आवृत्ति संश्लेषित्र: Difference between revisions

From Vigyanwiki
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Electronic system for generating any of a range of frequencies}}
{{Short description|Electronic system for generating any of a range of frequencies}}
आवृत्ति संश्लेषित्र(आवृत्ति संश्लेषित्र) एक [[विद्युत सर्किट|विद्युत परिपथ]] है जो एकल संदर्भ आवृत्ति से कई श्रेणियों की आवृत्ति उत्पन्न करता है। आवृत्ति संश्लेषित्र का उपयोग कई आधुनिक उपकरणों जैसे  [[रेडियो रिसीवर|रेडियो अभिग्राही]], [[टेलीविजन]], [[मोबाइल टेलीफोन]], [[रेडियो-टेलीफोन]], [[वॉकी-टॉकी]], [[नागरिक बैंड रेडियो]], [[केबल कनवर्टर बॉक्स]], उपग्रह अभिग्राही और [[GPS|जीपीएस]] प्रणाली में किया जाता है। आवृत्ति संश्लेषित्र, आवृत्ति गुणक, [[आवृत्ति विभक्त]], [[प्रत्यक्ष डिजिटल संश्लेषण]], [[फ्रीक्वेंसी मिक्सर|आवृत्ति मिक्सर]] और [[चरण बंद लूप|चरण बंद चक्र]] की तकनीकों का उपयोग करके आवृत्ति उत्पन्न कर सकता है। आवृत्ति संश्लेषित्र के  निष्पाद की स्थिरता और सटीकता इसके संदर्भ आवृत्ति निविष्ट की स्थिरता और सटीकता पर निर्भर है। नतीजतन, संश्लेषित्र स्थिर और सटीक संदर्भ आवृत्तियों का उपयोग करते हैं, जैसे कि [[क्रिस्टल थरथरानवाला|स्फटिक दोलित्र]] द्वारा प्रदान किया गया।
आवृत्ति सिंथेसाइज़र(आवृत्ति संश्लेषित्र) [[विद्युत सर्किट|विद्युत परिपथ]] है जो एकल संदर्भ आवृत्ति से कई श्रेणियों की आवृत्ति उत्पन्न करता है। आवृत्ति संश्लेषित्र का उपयोग कई आधुनिक उपकरणों जैसे  [[रेडियो रिसीवर|रेडियो अभिग्राही]], [[टेलीविजन]], [[मोबाइल टेलीफोन]], [[रेडियो-टेलीफोन]], [[वॉकी-टॉकी]], [[नागरिक बैंड रेडियो]], [[केबल कनवर्टर बॉक्स]], उपग्रह अभिग्राही और [[GPS|जीपीएस]] प्रणाली में किया जाता है। आवृत्ति संश्लेषित्र, आवृत्ति गुणक, [[आवृत्ति विभक्त]], [[प्रत्यक्ष डिजिटल संश्लेषण]], [[फ्रीक्वेंसी मिक्सर|आवृत्ति मिक्सर]] और [[चरण बंद लूप|चरण बंद चक्र]] की तकनीकों का उपयोग करके आवृत्ति उत्पन्न कर सकता है। आवृत्ति संश्लेषित्र के  निष्पाद की स्थिरता और सटीकता इसके संदर्भ आवृत्ति निविष्ट की स्थिरता और सटीकता पर निर्भर करता है। परिणाम स्वरूप, संश्लेषित्र स्थिर और सटीक संदर्भ आवृत्तियों का उपयोग करता हैं, जैसे कि [[क्रिस्टल थरथरानवाला|स्फटिक दोलित्र]] द्वारा प्रदान किया गया।


== प्रकार ==
=== प्रकार ===
संश्लेषित्र को तीन प्रकार से विभेदित किया जा सकता है। पहले और दूसरे प्रकार को नियमित रूप से स्टैंड-अलोन स्थापत्य के रूप संदर्भित किया जाता है: डायरेक्ट एनालॉग सिंथेसिस जिसे मिक्स-फिल्टर-डिवाइड स्थापत्य भी कहा जाता है<ref>{{Harvtxt|Popiel-Gorski|1975|p=25}}</ref> जैसा कि 1960 के दशक मेंऔर अधिक आधुनिक [[प्रत्यक्ष डिजिटल सिंथेसाइज़र|प्रत्यक्ष डिजिटल संश्लेषित्र]] में पाया गया। तीसरे प्रकार का संश्लेषित्र नियमित रूप से संचार प्रणाली एकीकृत परिपथ रचक खंड के रूप में उपयोग किया जाता है: पूर्णांक-एन और आंशिक-एन सहित अप्रत्यक्ष डिजिटल संश्लेषित्र।<ref>{{Harvtxt|Egan|2000|pp=14–27}}</ref> हाल ही में विकसित TAF-DPS भी एक सीधी पद्धति है। यह क्लॉक पल्स ट्रेन में सीधे प्रत्येक पल्स के तरंगरूप का निर्माण करता है।
संश्लेषित्र को तीन प्रकार से विभेदित किया जा सकता है। पहले और दूसरे प्रकार को नियमित रूप से स्टैंड-अलोन स्थापत्य के रूप संदर्भित किया जा सकता है । प्रत्यक्ष एनालॉग संश्लेषण जिसे मिश्रित -फिल्टर-विभाजक स्थापत्य भी कहा जाता है<ref>{{Harvtxt|Popiel-Gorski|1975|p=25}}</ref> जैसा कि 1960 के दशक में और अधिक आधुनिक [[प्रत्यक्ष डिजिटल सिंथेसाइज़र|प्रत्यक्ष डिजिटल संश्लेषित्र]] में पाया गया। तीसरे प्रकार का संश्लेषित्र नियमित रूप से संचार प्रणाली एकीकृत परिपथ रचक खंड के रूप में उपयोग किया जाता है । जैसे पूर्णांक-एन और आंशिक-एन सहित अप्रत्यक्ष डिजिटल संश्लेषित्र।<ref>{{Harvtxt|Egan|2000|pp=14–27}}</ref> हाल ही में विकसित टीएएफ-डीपीएस भी एक सीधी पद्धति है। जो क्बंद पल्स ट्रेन में सीधे प्रत्येक पल्स के तरंगरूप का निर्माण करता है।


=== डिजीफेज संश्लेषित्र ===
=== डिजीफेज संश्लेषित्र ===
Line 10: Line 10:


=== समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण (टीएएफ-डीपीएस) ===
=== समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण (टीएएफ-डीपीएस) ===
हाल ही में, टाइम-एवरेज-आवृत्ति डायरेक्ट पीरियड सिंथेसिस (TAF-DPS) नाम की एक तकनीक आवृत्ति संश्लेषित्र परिवार में एक नए सदस्य के रूप में उभरी है। यह [[घड़ी का संकेत]] सिग्नल ड्राइविंग इंटीग्रेटेड परिपथ के लिए आवृत्ति जेनरेशन पर केंद्रित है। अन्य सभी तकनीकों से अलग, यह समय-औसत-आवृत्ति की एक नई अवधारणा का उपयोग करता है।<ref>{{Cite journal |last=Xiu |first=Liming |date=2008 |title=The concept of time-average-frequency and mathematical analysis of flying-adder frequency synthesis architecture |url=http://dx.doi.org/10.1109/mcas.2008.928421 |journal=IEEE Circuits and Systems Magazine |volume=8 |issue=3 |pages=27–51 |doi=10.1109/mcas.2008.928421 |s2cid=21809964 |issn=1531-636X}}</ref> इसका उद्देश्य ऑन-चिप क्लॉक सिग्नल जनरेशन के क्षेत्र में दो लंबे समय तक चलने वाली समस्याओं का समाधान करना है: मनमाना-आवृत्ति-पीढ़ी और तात्कालिक-आवृत्ति-स्विचिंग।
हाल ही में, समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण नाम की एक तकनीक आवृत्ति संश्लेषित्र परिवार में एक नए सदस्य के रूप में विकसित हुआ है। यह [[घड़ी का संकेत|कालद संकेत]] चालित एकीकृत परिपथ के लिए आवृत्ति उत्पादन पर केंद्रित है। अन्य सभी तकनीकों से अलग, यह समय-औसत-आवृत्ति की एक नई अवधारणा का उपयोग करता है।<ref>{{Cite journal |last=Xiu |first=Liming |date=2008 |title=The concept of time-average-frequency and mathematical analysis of flying-adder frequency synthesis architecture |url=http://dx.doi.org/10.1109/mcas.2008.928421 |journal=IEEE Circuits and Systems Magazine |volume=8 |issue=3 |pages=27–51 |doi=10.1109/mcas.2008.928421 |s2cid=21809964 |issn=1531-636X}}</ref> इसका उद्देश्य ऑन-चिप क्बंद संकेत उत्पादन के क्षेत्र में दो लंबे समय तक चलने वाली समस्याओं का समाधान करना है। जैसे यादृच्छिक-आवृत्ति-उत्पादन और तात्कालिक-आवृत्ति-स्विचन।


