प्लाज्मा राख: Difference between revisions

From Vigyanwiki
(Created page with "{{More citations needed|date=February 2021}} अर्धचालक निर्माण में प्लाज़्मा एशिंग एक नक़्...")
 
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{More citations needed|date=February 2021}}
अर्धचालक निर्माण में '''प्लाज़्मा राख''' नक़्क़ाशी (माइक्रोफैब्रिकेशन) वेफर से फोटोरेसिस्ट (लाइट सेंसिटिव कोटिंग) को निकालने की प्रक्रिया है। [[प्लाज्मा (भौतिकी)]] स्रोत का उपयोग करके, प्रतिक्रियाशील प्रजातियों के रूप में जाना जाने वाला परमाणु पदार्थ उत्पन्न होता है। ऑक्सीजन या [[एक अधातु तत्त्व|अधातु तत्त्व]] सबसे सामान्य प्रतिक्रियाशील प्रजातियां हैं। उपयोग की जाने वाली अन्य गैसें N<sub>2</sub>/H<sub>2</sub> हैं जहां H<sub>2</sub> भाग 2% है। प्रतिक्रियाशील प्रजातियां फोटोरेसिस्ट के साथ मिलकर राख बनाती हैं जिसे [[वैक्यूम पंप]] से निकाल दिया जाता है।<ref>{{cite book|url=https://books.google.com/books?id=BFSuAAAAIAAJ&pg=PA354|title=Plasma Processing: Proceedings of the Symposium on Plasma Processing|publisher=Electrochemical Society|year=1987|pages=354–}}</ref>
 
सामान्यतः, उच्च शक्ति वाली रेडियोतरंगों के लिए कम दबाव पर ऑक्सीजन गैस (O<sub>2</sub>) को उजागर करके मोनोएटोमिक ऑक्सीजन प्लाज्मा बनाया जाता है, जो इसे आयनित करती हैं। प्लाज्मा बनाने के लिए यह प्रक्रिया वैक्यूम के अंतर्गत की जाती है। जैसे ही प्लाज्मा बनता है, कई मुक्त कण एवं ऑक्सीजन आयन भी बनते हैं। प्लाज्मा एवं वेफर सतह के मध्य विद्युत क्षेत्र के निर्माण के कारण ये आयन वेफर को हानि पहुंचा सकते हैं। नए, छोटे सर्किटरी इन आवेशित कणों के लिए तीव्रता से अतिसंवेदनशील होते हैं जो सतह में प्रत्यारोपित हो सकते हैं। मूल रूप से, प्रक्रिया कक्ष में प्लाज्मा उत्पन्न हुआ था, परन्तु आयनों से छुटकारा पाने की आवश्यकता बढ़ने के कारण, कई मशीनें अब डाउनस्ट्रीम प्लाज्मा कॉन्फ़िगरेशन का उपयोग करती हैं, जहां प्लाज्मा दूरस्थ रूप से बनता है एवं वांछित कणों को वेफर में भेजा जाता है। यह विद्युत आवेशित कणों को वेफर सतह तक पहुँचने से पूर्व पुन: संयोजित होने का समय देता है, एवं वेफर सतह को हानि से बचाता है।
[[ अर्धचालक ]] निर्माण में प्लाज़्मा एशिंग एक [[ नक़्क़ाशी (माइक्रोफैब्रिकेशन) ]] वेफर से [[ photoresist ]] (लाइट सेंसिटिव कोटिंग) को हटाने की प्रक्रिया है। एक [[प्लाज्मा (भौतिकी)]] स्रोत का उपयोग करके, प्रतिक्रियाशील प्रजातियों के रूप में जाना जाने वाला एक परमाणु (एकल परमाणु) पदार्थ उत्पन्न होता है। [[ऑक्सीजन]] या [[एक अधातु तत्त्व]] सबसे आम प्रतिक्रियाशील प्रजातियां हैं। उपयोग की जाने वाली अन्य गैसें N2/H2 हैं जहां H2 भाग 2% है। प्रतिक्रियाशील प्रजातियां फोटोरेसिस्ट के साथ मिलकर राख बनाती हैं जिसे [[वैक्यूम पंप]] से हटा दिया जाता है।<ref>{{cite book|url=https://books.google.com/books?id=BFSuAAAAIAAJ&pg=PA354|title=Plasma Processing: Proceedings of the Symposium on Plasma Processing|publisher=Electrochemical Society|year=1987|pages=354–}}</ref>
आमतौर पर, मोनोएटोमिक ऑक्सीजन प्लाज्मा ऑक्सीजन गैस (<sub>2</sub>) कम दबाव पर Plasma_cleaning|उच्च शक्ति वाली रेडियो तरंगें, जो इसे आयनित करती हैं। प्लाज्मा बनाने के लिए यह प्रक्रिया वैक्यूम के तहत की जाती है। जैसे ही प्लाज्मा बनता है, कई मुक्त कण और ऑक्सीजन आयन भी बनते हैं। प्लाज्मा और वेफर सतह के बीच विद्युत क्षेत्र के निर्माण के कारण ये आयन वेफर को नुकसान पहुंचा सकते हैं। नए, छोटे सर्किटरी इन आवेशित कणों के लिए तेजी से अतिसंवेदनशील होते हैं जो सतह में प्रत्यारोपित हो सकते हैं। मूल रूप से, प्रक्रिया कक्ष में प्लाज्मा उत्पन्न हुआ था, लेकिन आयनों से छुटकारा पाने की आवश्यकता बढ़ने के कारण, कई मशीनें अब डाउनस्ट्रीम प्लाज्मा कॉन्फ़िगरेशन का उपयोग करती हैं, जहां प्लाज्मा दूरस्थ रूप से बनता है और वांछित कणों को वेफर में भेजा जाता है। यह विद्युत आवेशित कणों को वेफर सतह तक पहुँचने से पहले पुन: संयोजित होने का समय देता है, और वेफर सतह को नुकसान से बचाता है।


