्य हैं, और हम आव्यूह A को आव्यूह योग के रूप में व्यक्त करते हैं

 

 

 

 

(6)

जहाँ D, A का विकर्ण भाग है, और U और L क्रमशः दृढ़ता से उच्च तथा निम्न त्रिकोणीय आव्यूह n × n आव्यूह हैं, तो हमारे पास निम्नलिखित समीकरण हैं।

जैकोबी पद्धति को विभाजन के रूप में आव्यूह रूप में निम्नलिखित प्रकार से प्रदर्शित किया जा सकता है

[5][6]

 

 

 

 

(7)

गॉस-सीडेल विधि को विभाजन के रूप में आव्यूह रूप में निम्नलिखित प्रकार से प्रदर्शित किया जा सकता है

[7][8]

 

 

 

 

(8)

सतत अति-विश्राम की विधि को विभाजन के रूप को निम्नलिखित आव्यूह रूप में दर्शाया जा सकता है

[9][10]

 

 

 

 

(9)

उदाहरण

सतत विभाजन

समीकरण (1) में, मान लीजिए

 

 

 

 

(10)

आइए समीकरण (7) में विभाजन लागू करें जिसका उपयोग जैकोबी विधि में किया जाता है: हम A को इस तरह विभाजित करते हैं कि B में A के विकर्ण तत्वों के सभी तत्व सम्मिलित हैं, और C में A के विकर्ण तत्वों के सभी तत्व सम्मिलित हैं। तबː

 

 

 

 

(11)

चूंकि B−1 ≥ 0 और C ≥ 0, विभाजन (11) एक नियमित विभाजन है। से A−1 > 0, वर्णक्रमीय त्रिज्या <1. जहाँ D के अनुमानित विशेषक मान ​​​​हैं। इसलिए, आव्यूह D अभिसारी है और विधि (5) आवश्यक रूप से समीकरण (10) के लिए अभिसरण करता है। ध्यान दें कि A के विकर्ण तत्व शून्य से अधिक हैं, A के उप-विकर्ण तत्व सभी शून्य से कम हैं और ए दृढ़ता से विकर्ण रूप में प्रभावशाली है।[11]

प्रक्रिया (5) को समीकरण (10) पर लागू करने पर पुनः निम्नलिखित रूप लेता है

 

 

 

 

(12)

समीकरण का सटीक हल (12) है

 

 

 

 

(13)

समीकरण के लिए पहले कुछ पुनरावृति (12) x(0) = (0.0, 0.0, 0.0)T से प्रारंभ होकर नीचे दी गई तालिका में सूचीबद्ध हैं। तालिका से कोई भी देख सकता है कि विधि स्पष्ट रूप से समाधान (13) में परिवर्तित हो रही है।

0.0 0.0 0.0
0.83333 -3.0000 2.0000
0.83333 -1.7917 1.9000
1.1861 -1.8417 2.1417
1.2903 -1.6326 2.3433
1.4608 -1.5058 2.4477
1.5553 -1.4110 2.5753
1.6507 -1.3235 2.6510
1.7177 -1.2618 2.7257
1.7756 -1.2077 2.7783
1.8199 -1.1670 2.8238


जैकोबी विधि

जैसा कि ऊपर प्रदर्शित किया गया है, जैकोबी विधि (7) विशिष्ट नियमित विभाजन (11) के समान है।

गॉस-सीडेल विधि

चूँकि समस्या में आव्यूह A की विकर्ण प्रविष्टियाँ (10) सभी अशून्य हैं, हम आव्यूह A को विभाजन (6) के रूप में व्यक्त कर सकते हैं, जहाँ

 

 

 

 

(14)

हमारे पास तब

है।

गॉस-सीडेल विधि (8) को समीकरण (10) पर लागू करने पर निम्नलिखित रूप लेता है

 

 

 

 

(15)

समीकरण के लिए पहले कुछ पुनरावृति (15) x(0) = (0.0, 0.0, 0.0)T से प्रारंभ होकर नीचे दी गई तालिका में सूचीबद्ध हैं। तालिका से कोई भी देख सकता है कि विधि (13) ऊपर वर्णित जैकोबी विधि से कुछ तीव्रता से समाधान में परिवर्तित हो रही है।

0.0 0.0 0.0
0.8333 -2.7917 1.9417
0.8736 -1.8107 2.1620
1.3108 -1.5913 2.4682
1.5370 -1.3817 2.6459
1.6957 -1.2531 2.7668
1.7990 -1.1668 2.8461
1.8675 -1.1101 2.8985
1.9126 -1.0726 2.9330
1.9423 -1.0479 2.9558
1.9619 -1.0316 2.9708


क्रमिक अति-विश्राम विधि

मान लीजिए ω = 1.1 है। चरणबद्ध अधिरोधन विधि के लिए समस्या (10) में आव्यूह A के लिए (14) का विभाजन उपयोग करते हुए, हमारे पासː

समस्या (10) पर लागू होने वाली चरणबद्ध अधिरोधन विधि (9) का रूप लेती है।

 

 

 

 

(16)

समीकरण (16) के लिए पहले कुछ अवरोहण निर्णय x(0) = (0.0, 0.0, 0.0)T से आरंभ करके नीचे की तालिका में सूचीबद्ध किए गए हैं। तालिका से कोई भी देख सकता है कि विधि ऊपर वर्णित गॉस-सीडेल विधि से थोड़ी तीव्रता से समाधान (13) में परिवर्तित हो रही है।

0.0 0.0 0.0
0.9167 -3.0479 2.1345
0.8814 -1.5788 2.2209
1.4711 -1.5161 2.6153
1.6521 -1.2557 2.7526
1.8050 -1.1641 2.8599
1.8823 -1.0930 2.9158
1.9314 -1.0559 2.9508
1.9593 -1.0327 2.9709
1.9761 -1.0185 2.9829
1.9862 -1.0113 2.9901


यह भी देखें

टिप्पणियाँ

  1. Varga (1960)
  2. Varga (1960, pp. 121–122)
  3. Varga (1960, pp. 122–123)
  4. Varga (1962, p. 89)
  5. Burden & Faires (1993, p. 408)
  6. Varga (1962, p. 88)
  7. Burden & Faires (1993, p. 411)
  8. Varga (1962, p. 88)
  9. Burden & Faires (1993, p. 416)
  10. Varga (1962, p. 88)
  11. Burden & Faires (1993, p. 371)


संदर्भ

  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3.
  • Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003.
  • Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice-Hall, LCCN 62-21277.