बेस टाइम यूनिट से शुरू करते हुए, टीएएफ-डीपीएस पहले दो प्रकार के चक्र टी बनाता है<sub>A</sub> और टी<sub>B</sub>. क्लॉक पल्स ट्रेन बनाने के लिए इन दो प्रकार के चक्रों का उपयोग इंटरलीव्ड फैशन में किया जाता है। नतीजतन, टीएएफ-डीपीएस मनमाना-आवृत्ति-उत्पादन और तात्कालिक-आवृत्ति-स्विचिंग की समस्याओं को अधिक प्रभावी ढंग से संबोधित करने में सक्षम है। टीएएफ अवधारणा (हालांकि अवचेतन रूप से) का उपयोग करने वाली पहली परिपथ तकनीक "[https://www.google.com/search?q=Flying-Adder+frequency+synthesis+architecture&ei=k39xYsSlAbe4qtsPqdOngA8&ved=0ahUKEwiEu4THhcT3AhU3nGoFHanpCfAQ4dUDCA8&uact=5&oq=Flying-Adder +frequency+synthesis+architecture&gs_lcp=Cgdnd3Mtd2l6EAMyBAgAEB5KBAhBGABKBAhGGABQthBYthBgihpoAXAAeACAAUKIAUKSAQExmAEAoAEBoAECsAEAwAEB&sclient=gws-wiz Flying-Adder frequency synthesis architecture] or“[https://www.google.com/search?q=Flying-Adder+PLL&source=hp&ei=soJxYoexEb2pqtsPp92K8As&iflsig=AJiK0e8AAAAAYnGQwqM_iKECWC_FWRj4fvf83xOpMi17&ved=0ahUKEwiH0pPEiMT3AhW9lGoFHaeuAr4Q4dUDCAg&uact= 5&oq=Flying-Adder+PLL&gs_lcp=Cgdnd3Mtd2l6EANQggxYggxgghloAXAAeACAAUWIAUWSAQExmAEAoAECoAEBsAEA&sclient=gws-wiz Flying-Adder PLL]", जिसे 1990 के दशक के अंत में विकसित किया गया था। 2008 में TAF अवधारणा की शुरुआत के बाद से, आवृत्ति संश्लेषण तकनीक का विकास औपचारिक रूप से TAF पर काम करता है। इस तकनीक का विस्तृत विवरण उन पुस्तकों में पाया जा सकता है<ref>{{Cite book |last=Xiu |first=Liming |url=https://www.worldcat.org/oclc/797919764 |title=Nanometer frequency synthesis beyond the phase-locked loop |date=2012 |publisher=John Wiley & Sons |isbn=978-1-118-34795-9 |location=Hoboken |oclc=797919764}}</ref> <ref>{{Cite book |last=Xiu |first=Liming |url=https://www.worldcat.org/oclc/908075308 |title=From frequency to time-average-frequency : a paradigm shift in the design of electronic system |date=2015 |publisher=IEEE Press |isbn=978-1-119-10217-5 |location=New York |oclc=908075308}}</ref> और यह छोटा [https://www.youtube.com/watch?v=XOeUFR5NHl8 ट्यूटोरियल]। जैसे-जैसे विकास आगे बढ़ता है, यह धीरे-धीरे स्पष्ट हो जाता है कि TAF-DPS प्रणाली स्तर के नवाचार के लिए एक परिपथ स्तर का समर्थक है।<ref>{{Cite journal |last=Xiu |first=Liming |date=2017 |title=Clock Technology: The Next Frontier |url=http://dx.doi.org/10.1109/mcas.2017.2689519 |journal=IEEE Circuits and Systems Magazine |volume=17 |issue=2 |pages=27–46 |doi=10.1109/mcas.2017.2689519 |s2cid=24013085 |issn=1531-636X}}</ref> इसका उपयोग क्लॉक सिग्नल जनरेशन के अलावा कई क्षेत्रों में किया जा सकता है। इसका प्रभाव महत्वपूर्ण है क्योंकि क्लॉक सिग्नल इलेक्ट्रॉनिक्स में सबसे महत्वपूर्ण सिग्नल है, जो इलेक्ट्रॉनिक दुनिया के अंदर समय के प्रवाह की स्थापना करता है। मूर के नियम में इस दिशात्मक परिवर्तन में यह गहरा प्रभाव देखा जा रहा है। विभेदिक्ष से समय के लिए मूर का नियम।<ref>{{Cite journal |last=Xiu |first=Liming |date=2019 |title=Time Moore: Exploiting Moore's Law From The Perspective of Time |url=http://dx.doi.org/10.1109/mssc.2018.2882285 |journal=IEEE Solid-State Circuits Magazine |volume=11 |issue=1 |pages=39–55 |doi=10.1109/mssc.2018.2882285 |s2cid=59619475 |issn=1943-0582}}</ref>
बुनियादी समय इकाई से प्रारंभ करते हुए, समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण पहले दो प्रकार के वर्त्तुल टी<sub>A</sub>और टी<sub>B</sub>.बनाता है  क्बंद पल्स ट्रेन बनाने के लिए इन दो प्रकार के चक्रों का उपयोग अंतःपत्रित आकृति में किया जाता है। परिणाम स्वरूप,समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण  यादृच्छिक-आवृत्ति-उत्पादन और तात्कालिक-आवृत्ति-स्विचन की समस्याओं को अधिक प्रभावी ढंग से संबोधित करने में सक्षम है। समय-औसत-आवृत्ति अवधारणा का उपयोग करने वाली पहली परिपथ तकनीक है।, जिसे 1990 के दशक के अंत में विकसित किया गया था। 2008 में टीएएफ अवधारणा की शुरुआत के बाद से, आवृत्ति संश्लेषण तकनीक का विकास औपचारिक रूप से टीएएफ पर कार्य करता है। इस तकनीक का विस्तृत विवरण उन पुस्तकों में पाया जा सकता है<ref>{{Cite book |last=Xiu |first=Liming |url=https://www.worldcat.org/oclc/797919764 |title=Nanometer frequency synthesis beyond the phase-locked loop |date=2012 |publisher=John Wiley & Sons |isbn=978-1-118-34795-9 |location=Hoboken |oclc=797919764}}</ref> <ref>{{Cite book |last=Xiu |first=Liming |url=https://www.worldcat.org/oclc/908075308 |title=From frequency to time-average-frequency : a paradigm shift in the design of electronic system |date=2015 |publisher=IEEE Press |isbn=978-1-119-10217-5 |location=New York |oclc=908075308}}</ref>। जैसे-जैसे विकास आगे बढ़ता है, यह धीरे-धीरे स्पष्ट हो जाता है कि समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण प्रणाली स्तर के नवाचार के लिए एक परिपथ स्तर का समर्थक है।<ref>{{Cite journal |last=Xiu |first=Liming |date=2017 |title=Clock Technology: The Next Frontier |url=http://dx.doi.org/10.1109/mcas.2017.2689519 |journal=IEEE Circuits and Systems Magazine |volume=17 |issue=2 |pages=27–46 |doi=10.1109/mcas.2017.2689519 |s2cid=24013085 |issn=1531-636X}}</ref> इसका उपयोग घड़ी संकेत उत्पादन के अतिरिक्त कई क्षेत्रों में किया जा सकता है। इसका प्रभाव इसलिए महत्वपूर्ण है क्योंकि घड़ी संकेत विद्युतकीय में इसका महत्वपूर्ण उपयोग है, जो विद्युतकीय संसार के भीतर समय के प्रवाह की स्थापना करता है। मूर के नियम के दिशात्मक परिवर्तन में इसका गहरा प्रभाव देखा जा रहा है।<ref>{{Cite journal |last=Xiu |first=Liming |date=2019 |title=Time Moore: Exploiting Moore's Law From The Perspective of Time |url=http://dx.doi.org/10.1109/mssc.2018.2882285 |journal=IEEE Solid-State Circuits Magazine |volume=11 |issue=1 |pages=39–55 |doi=10.1109/mssc.2018.2882285 |s2cid=59619475 |issn=1943-0582}}</ref>




== इतिहास ==
=== इतिहास ===
{{original research section|reason=Confuses tuning of receiver LO and RF stage (receivers are still adjusted to different channels with variable capacitors); indirect synthesizers are often LC oscillators; there were crystal-controlled receivers (common in WW II); classic CB receiver used switched crystals (possibly partially populated); there were switched double-conversion crystal aircraft radios that tuned hundreds of channels; re "not very stable": there were stable VFO designs; "many orders of magnitude" is vague; for transmitters and receivers, the stability specs are not that demanding; microwave resonators used cavities.|date=February 2017}}
संश्लेषित्र के व्यापक उपयोग से पहले, स्टेशनों पर विभिन्न आवृत्तियों को प्राप्त करने के लिए, रेडियो और टेलीविज़न अभिग्राही एक स्थानीय दोलित्र के हस्तचालित समस्वरण पर निर्भर थे, जो आवृत्ति निर्धारित करने के लिए [[प्रारंभ करनेवाला|विप्रेरक]] और [[संधारित्र]], या कभी-कभी अनुनादी संचरण माध्यमों से निर्मित [[गुंजयमान सर्किट|अनुनादी परिपथ]] का उपयोग करते थे। अभिग्राही को अलग-अलग आवृत्तियों के लिए या तो एक चर संधारित्र, या एक कुंजी द्वारा समायोजित किया गया था, जो वांछित मार्ग के लिए उचित समस्वर परिपथ को चुनता था, जैसे कि बुर्ज समस्वरित के साथ सामान्यतः 1980 के दशक से प्रारम्भिक टेलीविजन अभिग्राही में उपयोग किया जाता था। यद्यपि एक समस्वरित परिपथ की [[गुंजयमान आवृत्ति|अनुनादी आवृत्ति]] अत्यधिक स्थिर नहीं होती है; तापमान में परिवर्तन और घटकों की उम्र बढ़ने से आवृत्ति का प्रवाह होता है, जिससे अभिग्राही, स्टेशन की आवृत्ति से हट जाता है। [[स्वचालित आवृत्ति नियंत्रण]] प्रवाह की कुछ समस्या को हल करता है, परंतु हस्तचालित समस्वरण प्रायः आवश्यक होती थी। चूंकि प्रसारी आवृत्तियों को स्थिर किया जाता है यह अभिग्राही में निश्चित, स्थिर आवृत्तियों के सटीक स्रोत समस्या का समाधान करता है।
संश्लेषित्र के व्यापक उपयोग से पहले, विभिन्न आवृत्तियों पर स्टेशनों को लेने के लिए, रेडियो और टेलीविज़न अभिग्राही एक स्थानीय ऑसिलेटर के मैनुअल ट्यूनिंग पर निर्भर थे, जो एक [[प्रारंभ करनेवाला]] और [[संधारित्र]], या कभी-कभी गुंजयमान संचरण लाइनों से बना एक [[गुंजयमान सर्किट|गुंजयमान परिपथ]] का उपयोग करता था; आवृत्ति निर्धारित करने के लिए। अभिग्राही को अलग-अलग आवृत्तियों के लिए या तो एक चर संधारित्र, या एक स्विच द्वारा समायोजित किया गया था, जो वांछित चैनल के लिए उचित ट्यून परिपथ को चुना था, जैसे कि बुर्ज ट्यूनर के साथ आमतौर पर 1980 के दशक से पहले टेलीविजन अभिग्राही में उपयोग किया जाता था। हालाँकि एक समस्वरित परिपथ की [[गुंजयमान आवृत्ति]] बहुत स्थिर नहीं होती है; तापमान में बदलाव और घटकों की उम्र बढ़ने से आवृत्ति का बहाव होता है, जिससे अभिग्राही स्टेशन की आवृत्ति से हट जाता है। [[स्वचालित आवृत्ति नियंत्रण]] | स्वचालित आवृत्ति नियंत्रण (AFC) बहाव की कुछ समस्या को हल करता है, परंतु मैनुअल रीट्यूनिंग अक्सर आवश्यक होती थी। चूंकि ट्रांसमीटर आवृत्तियों को स्थिर किया जाता है, अभिग्राही में निश्चित, स्थिर आवृत्तियों का एक सटीक स्रोत समस्या का समाधान करेगा।