== प्रकार ==
== प्रकार ==
प्लाज़्मा ऐशिंग के दो रूप आमतौर पर वेफर्स पर किए जाते हैं। ज्यादा से ज्यादा फोटो रेजिस्टेंस को हटाने के लिए हाई टेंपरेचर ऐशिंग या स्ट्रिपिंग की जाती है, जबकि डेस्कम प्रक्रिया का इस्तेमाल खाइयों में अवशिष्ट फोटो रेजिस्टेंस को हटाने के लिए किया जाता है। दो प्रक्रियाओं के बीच मुख्य अंतर वह तापमान है जिस पर वेफर ऐशिंग कक्ष में उजागर होता है। विशिष्ट मुद्दे तब उत्पन्न होते हैं जब यह फोटोरेसिस्ट पहले एक इम्प्लांट चरण से गुजरा है और फोटोरेसिस्ट में भारी धातु एम्बेडेड है और इसने उच्च तापमान का अनुभव किया है जिससे यह ऑक्सीकरण के लिए प्रतिरोधी हो गया है।
प्लाज़्मा ऐशिंग के दो रूप सामान्यतः वेफर्स पर किए जाते हैं। अधिक से अधिक फोटो रेजिस्टेंस को निकालने के लिए उच्च तापमान ऐशिंग या स्ट्रिपिंग की जाती है, बल्कि डेस्कम प्रक्रिया का प्रयोग खाइयों में अवशिष्ट फोटो रेजिस्टेंस को निकालने के लिए किया जाता है। दो प्रक्रियाओं के मध्य मुख्य भिन्नता वह तापमान है जिस पर वेफर ऐशिंग कक्ष में उजागर होता है। विशिष्ट विषय तब उत्पन्न होते हैं जब यह फोटोरेसिस्ट पूर्व इम्प्लांट चरण से निकलता है एवं फोटोरेसिस्ट में वजनदार धातु एम्बेडेड है एवं इसने उच्च तापमान का अनुभव किया है जिससे यह ऑक्सीकरण के लिए प्रतिरोधी हो गया है।