क्रिस्टल थरथरानवाला गुंजयमान यंत्र [[एलसी सर्किट|एलसी परिपथ]] की तुलना में परिमाण के कई क्रम अधिक स्थिर होते हैं और जब [[स्थानीय थरथरानवाला]] की आवृत्ति को नियंत्रित करने के लिए उपयोग किया जाता है तो एक अभिग्राही को धुन में रखने के लिए पर्याप्त स्थिरता प्रदान करता है। हालाँकि क्रिस्टल की गुंजयमान आवृत्ति इसके आयामों द्वारा निर्धारित की जाती है और अभिग्राही को अलग-अलग आवृत्तियों पर ट्यून करने के लिए भिन्न नहीं किया जा सकता है। एक समाधान कई क्रिस्टल को नियोजित करना है, प्रत्येक वांछित आवृत्ति के लिए एक, और सही को परिपथ में स्विच करना है। यह क्रूर बल तकनीक व्यावहारिक है जब केवल मुट्ठी भर आवृत्तियों की आवश्यकता होती है, परंतु कई अनुप्रयोगों में जल्दी से महंगा और अव्यवहारिक हो जाता है। उदाहरण के लिए, कई देशों में [[एफएम रेडियो]] बैंड लगभग 88 [[मेगाहर्ट्ज़]] से 108 मेगाहर्ट्ज़ तक 100 अलग-अलग चैनल आवृत्ति का समर्थन करता है; प्रत्येक चैनल में ट्यून करने की क्षमता के लिए 100 क्रिस्टल की आवश्यकता होगी। केबल टेलीविजन अधिक व्यापक बैंड पर अधिक आवृत्तियों या [[चैनल (प्रसारण)]] का समर्थन कर सकता है। बड़ी संख्या में क्रिस्टल लागत बढ़ाते हैं और अधिक स्थान की आवश्यकता होती है।
स्फटिक दोलित्र अनुनादी यंत्र [[एलसी सर्किट|एलसी परिपथ]] की तुलना में परिमाण के कई क्रम मे अधिक स्थिर होते हैं और जब [[स्थानीय थरथरानवाला|स्थानीय दोलित्र]] की आवृत्ति को नियंत्रित करने के लिए उपयोग किया जाता है तो अभिग्राही को समस्वरित बनाए रखने के लिए पर्याप्त स्थिरता प्रदान करता है। यद्यपि स्फटिक की अनुनादी आवृत्ति इसके आयामों द्वारा निर्धारित की जाती है और अभिग्राही को अलग-अलग आवृत्तियों पर समस्वरित करने के लिए भिन्न नहीं किया जा सकता है। एक समाधान कई स्फटिकों को नियोजित करना है। यह क्रूर बल तकनीक तब व्यावहारिक है जब अत्यधिक कम आवृत्तियों की आवश्यकता होती है, परंतु कई अनुप्रयोगों में यह महंगा और अव्यवहारिक हो जाता है। उदाहरण के लिए, कई देशों में [[एफएम रेडियो]] बैंड लगभग 88 [[मेगाहर्ट्ज़]] से 108 मेगाहर्ट्ज़ तक 100 अलग-अलग चैनल आवृत्ति का समर्थन करता है; प्रत्येक चैनल में समस्वरित करने की क्षमता के लिए 100 स्फटिक की आवश्यकता होगी। केबल टेलीविजन अधिक व्यापक बैंड पर अधिक आवृत्तियों या [[चैनल (प्रसारण)|प्रसारणों]] का समर्थन करता है। बड़ी संख्या में स्फटिक, लागत को बढ़ाते हैं और इन्हे अधिक स्थान की आवश्यकता होती है।


इसका समाधान परिपथ का विकास था जो एक क्रिस्टल ऑसीलेटर द्वारा उत्पादित संदर्भ आवृत्ति से कई आवृत्तियों को उत्पन्न कर सकता था। इसे आवृत्ति संश्लेषित्र कहा जाता है। नई संश्लेषित आवृत्तियों में मास्टर क्रिस्टल ऑसीलेटर की आवृत्ति स्थिरता होगी, क्योंकि वे इससे प्राप्त हुए थे।
इसका समाधान परिपथ का विकास था जो स्फटिक दोलित्र द्वारा उत्पादित संदर्भ आवृत्ति से कई आवृत्तियों को उत्पन्न कर सकता था। इसे आवृत्ति संश्लेषित्र कहा जाता है। नई संश्लेषित आवृत्तियों में मुख्य स्फटिक दोलित्र में आवृत्ति स्थिरता होगी, क्योंकि वे इससे उत्पादित हुए थे।


आवृत्तियों को संश्लेषित करने के लिए कई तकनीकों को वर्षों से तैयार किया गया है। कुछ दृष्टिकोणों में [[चरण बंद लूप]], डबल मिक्स, ट्रिपल मिक्स, हार्मोनिक, डबल मिक्स डिवाइड और डायरेक्ट डिजिटल सिंथेसिस (DDS) शामिल हैं। दृष्टिकोण का चुनाव कई कारकों पर निर्भर करता है, जैसे कि लागत, जटिलता, आवृत्ति चरण आकार, स्विचिंग दर, [[चरण शोर]] और नकली आउटपुट।
आवृत्तियों को संश्लेषित करने के लिए विभिन्न तकनीकों को कई वर्षों में तैयार किया गया है। कुछ उपागमों में [[चरण बंद लूप|चरण बंद चक्र]], द्वि मिश्रित, त्रि मिश्रित, संनादी, द्वि मिश्रित विभाजक और प्रत्यक्ष डिजिटल संश्लेषण सम्मिलित हैं। उपागमों का चुनाव कई कारकों पर निर्भर करता है, जैसे कि लागत, जटिलता, आवृत्ति चरण आकार, स्विचन दर, [[चरण शोर]] और मिथ्या उत्पाद।


सुसंगत तकनीकें एकल, स्थिर मास्टर ऑसिलेटर से प्राप्त आवृत्तियों को उत्पन्न करती हैं। अधिकांश अनुप्रयोगों में, एक क्रिस्टल थरथरानवाला आम है, परंतु अन्य गुंजयमान यंत्र और आवृत्ति स्रोतों का उपयोग किया जा सकता है। असंगत तकनीकें कई स्थिर ऑसिलेटरों के एक सेट से आवृत्तियों को प्राप्त करती हैं।<ref name="Manassewitsch 1987 7">{{Harvtxt|Manassewitsch|1987|p=7}}</ref> व्यावसायिक अनुप्रयोगों में अधिकांश संश्लेषित्र सादगी और कम लागत के कारण सुसंगत तकनीकों का उपयोग करते हैं।
सुसंगत तकनीकें एकल, स्थिर मुख्य दोलित्र से प्राप्त आवृत्तियों को उत्पन्न करती हैं। अधिकांश अनुप्रयोगों में, एक स्फटिक दोलित्र साधारण है, परंतु अन्य अनुनादी यंत्र और आवृत्ति स्रोतों का उपयोग किया जा सकता है। असंगत तकनीकें कई स्थिर दोलित्रों के एक समुच्चय से आवृत्तियों को प्राप्त करती हैं।<ref name="Manassewitsch 1987 7">{{Harvtxt|Manassewitsch|1987|p=7}}</ref> व्यावसायिक अनुप्रयोगों में अधिकांश संश्लेषित्र सादगी और कम लागत के कारण सुसंगत तकनीकों का उपयोग करते हैं।


वाणिज्यिक रेडियो अभिग्राही में प्रयुक्त संश्लेषित्र बड़े पैमाने पर फेज-लॉक्ड लूप या PLL पर आधारित होते हैं। कई प्रकार के आवृत्ति संश्लेषित्र एकीकृत परिपथ के रूप में उपलब्ध हैं, जो लागत और आकार को कम करते हैं। उच्च अंत अभिग्राही और इलेक्ट्रॉनिक परीक्षण उपकरण अक्सर संयोजन में अधिक परिष्कृत तकनीकों का उपयोग करते हैं।
वाणिज्यिक रेडियो अभिग्राही में प्रयुक्त संश्लेषित्र बड़े पैमाने पर चरण बंद चक्र पर आधारित होते हैं। कई प्रकार के आवृत्ति संश्लेषित्र एकीकृत परिपथ के रूप में उपलब्ध हैं, जो लागत और आकार को कम करते हैं। उच्च अंत अभिग्राही और विद्युतकीय परीक्षण उपकरण प्रायः संयोजन में अधिक परिष्कृत तकनीकों का उपयोग करते हैं।


== प्रणाली विश्लेषण और डिजाइन ==
=== प्रणाली विश्लेषण और प्रारूप ===
एक सुविचारित डिजाइन प्रक्रिया को एक सफल संश्लेषित्र परियोजना के लिए पहला महत्वपूर्ण कदम माना जाता है।<ref name="Manassewitsch 1987 151">{{Harvtxt|Manassewitsch|1987|p=151}}</ref> आवृत्ति संश्लेषित्र के [[प्रणाली की रूपरेखा]] में, मनसेविच कहते हैं, अनुभवी संश्लेषित्र डिज़ाइनर के रूप में कई बेहतरीन डिज़ाइन प्रक्रियाएं हैं।<ref name="Manassewitsch 1987 151"/>आवृत्ति संश्लेषित्र के प्रणाली विश्लेषण में आउटपुट आवृत्ति रेंज (या आवृत्ति बैंडविड्थ या ट्यूनिंग रेंज), आवृत्ति इंक्रीमेंट्स (या रिज़ॉल्यूशन या आवृत्ति ट्यूनिंग), आवृत्ति स्टेबिलिटी (या फ़ेज़ स्टेबिलिटी, नकली आउटपुट की तुलना), फ़ेज़ नॉइज़ परफॉर्मेंस (जैसे, स्पेक्ट्रल शुद्धता) शामिल हैं। , [[स्विचिंग समय]] ([[निपटान समय]] और राइज टाइम की तुलना करें), और आकार, बिजली की खपत और लागत।<ref>{{Harvtxt|Manassewitsch|1987|p=51}}</ref><ref name="Craw1994-4">{{Harvtxt|Crawford|1994|p=4}}</ref> जेम्स ए. क्रॉफर्ड कहते हैं कि ये परस्पर विरोधी आवश्यकताएं हैं।<ref name="Craw1994-4"/>
सुविचारित प्रारूप प्रक्रिया को सफल संश्लेषित्र परियोजना के लिए प्रारम्भिक महत्वपूर्ण कदम माना जाता है।<ref name="Manassewitsch 1987 151">{{Harvtxt|Manassewitsch|1987|p=151}}</ref> आवृत्ति संश्लेषित्र [[प्रणाली की रूपरेखा]] के बारे में, मनसेविच कहते हैं, अनुभवी संश्लेषित्र प्रारूपक जितने "सर्वश्रेष्ठ" प्रारूप प्रक्रियाएँ हैं।<ref name="Manassewitsch 1987 151"/>आवृत्ति संश्लेषित्र के प्रणाली विश्लेषण में उत्पाद आवृत्ति सीमा, आवृत्ति वृद्धि, आवृत्ति स्थिरता, चरणबद्ध कोलाहल प्रदर्शन जैसे, वर्णक्रमी शुद्धता सम्मिलित हैं जैसे [[स्विचिंग समय|स्विचन समय]], और आकार, विद्युत लागत।<ref>{{Harvtxt|Manassewitsch|1987|p=51}}</ref><ref name="Craw1994-4">{{Harvtxt|Crawford|1994|p=4}}</ref> जेम्स ए. क्रॉफर्ड कहते हैं कि ये परस्पर विरोधी आवश्यकताएं हैं।<ref name="Craw1994-4"/>


आवृत्ति सिंथेसिस तकनीकों पर प्रभावशाली प्रारंभिक पुस्तकों में फ़्लॉइड एम. गार्डनर (उनकी 1966 की फ़ैज़लॉक तकनीकें) शामिल हैं।<ref name=Gardner1966>{{Harvtxt|Gardner|1966}}</ref> और वेंसेस्लाव एफ. क्रुपा (उनकी 1973 आवृत्ति सिंथेसिस) द्वारा।<ref name=Kp3>{{Harvtxt|Kroupa|1999|p=3}}</ref>
आवृत्ति संश्लेषण तकनीकों पर प्रभावशाली प्रारंभिक पुस्तकों में फ़्लॉइड एम. गार्डनर और वेंसेस्लाव एफ. क्रुपा सम्मिलित हैं।<ref name=Gardner1966>{{Harvtxt|Gardner|1966}}</ref><ref name=Kp3>{{Harvtxt|Kroupa|1999|p=3}}</ref>यांत्रिक गियर-अनुपात संबंधों के अनुरूप गणितीय तकनीकों को आवृत्ति संश्लेषण में नियोजित किया जा सकता है तथा आवृत्ति संश्लेषण कारक पूर्णांक का अनुपात होता है।<ref name=Kp3/>यह विधि वर्णक्रमीय प्रेरक के वितरण और दमन की प्रभावी योजना बनाने की अनुमति देती है।
यांत्रिक गियर-अनुपात संबंधों के अनुरूप गणितीय तकनीकों को आवृत्ति संश्लेषण में नियोजित किया जा सकता है जब आवृत्ति संश्लेषण कारक पूर्णांक का अनुपात होता है।<ref name=Kp3/>यह विधि स्पेक्ट्रल स्पर्स के वितरण और दमन की प्रभावी योजना बनाने की अनुमति देती है।


प्रत्यक्ष डिजिटल संश्लेषण सहित चर-आवृत्ति संश्लेषित्र, नियमित रूप से चरण का प्रतिनिधित्व करने के लिए मोडुलो-एन अंकगणित का उपयोग करके डिज़ाइन किए गए हैं।
प्रत्यक्ष डिजिटल संश्लेषण सहित चर-आवृत्ति संश्लेषित्र, नियमित रूप से चरण का प्रतिनिधित्व करने के लिए प्रतिरूप-एन अंकगणित का उपयोग करके प्रारूपित किए गए हैं।


== पीएलएल संश्लेषित्र का सिद्धांत ==
=== पीएलएल संश्लेषित्र का सिद्धांत ===
: मुख्य लेख देखें: फेज-लॉक्ड लूप
चरण बंद चक्र एक प्रतिक्रिया नियंत्रित प्रणाली है। यह दो निविष्ट संकेतों के चरणों की तुलना करता है और एक [[त्रुटि संकेत]] उत्पन्न करता है जो उनके चरणों के मध्य के विभेद के समानुपाती होता है।<ref>Phase is the integral of frequency. Controlling the phase will also control the frequency.</ref> त्रुटि संकेत वोल्टेज-नियंत्रित दोलित्र को चलाने के लिए उपयोग किया जाता है जो एक उत्पाद आवृत्ति बनाता है। उत्पाद आवृत्ति को आवृत्ति विभाजक के माध्यम से प्रणाली के निविष्ट में वापस प्रेषित किया जाता है, जिससे एक [[नकारात्मक प्रतिपुष्टि]] चक्र बनता है। यदि उत्पाद आवृत्ति प्रवाहित होती है, तो चरण त्रुटि संकेत बढ़ेगा, आवृत्ति को विपरीत दिशा में चलाएगा ताकि त्रुटि कम हो सके। इस प्रकार उत्पाद दूसरे निविष्ट की आवृत्ति पर बंद हो जाता है। इस अन्य निविष्ट को 'संदर्भ' कहा जाता है और सामान्यतः एक स्फटिक दोलित्र से प्राप्त होता है, जो आवृत्ति में अत्यधिक स्थिर होता है। नीचे दिया गया बंद आरेख पीएलएल आधारित आवृत्ति संश्लेषित्र के मूल तत्वों और व्यवस्था को दर्शाता है।
फेज लॉक्ड लूप एक फीडबैक कंट्रोल प्रणाली है। यह दो इनपुट संकेतों के चरणों की तुलना करता है और एक [[त्रुटि संकेत]] उत्पन्न करता है जो उनके चरणों के बीच के विभेद के समानुपाती होता है।<ref>Phase is the integral of frequency. Controlling the phase will also control the frequency.</ref> त्रुटि संकेत तब कम पास फ़िल्टर किया जाता है और एक वोल्टेज-नियंत्रित ऑसिलेटर (VCO) को चलाने के लिए उपयोग किया जाता है जो एक आउटपुट आवृत्ति बनाता है। आउटपुट आवृत्ति को आवृत्ति डिवाइडर के माध्यम से प्रणाली के इनपुट में वापस फीड किया जाता है, जिससे एक [[नकारात्मक प्रतिपुष्टि]] लूप बनता है। यदि आउटपुट आवृत्ति बहती है, तो चरण त्रुटि संकेत बढ़ेगा, आवृत्ति को विपरीत दिशा में चलाएगा ताकि त्रुटि कम हो सके। इस प्रकार आउटपुट दूसरे इनपुट पर आवृत्ति पर लॉक हो जाता है। इस अन्य इनपुट को 'संदर्भ' कहा जाता है और आमतौर पर एक क्रिस्टल ऑसिलेटर से प्राप्त होता है, जो आवृत्ति में बहुत स्थिर होता है। नीचे दिया गया ब्लॉक आरेख PLL आधारित आवृत्ति संश्लेषित्र के मूल तत्वों और व्यवस्था को दर्शाता है।


[[image:PLL frequency synthesizer 2.svg|thumb|upright=1.7|सामान्य प्रकार के पीएलएल संश्लेषित्र का ब्लॉक आरेख।
आवृत्ति संश्लेषित्र की कई आवृत्तियों को उत्पन्न करने की क्षमता की कुंजी उत्पाद और प्रतिक्रिया निविष्ट के मध्य विभाजक है। यह सामान्यतः एक [[डिजिटल काउंटर|डिजिटल  गणक]] के रूप में होता है, जिसमें उत्पाद संकेत के रूप में कार्य करता है। गणक कुछ प्रारंभिक गिनती मूल्य के लिए पूर्व निर्धारित है, और घड़ी संकेत के प्रत्येक चक्र पर अवरोहण करता है। जब यह शून्य पर पहुंच जाता है, तो  गणक उत्पाद की स्थिति बदल जाती है और गणना मूल्य फिर से भारित हो जाती है। यह परिपथ [[फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स)|फ्लिप-फ्लॉप]] का उपयोग करके लागू करने के लिए साधारण है । क्योंकि यह प्रकृति में डिजिटल आंकड़ा है। यह संश्लेषित्र द्वारा आवृत्ति उत्पाद को डिजिटल प्रणाली द्वारा आसानी से नियंत्रित करने की अनुमति देता है।


एक आवृत्ति संश्लेषित्र की कई आवृत्तियों को उत्पन्न करने की क्षमता की कुंजी आउटपुट और फीडबैक इनपुट के बीच विभाजक है। यह आमतौर पर एक [[डिजिटल काउंटर]] के रूप में होता है, जिसमें आउटपुट सिग्नल क्लॉक सिग्नल के रूप में कार्य करता है। काउंटर कुछ प्रारंभिक गिनती मूल्य के लिए पूर्व निर्धारित है, और घड़ी संकेत के प्रत्येक चक्र पर उलटी गिनती करता है। जब यह शून्य पर पहुंच जाता है, तो काउंटर आउटपुट की स्थिति बदल जाती है और काउंट वैल्यू फिर से लोड हो जाती है। यह परिपथ [[फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स)]] | फ्लिप-फ्लॉप का उपयोग करके लागू करने के लिए सीधा है, और क्योंकि यह प्रकृति में डिजिटल डेटा है, अन्य डिजिटल घटकों या [[माइक्रोप्रोसेसर]] के लिए इंटरफ़ेस करना बहुत आसान है। यह संश्लेषित्र द्वारा आवृत्ति आउटपुट को डिजिटल प्रणाली द्वारा आसानी से नियंत्रित करने की अनुमति देता है।
==== उदाहरण ====


=== उदाहरण ===
मान लीजिए कि संदर्भ संकेत 100 kHz है, और विभाजक को 1 और 100 के मध्य किसी भी मान पर पूर्वनिश्चित किया जा सकता है। तुलनित्र द्वारा उत्पन्न त्रुटि संकेत केवल तभी शून्य होगा जब विभाजक का उत्पाद भी 100 kHz होगा। ऐसा होने के लिए, वीसीओ को एक आवृत्ति पर चलना चाहिए जो 100 kHz का विभक्त गणना मान है। इस प्रकार यह 2 की गणना के लिए 1200 kHz की गिनती के लिए 100 kHz का उत्पादन करेगा, 10 की गिनती के लिए 1 MHz का उत्पादन करेगा । ध्यातव्य है कि सरलतम पूर्णांक एन विभाजक के साथ संदर्भ आवृत्ति के केवल पूरे गुणकों को प्राप्त किया जा सकता है। आंशिक एन विभाजक आसानी से उपलब्ध हैं।<ref name="DB"/>


मान लीजिए कि संदर्भ संकेत 100 kHz है, और डिवाइडर को 1 और 100 के बीच किसी भी मान पर प्रीसेट किया जा सकता है। तुलनित्र द्वारा उत्पन्न त्रुटि संकेत केवल तभी शून्य होगा जब डिवाइडर का आउटपुट भी 100 kHz होगा। ऐसा होने के लिए, VCO को एक आवृत्ति पर चलना चाहिए जो 100 kHz x विभक्त गणना मान है। इस प्रकार यह 2 की गिनती के लिए 1, 200 kHz की गिनती के लिए 100 kHz का उत्पादन करेगा, 10 की गिनती के लिए 1 MHz और इसी तरह। ध्यान दें कि सरलतम पूर्णांक एन डिवाइडर के साथ संदर्भ आवृत्ति के केवल पूरे गुणकों को प्राप्त किया जा सकता है। आंशिक एन डिवाइडर आसानी से उपलब्ध हैं।<ref name="DB"/>
=== व्यावहारिकता का विचार ===
[[File:Skymaster DT 500 - Sharp GCI 3AV0 - Philips TDA6651TT-91794.jpg|thumb|Philips TDA6651TT - 5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner]]
व्यावहारिक दृष्टि से ' इस प्रकार की आवृत्ति, संश्लेषित आवृत्तियों की अत्यधिक विस्तृत श्रृंखला पर कार्य नहीं कर सकता है, क्योंकि तुलनित्र के पास सीमित [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंड विस्तार]] होगा और यह[[अलियासिंग|उपघटन]] समस्याओं से ग्रस्त हो सकता है। यह असत्य बंद स्थितियों या पूर्णतः बंद करने में असमर्थता का कारण बनेगा। इसके अतिरिक्त, एक उच्च आवृत्ति वीसीओ बनाना जटिल होता है जो अत्यधिक विस्तृत श्रृंखला में संचालित होता है। यह कई कारकों के कारण है। यद्यपि, अधिकांश प्रणालियों में जहां एक संश्लेषित्र का उपयोग किया जाता है, हम एक विशाल सीमा के उपरांत नहीं होते हैं, बल्कि कुछ परिभाषित सीमा पर एक परिमित संख्या होती है, जैसे कि एक विशिष्ट बैंड में कई रेडियो चैनल।