मोनाटॉमिक ऑक्सीजन विद्युत रूप से तटस्थ है और यद्यपि यह चैनलिंग के दौरान पुन: संयोजन करता है, यह सकारात्मक या नकारात्मक रूप से चार्ज किए गए मुक्त कणों की तुलना में धीमी गति से करता है, जो एक दूसरे को आकर्षित करते हैं। इसका मतलब यह है कि जब सभी मुक्त कणों का पुनर्संयोजन हो जाता है, तब भी प्रक्रिया के लिए सक्रिय प्रजातियों का एक हिस्सा उपलब्ध होता है। क्योंकि सक्रिय प्रजातियों का एक बड़ा हिस्सा पुनर्संयोजन में खो जाता है, प्रक्रिया के समय में अधिक समय लग सकता है। कुछ हद तक, प्रतिक्रिया क्षेत्र के तापमान को बढ़ाकर इन लंबी प्रक्रिया के समय को कम किया जा सकता है। यह वर्णक्रमीय ऑप्टिकल निशानों के अवलोकन में भी योगदान देता है, ये वही हो सकते हैं जो आमतौर पर उम्मीद की जाती है जब उत्सर्जन में गिरावट आती है, प्रक्रिया समाप्त हो जाती है; इसका मतलब यह भी हो सकता है कि वर्णक्रमीय रेखाएँ रोशनी में वृद्धि करती हैं क्योंकि उपलब्ध अभिकारकों का उपभोग किया जाता है जिससे उपलब्ध आयनिक प्रजातियों का प्रतिनिधित्व करने वाली कुछ वर्णक्रमीय रेखाओं में वृद्धि होती है।
मोनाटॉमिक ऑक्सीजन विद्युत रूप से तटस्थ है एवं यद्यपि यह चैनलिंग के समय पुन: संयोजन करता है, यह सकारात्मक या नकारात्मक रूप से चार्ज किए गए मुक्त कणों की अपेक्षा में धीमी गति से करता है, जो दूसरे को आकर्षित करते हैं। इसका तात्पर्य यह है कि जब संपूर्ण मुक्त कणों का पुनर्संयोजन हो जाता है, तब भी प्रक्रिया के लिए सक्रिय प्रजातियों का भाग उपलब्ध होता है क्योंकि सक्रिय प्रजातियों का बड़ा भाग पुनर्संयोजन में विलुप्त हो जाता है, प्रक्रिया के समय में अधिक समय लग सकता है। कुछ सीमा तक, प्रतिक्रिया क्षेत्र के तापमान को बढ़ाकर इन लंबी प्रक्रिया के समय को कम किया जा सकता है। यह वर्णक्रमीय ऑप्टिकल चिन्हों के अवलोकन में भी योगदान देता है, ये वही हो सकते हैं जो सामान्यतः उम्मीद की जाती है जब उत्सर्जन में अपकर्षण आता है, प्रक्रिया समाप्त हो जाती है; इसका तात्पर्य यह भी हो सकता है कि वर्णक्रमीय रेखाएँ रोशनी में वृद्धि करती हैं क्योंकि उपलब्ध अभिकारकों का सेवन किया जाता है जिससे उपलब्ध आयनिक प्रजातियों का प्रतिनिधित्व करने वाली कुछ वर्णक्रमीय रेखाओं में वृद्धि होती है।


== यह भी देखें ==
== यह भी देखें ==


* [[प्लाज्मा नक़्क़ाशी]]
* प्लाज्मा नक़्क़ाशी
{{DEFAULTSORT:Plasma Ashing}}
{{DEFAULTSORT:Plasma Ashing}}
श्रेणी:अर्धचालक उपकरण निर्माण
श्रेणी:प्लाज्मा प्रसंस्करण


== संदर्भ ==
== संदर्भ ==
Line 20: Line 16:




{{materials-sci-stub}}
[[Category:All stub articles|Plasma Ashing]]
 
[[Category:Created On 11/06/2023|Plasma Ashing]]
 
[[Category:Machine Translated Page|Plasma Ashing]]
 
[[Category:Materials science stubs|Plasma Ashing]]
[[Category: Machine Translated Page]]
[[Category:Templates Vigyan Ready|Plasma Ashing]]
[[Category:Created On 11/06/2023]]