कई रेडियो अनुप्रयोगों को आवृत्तियों की आवश्यकता होती है जो डिजिटल गणक पर प्रत्यक्ष निविष्ट से अधिक होती हैं। इस पर नियंत्रण करने के लिए, पूरे गणक का निर्माण उच्च गति तर्क जैसे कि [[उत्सर्जक युग्मित तर्क]], या अधिक सामान्यतः, गतिज प्रारंभिक विभाजन चरण का उपयोग करके किया जा सकता है जिसे पूर्वमापी कहा जाता है जो आवृत्ति को एक प्रबंधनीय स्तर तक कम कर देता है। चूंकि पूर्वमापी समग्र विभाजन अनुपात का भाग है, निश्चित पूर्वमापी संकीर्ण चैनल अंतराल वाले प्रणाली को प्रारूप करने में समस्याएं उत्पन्न  कर सकता है - सामान्यतः रेडियो अनुप्रयोगों में सामना करना पड़ता है। इसे दोहरे-मॉड्यूलस पूर्वमापी का उपयोग करके दूर किया जा सकता है।<ref name="DB">{{Harvtxt|Banerjee|2006}}</ref>


== व्यावहारिक विचार ==
आगे के व्यावहारिक पहलू इस बात से संबंधित हैं कि प्रणाली चैनल से चैनल पर कितना समय परिवर्तित किया जा सकता है, पहली बार बदलने पर बंद होने का समय और उत्पाद में कितना [[शोर|कोलाहल]] है। ये सभी प्रणाली के चक्र फिल्टर का कार्य है, जो आवृत्ति तुलनित्र के उत्पाद और वीसीओ के निविष्ट के मध्य रखा गया एक कम-पास फिल्टर है। प्रायः आवृत्ति तुलनित्र का उत्पादन लघु त्रुटि पल्स के रूप में होता है, परंतु वीसीओ का निविष्ट एक चिकनी कोलाहल मुक्त डीसी विभव होना चाहिए। भारी फ़िल्टरिंग वीसीओ को परिवर्तनों का जवाब देने में मंद कर देगा, जिसके कारण प्रवाह और प्रतिक्रिया समय मंद होगा, परंतु हल्का फ़िल्टरिंग कोलाहल और [[लयबद्ध]] के साथ अन्य समस्याएं उत्पन्न करेगा। इस प्रकार फ़िल्टर का प्रारूप प्रणाली के प्रदर्शन के लिए महत्वपूर्ण है और वास्तव में मुख्य क्षेत्र जिस पर संश्लेषित्र प्रणाली का निर्माण करते समय एक प्रारूप पर ध्यान केंद्रित करेगा।<ref name="DB" />
[[File:Skymaster DT 500 - Sharp GCI 3AV0 - Philips TDA6651TT-91794.jpg|thumb|Philips TDA6651TT - हाइब्रिड टेरेस्ट्रियल ट्यूनर के लिए 5 V मिक्सर/ऑसिलेटर और कम शोर वाला PLL संश्लेषित्र]]व्यवहार में इस प्रकार की आवृत्ति संश्लेषित्र आवृत्तियों की एक बहुत विस्तृत श्रृंखला पर काम नहीं कर सकता है, क्योंकि तुलनित्र के पास एक सीमित [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] होगा और [[अलियासिंग]] समस्याओं से ग्रस्त हो सकता है। यह झूठी लॉकिंग स्थितियों या बिल्कुल भी लॉक करने में असमर्थता का कारण बनेगा। इसके अलावा, एक उच्च आवृत्ति VCO बनाना कठिन है जो बहुत विस्तृत श्रृंखला में संचालित होता है। यह कई कारकों के कारण है, परंतु प्राथमिक प्रतिबंध [[वैरिकैप]]्स की सीमित समाई सीमा है। हालांकि, अधिकांश प्रणालियों में जहां एक संश्लेषित्र का उपयोग किया जाता है, हम एक विशाल सीमा के बाद नहीं होते हैं, बल्कि कुछ परिभाषित सीमा पर एक परिमित संख्या होती है, जैसे कि एक विशिष्ट बैंड में कई रेडियो चैनल।


कई रेडियो अनुप्रयोगों को आवृत्तियों की आवश्यकता होती है जो डिजिटल काउंटर पर सीधे इनपुट से अधिक होती हैं। इस पर काबू पाने के लिए, पूरे काउंटर का निर्माण हाई-स्पीड लॉजिक जैसे कि [[उत्सर्जक युग्मित तर्क]], या अधिक सामान्यतः, एक तेज प्रारंभिक विभाजन चरण का उपयोग करके किया जा सकता है जिसे प्रीस्कूलर कहा जाता है जो आवृत्ति को एक प्रबंधनीय स्तर तक कम कर देता है। चूंकि प्रीस्कूलर समग्र विभाजन अनुपात का हिस्सा है, एक निश्चित प्रीस्कूलर संकीर्ण चैनल स्पेसिंग वाले प्रणाली को डिजाइन करने में समस्याएं पैदा कर सकता है - आमतौर पर रेडियो अनुप्रयोगों में सामना करना पड़ता है। इसे दोहरे-मॉड्यूलस प्रीस्कूलर का उपयोग करके दूर किया जा सकता है।<ref name="DB">{{Harvtxt|Banerjee|2006}}</ref>
[[Category:Commons category link is locally defined]]
आगे के व्यावहारिक पहलू इस बात से संबंधित हैं कि प्रणाली चैनल से चैनल पर कितना समय स्विच कर सकता है, पहली बार स्विच करने पर लॉक होने का समय और आउटपुट में कितना [[शोर]] है। ये सभी प्रणाली के लूप फिल्टर का एक कार्य है, जो आवृत्ति तुलनित्र के आउटपुट और वीसीओ के इनपुट के बीच रखा गया एक कम-पास फिल्टर है। आम तौर पर आवृत्ति तुलनित्र का उत्पादन लघु त्रुटि दालों के रूप में होता है, परंतु वीसीओ का इनपुट एक चिकनी शोर मुक्त डीसी वोल्टेज होना चाहिए। (इस सिग्नल पर कोई भी शोर स्वाभाविक रूप से वीसीओ के आवृत्ति मॉडुलन का कारण बनता है।) भारी फ़िल्टरिंग वीसीओ को परिवर्तनों का जवाब देने में धीमा कर देगा, जिसके कारण बहाव और धीमी प्रतिक्रिया समय होगा, परंतु हल्का फ़िल्टरिंग शोर और [[लयबद्ध]]्स के साथ अन्य समस्याएं पैदा करेगा। इस प्रकार फ़िल्टर का डिज़ाइन प्रणाली के प्रदर्शन के लिए महत्वपूर्ण है और वास्तव में मुख्य क्षेत्र जिस पर एक संश्लेषित्र प्रणाली का निर्माण करते समय एक डिजाइनर ध्यान केंद्रित करेगा।<ref name="DB"/>
[[Category:Created On 15/02/2023]]
 
[[Category:Machine Translated Page]]
 
[[Category:Pages with script errors]]
 
[[Category:Short description with empty Wikidata description]]
== आवृत्ति मॉड्यूलेटर == के रूप में प्रयोग करें
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]


कई PLL आवृत्ति संश्लेषित्र आवृत्ति मॉड्यूलेशन (FM) भी ​​उत्पन्न कर सकते हैं। मॉड्यूलेटिंग सिग्नल लूप फिल्टर के आउटपुट में जोड़ा जाता है, सीधे VCO और संश्लेषित्र आउटपुट की आवृत्ति को बदलता है। मॉडुलन चरण तुलनित्र आउटपुट पर भी दिखाई देगा, किसी भी आवृत्ति विभाजन द्वारा आयाम में कमी। मॉड्यूलेटिंग सिग्नल में कोई भी वर्णक्रमीय घटक लूप फिल्टर द्वारा अवरुद्ध होने के लिए बहुत कम है, VCO इनपुट पर मॉड्यूलेटिंग सिग्नल के विपरीत ध्रुवीयता के साथ समाप्त होता है, इस प्रकार उन्हें रद्द कर देता है। (लूप प्रभावी रूप से इन घटकों को VCO शोर के रूप में ट्रैक करने के लिए देखता है।) लूप फ़िल्टर कटऑफ आवृत्ति के ऊपर मॉड्यूलेशन घटक VCO इनपुट पर वापस नहीं आ सकते हैं, इसलिए वे VCO आउटपुट में बने रहते हैं।<ref>Gardner1966</ref> इसलिए यह सरल योजना कम आवृत्ति (या डीसी) मॉड्यूलेटिंग संकेतों को सीधे नियंत्रित नहीं कर सकती है, परंतु इस पद्धति का उपयोग करने वाले कई एसी-युग्मित वीडियो और ऑडियो एफएम ट्रांसमीटरों में यह कोई समस्या नहीं है। ऐसे संकेतों को पीएलएल लूप फिल्टर की कटऑफ आवृत्ति के ऊपर एक सबकैरियर पर भी रखा जा सकता है।
=== एक न्यूनाधिक के रूप मे प्रयोग ===
कई पीएलएल आवृत्ति संश्लेषित्र आवृत्ति स्वर परिवर्तन भी ​​उत्पन्न कर सकते हैं। स्वर परिवर्तन संकेत चक्र फिल्टर के उत्पाद में जोड़ा जाता है, सीधे वीसीओ और संश्लेषित्र उत्पाद की आवृत्ति को बदलता है। प्रतिरुपण चरण तुलनित्र उत्पाद किसी भी आवृत्ति विभाजन द्वारा आयाम में कमी पर भी दिखाई देगा। प्रतिरूपण संकेत में कोई भी वर्णक्रमीय घटक चक्र फिल्टर द्वारा अवरुद्ध होने के लिए अत्यधिक कम है, वीसीओ निविष्ट पर प्रतिरूपण संकेत के विपरीत ध्रुवीयता के साथ समाप्त होता है, इस प्रकार उन्हें नष्ट कर देता है। चक्र फ़िल्टर कटऑफ आवृत्ति के ऊपर प्रतिरूपण घटक वीसीओ निविष्ट पर वापस नहीं आ सकते हैं, इसलिए वे वीसीओ उत्पाद में बने रहते हैं।<ref>Gardner1966</ref> इसलिए यह सरल योजना कम आवृत्ति प्रतिरूपण संकेतों को सीधे नियंत्रित नहीं कर सकती है, परंतु इस पद्धति का उपयोग करने वाले कई एसी-युग्मित दृश्य एवं श्रव्य एफएम प्रसारों में यह कोई समस्या नहीं है। ऐसे संकेतों को पीएलएल चक्र फिल्टर की कटऑफ आवृत्ति के ऊपर एक उपवाहक पर भी रखा जा सकता है।


उपरोक्त सीमा को पार करने के लिए दो-बिंदु मॉडुलन का उपयोग करके पीएलएल आवृत्ति संश्लेषित्र को कम आवृत्ति पर और डीसी के नीचे संशोधित किया जा सकता है।<ref>Owen (2001)</ref> मॉड्यूलेशन पहले की तरह वीसीओ पर लागू होता है, परंतु अब संश्लेषित्र के लिए डिजिटल रूप से एनालॉग एफएम सिग्नल के साथ सहानुभूति में एक तेज डेल्टा सिग्मा एडीसी का उपयोग करके भी लागू किया जाता है।
उपरोक्त सीमा को पार करने के लिए दो-बिंदु प्रतिरूपण का उपयोग करके पीएलएल आवृत्ति संश्लेषित्र को कम आवृत्ति पर और डीसी के नीचे संशोधित किया जा सकता है।<ref>Owen (2001)</ref> प्रतिरूपण पहले की तरह वीसीओ पर लागू होता है, परंतु अब संश्लेषित्र के लिए डिजिटल रूप से एनालॉग एफएम संकेतों के साथ एक तेज डेल्टा सिग्मा एडीसी का उपयोग करके भी लागू किया जाता है।


== यह भी देखें ==
== यह भी देखें ==
* [[सुपरहेटरोडाइन रिसीवर|सुपरहेटरोडाइन अभिग्राही]]
* [[सुपरहेटरोडाइन रिसीवर|सुपरहेटरोडाइन अभिग्राही]]
* [[डिजिटल रूप से नियंत्रित ऑसिलेटर]]
* [[डिजिटल रूप से नियंत्रित ऑसिलेटर|डिजिटल रूप से नियंत्रित दोलित्र]]
* डुअल-मॉड्यूलस प्रीस्कूलर
* डुअल-मॉड्यूलस प्रीस्कूलर
* [[वाडले लूप]]
* [[वाडले लूप|वाडले चक्र]]


==संदर्भ==
==संदर्भ==
Line 162: Line 166:


==अग्रिम पठन==
==अग्रिम पठन==
* Ulrich L. Rohde "Digital PLL Frequency Synthesizers – Theory and Design ", Prentice-Hall, Inc., Englewood Cliffs, NJ, January 1983
* Ulrich L. Rohde "Digital पीएलएल Frequency Synthesizers – Theory and Design ", Prentice-Hall, Inc., Englewood Cliffs, NJ, January 1983
* Ulrich L. Rohde " Microwave and Wireless Synthesizers: Theory and Design ", John Wiley & Sons, August 1997, {{ISBN|0-471-52019-5}}
* Ulrich L. Rohde " Microwave and Wireless Synthesizers: Theory and Design ", John Wiley & Sons, August 1997, {{ISBN|0-471-52019-5}}


Line 168: Line 172:
==बाहरी संबंध==
==बाहरी संबंध==
{{Commons category|Frequency synthesizers}}
{{Commons category|Frequency synthesizers}}
* [http://www.hpmemory.org/news/5100/hp5100_page_00.htm Hewlett-Packard 5100A] (tunable, 0.01&nbsp;Hz-resolution ''Direct Frequency Synthesizer'' introduced in 1964; to HP, direct synthesis meant [[PLL]] not used, while indirect meant a [[PLL]] was used)
* [http://www.hpmemory.org/news/5100/hp5100_page_00.htm Hewlett-Packard 5100A] (tunable, 0.01&nbsp;Hz-resolution ''Direct Frequency Synthesizer'' introduced in 1964; to HP, direct synthesis meant [[PLL|पीएलएल]] not used, while indirect meant a [[PLL|पीएलएल]] was used)
* {{cite manual |author=Hewlett-Packard |date=December 1965 |title=Model 5100A Synthesizer |series=Operating and Service Manual |url=http://bama.edebris.com/download/hp/5100a/hp5100a.pdf}}
* {{cite manual |author=Hewlett-Packard |date=December 1965 |title=Model 5100A Synthesizer |series=Operating and Service Manual |url=http://bama.edebris.com/download/hp/5100a/hp5100a.pdf}}
* {{cite manual |author=Hewlett-Packard |date=August 1965 |title=Model 5110A Synthesizer Driver |series=Operating and Service Manual |url=http://bama.edebris.com/download/hp/5110a/HP5110A.pdf}}
* {{cite manual |author=Hewlett-Packard |date=August 1965 |title=Model 5110A Synthesizer Driver |series=Operating and Service Manual |url=http://bama.edebris.com/download/hp/5110a/HP5110A.pdf}}
Line 176: Line 180:
* {{cite journal |last=Van Duzer |first=Victor E. |title=Notes on the Application of Frequency Synthesizers |date=May 1964 |volume=15 |issue=9 |pages=7&ndash;8 |journal=Hewlett-Packard Journal |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1964-05.pdf}}
* {{cite journal |last=Van Duzer |first=Victor E. |title=Notes on the Application of Frequency Synthesizers |date=May 1964 |volume=15 |issue=9 |pages=7&ndash;8 |journal=Hewlett-Packard Journal |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1964-05.pdf}}
* {{cite journal |first=Leonard S. |last=Cutler |author-link=Leonard Cutler |title=Examination of the Atomic Spectral Lines of a Cesium Beam Tube with the HP Frequency Synthesizer |journal=Hewlett-Packard Journal |volume=15 |issue=4 |date=December 1963 |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1963-12.pdf}}  
* {{cite journal |first=Leonard S. |last=Cutler |author-link=Leonard Cutler |title=Examination of the Atomic Spectral Lines of a Cesium Beam Tube with the HP Frequency Synthesizer |journal=Hewlett-Packard Journal |volume=15 |issue=4 |date=December 1963 |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1963-12.pdf}}  
* {{cite journal |last=Shanahan |first=John. C. |title=Uniting Signal Generation and Signal Synthesis: A simultaneous solution is devised to the problems of signal generation and signal use. while optimizing both for bench and automatic use. |date=December 1971 |volume=23 |issue=4 |pages=2&ndash;13 |journal=Hewlett-Packard Journal |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1971-12.pdf}}. HP 8660A/B Multiloop PLL synthesizer.
* {{cite journal |last=Shanahan |first=John. C. |title=Uniting Signal Generation and Signal Synthesis: A simultaneous solution is devised to the problems of signal generation and signal use. while optimizing both for bench and automatic use. |date=December 1971 |volume=23 |issue=4 |pages=2&ndash;13 |journal=Hewlett-Packard Journal |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1971-12.pdf}}. HP 8660A/B Multiloop पीएलएल synthesizer.
[[Category: इलेक्ट्रॉनिक ऑसिलेटर्स]] [[Category: संचार सर्किट]] [[Category: रेडियो तकनीक]] [[Category: इलेक्ट्रॉनिक परीक्षण उपकरण]] [[Category: दूसरी-हार्मोनिक पीढ़ी]]  
[[Category: इलेक्ट्रॉनिक ऑसिलेटर्स]] [[Category: संचार सर्किट]] [[Category: रेडियो तकनीक]] [[Category: इलेक्ट्रॉनिक परीक्षण उपकरण]] [[Category: दूसरी-हार्मोनिक पीढ़ी]]  


Line 183: Line 187:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 15/02/2023]]
[[Category:Created On 15/02/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:55, 31 October 2023

आवृत्ति सिंथेसाइज़र(आवृत्ति संश्लेषित्र) विद्युत परिपथ है जो एकल संदर्भ आवृत्ति से कई श्रेणियों की आवृत्ति उत्पन्न करता है। आवृत्ति संश्लेषित्र का उपयोग कई आधुनिक उपकरणों जैसे रेडियो अभिग्राही, टेलीविजन, मोबाइल टेलीफोन, रेडियो-टेलीफोन, वॉकी-टॉकी, नागरिक बैंड रेडियो, केबल कनवर्टर बॉक्स, उपग्रह अभिग्राही और जीपीएस प्रणाली में किया जाता है। आवृत्ति संश्लेषित्र, आवृत्ति गुणक, आवृत्ति विभक्त, प्रत्यक्ष डिजिटल संश्लेषण, आवृत्ति मिक्सर और चरण बंद चक्र की तकनीकों का उपयोग करके आवृत्ति उत्पन्न कर सकता है। आवृत्ति संश्लेषित्र के निष्पाद की स्थिरता और सटीकता इसके संदर्भ आवृत्ति निविष्ट की स्थिरता और सटीकता पर निर्भर करता है। परिणाम स्वरूप, संश्लेषित्र स्थिर और सटीक संदर्भ आवृत्तियों का उपयोग करता हैं, जैसे कि स्फटिक दोलित्र द्वारा प्रदान किया गया।

प्रकार

संश्लेषित्र को तीन प्रकार से विभेदित किया जा सकता है। पहले और दूसरे प्रकार को नियमित रूप से स्टैंड-अलोन स्थापत्य के रूप संदर्भित किया जा सकता है । प्रत्यक्ष एनालॉग संश्लेषण जिसे मिश्रित -फिल्टर-विभाजक स्थापत्य भी कहा जाता है[1] जैसा कि 1960 के दशक में और अधिक आधुनिक प्रत्यक्ष डिजिटल संश्लेषित्र में पाया गया। तीसरे प्रकार का संश्लेषित्र नियमित रूप से संचार प्रणाली एकीकृत परिपथ रचक खंड के रूप में उपयोग किया जाता है । जैसे पूर्णांक-एन और आंशिक-एन सहित अप्रत्यक्ष डिजिटल संश्लेषित्र।[2] हाल ही में विकसित टीएएफ-डीपीएस भी एक सीधी पद्धति है। जो क्बंद पल्स ट्रेन में सीधे प्रत्येक पल्स के तरंगरूप का निर्माण करता है।

डिजीफेज संश्लेषित्र

यह कुछ विधियों में अप्रत्यक्ष डिजिटल संश्लेषित्र के समान है, परंतु इसमें वास्तु संबंधी विभेद हैं। इसके बड़े लाभों में से एक यह है कि डिजीफेज संश्लेषित्र, किसी दिए गए संदर्भ आवृत्ति के साथ अन्य प्रकार के संश्लेषित्र की तुलना में अधिक उत्तम वियोजन की अनुमति देता है।[3]


समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण (टीएएफ-डीपीएस)