Latest revision as of 15:09, 31 October 2023

अर्धचालक निर्माण में प्लाज़्मा राख नक़्क़ाशी (माइक्रोफैब्रिकेशन) वेफर से फोटोरेसिस्ट (लाइट सेंसिटिव कोटिंग) को निकालने की प्रक्रिया है। प्लाज्मा (भौतिकी) स्रोत का उपयोग करके, प्रतिक्रियाशील प्रजातियों के रूप में जाना जाने वाला परमाणु पदार्थ उत्पन्न होता है। ऑक्सीजन या अधातु तत्त्व सबसे सामान्य प्रतिक्रियाशील प्रजातियां हैं। उपयोग की जाने वाली अन्य गैसें N2/H2 हैं जहां H2 भाग 2% है। प्रतिक्रियाशील प्रजातियां फोटोरेसिस्ट के साथ मिलकर राख बनाती हैं जिसे वैक्यूम पंप से निकाल दिया जाता है।[1] सामान्यतः, उच्च शक्ति वाली रेडियोतरंगों के लिए कम दबाव पर ऑक्सीजन गैस (O2) को उजागर करके मोनोएटोमिक ऑक्सीजन प्लाज्मा बनाया जाता है, जो इसे आयनित करती हैं। प्लाज्मा बनाने के लिए यह प्रक्रिया वैक्यूम के अंतर्गत की जाती है। जैसे ही प्लाज्मा बनता है, कई मुक्त कण एवं ऑक्सीजन आयन भी बनते हैं। प्लाज्मा एवं वेफर सतह के मध्य विद्युत क्षेत्र के निर्माण के कारण ये आयन वेफर को हानि पहुंचा सकते हैं। नए, छोटे सर्किटरी इन आवेशित कणों के लिए तीव्रता से अतिसंवेदनशील होते हैं जो सतह में प्रत्यारोपित हो सकते हैं। मूल रूप से, प्रक्रिया कक्ष में प्लाज्मा उत्पन्न हुआ था, परन्तु आयनों से छुटकारा पाने की आवश्यकता बढ़ने के कारण, कई मशीनें अब डाउनस्ट्रीम प्लाज्मा कॉन्फ़िगरेशन का उपयोग करती हैं, जहां प्लाज्मा दूरस्थ रूप से बनता है एवं वांछित कणों को वेफर में भेजा जाता है। यह विद्युत आवेशित कणों को वेफर सतह तक पहुँचने से पूर्व पुन: संयोजित होने का समय देता है, एवं वेफर सतह को हानि से बचाता है।

प्रकार

प्लाज़्मा ऐशिंग के दो रूप सामान्यतः वेफर्स पर किए जाते हैं। अधिक से अधिक फोटो रेजिस्टेंस को निकालने के लिए उच्च तापमान ऐशिंग या स्ट्रिपिंग की जाती है, बल्कि डेस्कम प्रक्रिया का प्रयोग खाइयों में अवशिष्ट फोटो रेजिस्टेंस को निकालने के लिए किया जाता है। दो प्रक्रियाओं के मध्य मुख्य भिन्नता वह तापमान है जिस पर वेफर ऐशिंग कक्ष में उजागर होता है। विशिष्ट विषय तब उत्पन्न होते हैं जब यह फोटोरेसिस्ट पूर्व इम्प्लांट चरण से निकलता है एवं फोटोरेसिस्ट में वजनदार धातु एम्बेडेड है एवं इसने उच्च तापमान का अनुभव किया है जिससे यह ऑक्सीकरण के लिए प्रतिरोधी हो गया है।

मोनाटॉमिक ऑक्सीजन विद्युत रूप से तटस्थ है एवं यद्यपि यह चैनलिंग के समय पुन: संयोजन करता है, यह सकारात्मक या नकारात्मक रूप से चार्ज किए गए मुक्त कणों की अपेक्षा में धीमी गति से करता है, जो दूसरे को आकर्षित करते हैं। इसका तात्पर्य यह है कि जब संपूर्ण मुक्त कणों का पुनर्संयोजन हो जाता है, तब भी प्रक्रिया के लिए सक्रिय प्रजातियों का भाग उपलब्ध होता है क्योंकि सक्रिय प्रजातियों का बड़ा भाग पुनर्संयोजन में विलुप्त हो जाता है, प्रक्रिया के समय में अधिक समय लग सकता है। कुछ सीमा तक, प्रतिक्रिया क्षेत्र के तापमान को बढ़ाकर इन लंबी प्रक्रिया के समय को कम किया जा सकता है। यह वर्णक्रमीय ऑप्टिकल चिन्हों के अवलोकन में भी योगदान देता है, ये वही हो सकते हैं जो सामान्यतः उम्मीद की जाती है जब उत्सर्जन में अपकर्षण आता है, प्रक्रिया समाप्त हो जाती है; इसका तात्पर्य यह भी हो सकता है कि वर्णक्रमीय रेखाएँ रोशनी में वृद्धि करती हैं क्योंकि उपलब्ध अभिकारकों का सेवन किया जाता है जिससे उपलब्ध आयनिक प्रजातियों का प्रतिनिधित्व करने वाली कुछ वर्णक्रमीय रेखाओं में वृद्धि होती है।

यह भी देखें

  • प्लाज्मा नक़्क़ाशी


संदर्भ

  1. Plasma Processing: Proceedings of the Symposium on Plasma Processing. Electrochemical Society. 1987. pp. 354–.