हाल ही में, समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण नाम की एक तकनीक आवृत्ति संश्लेषित्र परिवार में एक नए सदस्य के रूप में विकसित हुआ है। यह कालद संकेत चालित एकीकृत परिपथ के लिए आवृत्ति उत्पादन पर केंद्रित है। अन्य सभी तकनीकों से अलग, यह समय-औसत-आवृत्ति की एक नई अवधारणा का उपयोग करता है।[4] इसका उद्देश्य ऑन-चिप क्बंद संकेत उत्पादन के क्षेत्र में दो लंबे समय तक चलने वाली समस्याओं का समाधान करना है। जैसे यादृच्छिक-आवृत्ति-उत्पादन और तात्कालिक-आवृत्ति-स्विचन।

बुनियादी समय इकाई से प्रारंभ करते हुए, समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण पहले दो प्रकार के वर्त्तुल टीAऔर टीB.बनाता है क्बंद पल्स ट्रेन बनाने के लिए इन दो प्रकार के चक्रों का उपयोग अंतःपत्रित आकृति में किया जाता है। परिणाम स्वरूप,समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण यादृच्छिक-आवृत्ति-उत्पादन और तात्कालिक-आवृत्ति-स्विचन की समस्याओं को अधिक प्रभावी ढंग से संबोधित करने में सक्षम है। समय-औसत-आवृत्ति अवधारणा का उपयोग करने वाली पहली परिपथ तकनीक है।, जिसे 1990 के दशक के अंत में विकसित किया गया था। 2008 में टीएएफ अवधारणा की शुरुआत के बाद से, आवृत्ति संश्लेषण तकनीक का विकास औपचारिक रूप से टीएएफ पर कार्य करता है। इस तकनीक का विस्तृत विवरण उन पुस्तकों में पाया जा सकता है[5] [6]। जैसे-जैसे विकास आगे बढ़ता है, यह धीरे-धीरे स्पष्ट हो जाता है कि समय-औसत-आवृत्ति प्रत्यक्ष अवधि संश्लेषण प्रणाली स्तर के नवाचार के लिए एक परिपथ स्तर का समर्थक है।[7] इसका उपयोग घड़ी संकेत उत्पादन के अतिरिक्त कई क्षेत्रों में किया जा सकता है। इसका प्रभाव इसलिए महत्वपूर्ण है क्योंकि घड़ी संकेत विद्युतकीय में इसका महत्वपूर्ण उपयोग है, जो विद्युतकीय संसार के भीतर समय के प्रवाह की स्थापना करता है। मूर के नियम के दिशात्मक परिवर्तन में इसका गहरा प्रभाव देखा जा रहा है।[8]


इतिहास

संश्लेषित्र के व्यापक उपयोग से पहले, स्टेशनों पर विभिन्न आवृत्तियों को प्राप्त करने के लिए, रेडियो और टेलीविज़न अभिग्राही एक स्थानीय दोलित्र के हस्तचालित समस्वरण पर निर्भर थे, जो आवृत्ति निर्धारित करने के लिए विप्रेरक और संधारित्र, या कभी-कभी अनुनादी संचरण माध्यमों से निर्मित अनुनादी परिपथ का उपयोग करते थे। अभिग्राही को अलग-अलग आवृत्तियों के लिए या तो एक चर संधारित्र, या एक कुंजी द्वारा समायोजित किया गया था, जो वांछित मार्ग के लिए उचित समस्वर परिपथ को चुनता था, जैसे कि बुर्ज समस्वरित के साथ सामान्यतः 1980 के दशक से प्रारम्भिक टेलीविजन अभिग्राही में उपयोग किया जाता था। यद्यपि एक समस्वरित परिपथ की अनुनादी आवृत्ति अत्यधिक स्थिर नहीं होती है; तापमान में परिवर्तन और घटकों की उम्र बढ़ने से आवृत्ति का प्रवाह होता है, जिससे अभिग्राही, स्टेशन की आवृत्ति से हट जाता है। स्वचालित आवृत्ति नियंत्रण प्रवाह की कुछ समस्या को हल करता है, परंतु हस्तचालित समस्वरण प्रायः आवश्यक होती थी। चूंकि प्रसारी आवृत्तियों को स्थिर किया जाता है यह अभिग्राही में निश्चित, स्थिर आवृत्तियों के सटीक स्रोत समस्या का समाधान करता है।

स्फटिक दोलित्र अनुनादी यंत्र एलसी परिपथ की तुलना में परिमाण के कई क्रम मे अधिक स्थिर होते हैं और जब स्थानीय दोलित्र की आवृत्ति को नियंत्रित करने के लिए उपयोग किया जाता है तो अभिग्राही को समस्वरित बनाए रखने के लिए पर्याप्त स्थिरता प्रदान करता है। यद्यपि स्फटिक की अनुनादी आवृत्ति इसके आयामों द्वारा निर्धारित की जाती है और अभिग्राही को अलग-अलग आवृत्तियों पर समस्वरित करने के लिए भिन्न नहीं किया जा सकता है। एक समाधान कई स्फटिकों को नियोजित करना है। यह क्रूर बल तकनीक तब व्यावहारिक है जब अत्यधिक कम आवृत्तियों की आवश्यकता होती है, परंतु कई अनुप्रयोगों में यह महंगा और अव्यवहारिक हो जाता है। उदाहरण के लिए, कई देशों में एफएम रेडियो बैंड लगभग 88 मेगाहर्ट्ज़ से 108 मेगाहर्ट्ज़ तक 100 अलग-अलग चैनल आवृत्ति का समर्थन करता है; प्रत्येक चैनल में समस्वरित करने की क्षमता के लिए 100 स्फटिक की आवश्यकता होगी। केबल टेलीविजन अधिक व्यापक बैंड पर अधिक आवृत्तियों या प्रसारणों का समर्थन करता है। बड़ी संख्या में स्फटिक, लागत को बढ़ाते हैं और इन्हे अधिक स्थान की आवश्यकता होती है।

इसका समाधान परिपथ का विकास था जो स्फटिक दोलित्र द्वारा उत्पादित संदर्भ आवृत्ति से कई आवृत्तियों को उत्पन्न कर सकता था। इसे आवृत्ति संश्लेषित्र कहा जाता है। नई संश्लेषित आवृत्तियों में मुख्य स्फटिक दोलित्र में आवृत्ति स्थिरता होगी, क्योंकि वे इससे उत्पादित हुए थे।

आवृत्तियों को संश्लेषित करने के लिए विभिन्न तकनीकों को कई वर्षों में तैयार किया गया है। कुछ उपागमों में चरण बंद चक्र, द्वि मिश्रित, त्रि मिश्रित, संनादी, द्वि मिश्रित विभाजक और प्रत्यक्ष डिजिटल संश्लेषण सम्मिलित हैं। उपागमों का चुनाव कई कारकों पर निर्भर करता है, जैसे कि लागत, जटिलता, आवृत्ति चरण आकार, स्विचन दर, चरण शोर और मिथ्या उत्पाद।

सुसंगत तकनीकें एकल, स्थिर मुख्य दोलित्र से प्राप्त आवृत्तियों को उत्पन्न करती हैं। अधिकांश अनुप्रयोगों में, एक स्फटिक दोलित्र साधारण है, परंतु अन्य अनुनादी यंत्र और आवृत्ति स्रोतों का उपयोग किया जा सकता है। असंगत तकनीकें कई स्थिर दोलित्रों के एक समुच्चय से आवृत्तियों को प्राप्त करती हैं।[9] व्यावसायिक अनुप्रयोगों में अधिकांश संश्लेषित्र सादगी और कम लागत के कारण सुसंगत तकनीकों का उपयोग करते हैं।

वाणिज्यिक रेडियो अभिग्राही में प्रयुक्त संश्लेषित्र बड़े पैमाने पर चरण बंद चक्र पर आधारित होते हैं। कई प्रकार के आवृत्ति संश्लेषित्र एकीकृत परिपथ के रूप में उपलब्ध हैं, जो लागत और आकार को कम करते हैं। उच्च अंत अभिग्राही और विद्युतकीय परीक्षण उपकरण प्रायः संयोजन में अधिक परिष्कृत तकनीकों का उपयोग करते हैं।

प्रणाली विश्लेषण और प्रारूप

सुविचारित प्रारूप प्रक्रिया को सफल संश्लेषित्र परियोजना के लिए प्रारम्भिक महत्वपूर्ण कदम माना जाता है।[10] आवृत्ति संश्लेषित्र प्रणाली की रूपरेखा के बारे में, मनसेविच कहते हैं, अनुभवी संश्लेषित्र प्रारूपक जितने "सर्वश्रेष्ठ" प्रारूप प्रक्रियाएँ हैं।[10]आवृत्ति संश्लेषित्र के प्रणाली विश्लेषण में उत्पाद आवृत्ति सीमा, आवृत्ति वृद्धि, आवृत्ति स्थिरता, चरणबद्ध कोलाहल प्रदर्शन जैसे, वर्णक्रमी शुद्धता सम्मिलित हैं जैसे स्विचन समय, और आकार, विद्युत लागत।[11][12] जेम्स ए. क्रॉफर्ड कहते हैं कि ये परस्पर विरोधी आवश्यकताएं हैं।[12]

आवृत्ति संश्लेषण तकनीकों पर प्रभावशाली प्रारंभिक पुस्तकों में फ़्लॉइड एम. गार्डनर और वेंसेस्लाव एफ. क्रुपा सम्मिलित हैं।[13][14]यांत्रिक गियर-अनुपात संबंधों के अनुरूप गणितीय तकनीकों को आवृत्ति संश्लेषण में नियोजित किया जा सकता है तथा आवृत्ति संश्लेषण कारक पूर्णांक का अनुपात होता है।[14]यह विधि वर्णक्रमीय प्रेरक के वितरण और दमन की प्रभावी योजना बनाने की अनुमति देती है।

प्रत्यक्ष डिजिटल संश्लेषण सहित चर-आवृत्ति संश्लेषित्र, नियमित रूप से चरण का प्रतिनिधित्व करने के लिए प्रतिरूप-एन अंकगणित का उपयोग करके प्रारूपित किए गए हैं।

पीएलएल संश्लेषित्र का सिद्धांत

चरण बंद चक्र एक प्रतिक्रिया नियंत्रित प्रणाली है। यह दो निविष्ट संकेतों के चरणों की तुलना करता है और एक त्रुटि संकेत उत्पन्न करता है जो उनके चरणों के मध्य के विभेद के समानुपाती होता है।[15] त्रुटि संकेत वोल्टेज-नियंत्रित दोलित्र को चलाने के लिए उपयोग किया जाता है जो एक उत्पाद आवृत्ति बनाता है। उत्पाद आवृत्ति को आवृत्ति विभाजक के माध्यम से प्रणाली के निविष्ट में वापस प्रेषित किया जाता है, जिससे एक नकारात्मक प्रतिपुष्टि चक्र बनता है। यदि उत्पाद आवृत्ति प्रवाहित होती है, तो चरण त्रुटि संकेत बढ़ेगा, आवृत्ति को विपरीत दिशा में चलाएगा ताकि त्रुटि कम हो सके। इस प्रकार उत्पाद दूसरे निविष्ट की आवृत्ति पर बंद हो जाता है। इस अन्य निविष्ट को 'संदर्भ' कहा जाता है और सामान्यतः एक स्फटिक दोलित्र से प्राप्त होता है, जो आवृत्ति में अत्यधिक स्थिर होता है। नीचे दिया गया बंद आरेख पीएलएल आधारित आवृत्ति संश्लेषित्र के मूल तत्वों और व्यवस्था को दर्शाता है।

आवृत्ति संश्लेषित्र की कई आवृत्तियों को उत्पन्न करने की क्षमता की कुंजी उत्पाद और प्रतिक्रिया निविष्ट के मध्य विभाजक है। यह सामान्यतः एक डिजिटल गणक के रूप में होता है, जिसमें उत्पाद संकेत के रूप में कार्य करता है। गणक कुछ प्रारंभिक गिनती मूल्य के लिए पूर्व निर्धारित है, और घड़ी संकेत के प्रत्येक चक्र पर अवरोहण करता है। जब यह शून्य पर पहुंच जाता है, तो गणक उत्पाद की स्थिति बदल जाती है और गणना मूल्य फिर से भारित हो जाती है। यह परिपथ फ्लिप-फ्लॉप का उपयोग करके लागू करने के लिए साधारण है । क्योंकि यह प्रकृति में डिजिटल आंकड़ा है। यह संश्लेषित्र द्वारा आवृत्ति उत्पाद को डिजिटल प्रणाली द्वारा आसानी से नियंत्रित करने की अनुमति देता है।

उदाहरण

मान लीजिए कि संदर्भ संकेत 100 kHz है, और विभाजक को 1 और 100 के मध्य किसी भी मान पर पूर्वनिश्चित किया जा सकता है। तुलनित्र द्वारा उत्पन्न त्रुटि संकेत केवल तभी शून्य होगा जब विभाजक का उत्पाद भी 100 kHz होगा। ऐसा होने के लिए, वीसीओ को एक आवृत्ति पर चलना चाहिए जो 100 kHz का विभक्त गणना मान है। इस प्रकार यह 2 की गणना के लिए 1200 kHz की गिनती के लिए 100 kHz का उत्पादन करेगा, 10 की गिनती के लिए 1 MHz का उत्पादन करेगा । ध्यातव्य है कि सरलतम पूर्णांक एन विभाजक के साथ संदर्भ आवृत्ति के केवल पूरे गुणकों को प्राप्त किया जा सकता है। आंशिक एन विभाजक आसानी से उपलब्ध हैं।[16]

व्यावहारिकता का विचार

Philips TDA6651TT - 5 V mixer/oscillator and low noise PLL synthesizer for hybrid terrestrial tuner

व्यावहारिक दृष्टि से ' इस प्रकार की आवृत्ति, संश्लेषित आवृत्तियों की अत्यधिक विस्तृत श्रृंखला पर कार्य नहीं कर सकता है, क्योंकि तुलनित्र के पास सीमित बैंड विस्तार होगा और यहउपघटन समस्याओं से ग्रस्त हो सकता है। यह असत्य बंद स्थितियों या पूर्णतः बंद करने में असमर्थता का कारण बनेगा। इसके अतिरिक्त, एक उच्च आवृत्ति वीसीओ बनाना जटिल होता है जो अत्यधिक विस्तृत श्रृंखला में संचालित होता है। यह कई कारकों के कारण है। यद्यपि, अधिकांश प्रणालियों में जहां एक संश्लेषित्र का उपयोग किया जाता है, हम एक विशाल सीमा के उपरांत नहीं होते हैं, बल्कि कुछ परिभाषित सीमा पर एक परिमित संख्या होती है, जैसे कि एक विशिष्ट बैंड में कई रेडियो चैनल।

कई रेडियो अनुप्रयोगों को आवृत्तियों की आवश्यकता होती है जो डिजिटल गणक पर प्रत्यक्ष निविष्ट से अधिक होती हैं। इस पर नियंत्रण करने के लिए, पूरे गणक का निर्माण उच्च गति तर्क जैसे कि उत्सर्जक युग्मित तर्क, या अधिक सामान्यतः, गतिज प्रारंभिक विभाजन चरण का उपयोग करके किया जा सकता है जिसे पूर्वमापी कहा जाता है जो आवृत्ति को एक प्रबंधनीय स्तर तक कम कर देता है। चूंकि पूर्वमापी समग्र विभाजन अनुपात का भाग है, निश्चित पूर्वमापी संकीर्ण चैनल अंतराल वाले प्रणाली को प्रारूप करने में समस्याएं उत्पन्न कर सकता है - सामान्यतः रेडियो अनुप्रयोगों में सामना करना पड़ता है। इसे दोहरे-मॉड्यूलस पूर्वमापी का उपयोग करके दूर किया जा सकता है।[16]

आगे के व्यावहारिक पहलू इस बात से संबंधित हैं कि प्रणाली चैनल से चैनल पर कितना समय परिवर्तित किया जा सकता है, पहली बार बदलने पर बंद होने का समय और उत्पाद में कितना कोलाहल है। ये सभी प्रणाली के चक्र फिल्टर का कार्य है, जो आवृत्ति तुलनित्र के उत्पाद और वीसीओ के निविष्ट के मध्य रखा गया एक कम-पास फिल्टर है। प्रायः आवृत्ति तुलनित्र का उत्पादन लघु त्रुटि पल्स के रूप में होता है, परंतु वीसीओ का निविष्ट एक चिकनी कोलाहल मुक्त डीसी विभव होना चाहिए। भारी फ़िल्टरिंग वीसीओ को परिवर्तनों का जवाब देने में मंद कर देगा, जिसके कारण प्रवाह और प्रतिक्रिया समय मंद होगा, परंतु हल्का फ़िल्टरिंग कोलाहल और लयबद्ध के साथ अन्य समस्याएं उत्पन्न करेगा। इस प्रकार फ़िल्टर का प्रारूप प्रणाली के प्रदर्शन के लिए महत्वपूर्ण है और वास्तव में मुख्य क्षेत्र जिस पर संश्लेषित्र प्रणाली का निर्माण करते समय एक प्रारूप पर ध्यान केंद्रित करेगा।[16]

एक न्यूनाधिक के रूप मे प्रयोग

कई पीएलएल आवृत्ति संश्लेषित्र आवृत्ति स्वर परिवर्तन भी ​​उत्पन्न कर सकते हैं। स्वर परिवर्तन संकेत चक्र फिल्टर के उत्पाद में जोड़ा जाता है, सीधे वीसीओ और संश्लेषित्र उत्पाद की आवृत्ति को बदलता है। प्रतिरुपण चरण तुलनित्र उत्पाद किसी भी आवृत्ति विभाजन द्वारा आयाम में कमी पर भी दिखाई देगा। प्रतिरूपण संकेत में कोई भी वर्णक्रमीय घटक चक्र फिल्टर द्वारा अवरुद्ध होने के लिए अत्यधिक कम है, वीसीओ निविष्ट पर प्रतिरूपण संकेत के विपरीत ध्रुवीयता के साथ समाप्त होता है, इस प्रकार उन्हें नष्ट कर देता है। चक्र फ़िल्टर कटऑफ आवृत्ति के ऊपर प्रतिरूपण घटक वीसीओ निविष्ट पर वापस नहीं आ सकते हैं, इसलिए वे वीसीओ उत्पाद में बने रहते हैं।[17] इसलिए यह सरल योजना कम आवृत्ति प्रतिरूपण संकेतों को सीधे नियंत्रित नहीं कर सकती है, परंतु इस पद्धति का उपयोग करने वाले कई एसी-युग्मित दृश्य एवं श्रव्य एफएम प्रसारों में यह कोई समस्या नहीं है। ऐसे संकेतों को पीएलएल चक्र फिल्टर की कटऑफ आवृत्ति के ऊपर एक उपवाहक पर भी रखा जा सकता है।

उपरोक्त सीमा को पार करने के लिए दो-बिंदु प्रतिरूपण का उपयोग करके पीएलएल आवृत्ति संश्लेषित्र को कम आवृत्ति पर और डीसी के नीचे संशोधित किया जा सकता है।[18] प्रतिरूपण पहले की तरह वीसीओ पर लागू होता है, परंतु अब संश्लेषित्र के लिए डिजिटल रूप से एनालॉग एफएम संकेतों के साथ एक तेज डेल्टा सिग्मा एडीसी का उपयोग करके भी लागू किया जाता है।

यह भी देखें

संदर्भ

  1. Popiel-Gorski (1975, p. 25)
  2. Egan (2000, pp. 14–27)
  3. Egan (2000, pp. 372–376)
  4. Xiu, Liming (2008). "The concept of time-average-frequency and mathematical analysis of flying-adder frequency synthesis architecture". IEEE Circuits and Systems Magazine. 8 (3): 27–51. doi:10.1109/mcas.2008.928421. ISSN 1531-636X. S2CID 21809964.
  5. Xiu, Liming (2012). Nanometer frequency synthesis beyond the phase-locked loop. Hoboken: John Wiley & Sons. ISBN 978-1-118-34795-9. OCLC 797919764.
  6. Xiu, Liming (2015). From frequency to time-average-frequency : a paradigm shift in the design of electronic system. New York: IEEE Press. ISBN 978-1-119-10217-5. OCLC 908075308.
  7. Xiu, Liming (2017). "Clock Technology: The Next Frontier". IEEE Circuits and Systems Magazine. 17 (2): 27–46. doi:10.1109/mcas.2017.2689519. ISSN 1531-636X. S2CID 24013085.
  8. Xiu, Liming (2019). "Time Moore: Exploiting Moore's Law From The Perspective of Time". IEEE Solid-State Circuits Magazine. 11 (1): 39–55. doi:10.1109/mssc.2018.2882285. ISSN 1943-0582. S2CID 59619475.
  9. Manassewitsch (1987, p. 7)
  10. 10.0 10.1 Manassewitsch (1987, p. 151)
  11. Manassewitsch (1987, p. 51)
  12. 12.0 12.1 Crawford (1994, p. 4)
  13. Gardner (1966)
  14. 14.0 14.1 Kroupa (1999, p. 3)
  15. Phase is the integral of frequency. Controlling the phase will also control the frequency.
  16. 16.0 16.1 16.2 Banerjee (2006)
  17. Gardner1966
  18. Owen (2001)


अग्रिम पठन

  • Ulrich L. Rohde "Digital पीएलएल Frequency Synthesizers – Theory and Design ", Prentice-Hall, Inc., Englewood Cliffs, NJ, January 1983
  • Ulrich L. Rohde " Microwave and Wireless Synthesizers: Theory and Design ", John Wiley & Sons, August 1997, ISBN 0-471-52019-5


बाहरी संबंध