प्रत्यास्थ ऊर्जा: Difference between revisions
No edit summary |
(→स्रोत) |
||
(12 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Form of energy}} | {{short description|Form of energy}} | ||
प्रत्यास्थ ऊर्जा यांत्रिक [[संभावित ऊर्जा]] है जो सामग्री या भौतिक प्रणाली के विन्यास में संग्रहीत होती है क्योंकि यह उस पर किए गए कार्य (भौतिकी) द्वारा प्रत्यास्थ विरूपण के अधीन है। प्रत्यास्थ ऊर्जा तब होती है जब वस्तुएं किसी भी तरह से अस्थायी रूप से संकुचित, फैली हुई या सामान्यतः किसी भी तरह से [[विरूपण (यांत्रिकी)]] किया जाता है। [[लोच सिद्धांत|प्रत्यास्थ सिद्धांत]] मुख्य रूप से ठोस निकायों और सामग्रियों के यांत्रिकी के लिए औपचारिकताओं को विकसित करता है।<ref name="LL" />(ध्यान दें, एक तनी हुई रबर बैंड द्वारा किया गया कार्य प्रत्यास्थ ऊर्जा का उदाहरण नहीं है। यह एंट्रोपिक प्रत्यास्थ का एक उदाहरण है।) [[यांत्रिक संतुलन]] की स्थितियों की गणना में प्रत्यास्थ संभावित ऊर्जा समीकरण का उपयोग किया जाता है। ऊर्जा संभावित है क्योंकि यह ऊर्जा के अन्य रूपों में परिवर्तित हो जाएगी, जैसे [[गतिज ऊर्जा]] और [[ध्वनि ऊर्जा]], जब वस्तु को इसकी [[लोच (भौतिकी)|प्रत्यास्थ (भौतिकी)]] द्वारा अपने मूल आकार (सुधार) में लौटने की अनुमति दी जाती है। | '''प्रत्यास्थ ऊर्जा''' यांत्रिक [[संभावित ऊर्जा]] है जो सामग्री या भौतिक प्रणाली के विन्यास में संग्रहीत होती है क्योंकि यह उस पर किए गए कार्य (भौतिकी) द्वारा प्रत्यास्थ विरूपण के अधीन है। प्रत्यास्थ ऊर्जा तब होती है जब वस्तुएं किसी भी तरह से अस्थायी रूप से संकुचित, फैली हुई या सामान्यतः किसी भी तरह से [[विरूपण (यांत्रिकी)]] किया जाता है। [[लोच सिद्धांत|प्रत्यास्थ सिद्धांत]] मुख्य रूप से ठोस निकायों और सामग्रियों के यांत्रिकी के लिए औपचारिकताओं को विकसित करता है।<ref name="LL" />(ध्यान दें, एक तनी हुई रबर बैंड द्वारा किया गया कार्य प्रत्यास्थ ऊर्जा का उदाहरण नहीं है। यह एंट्रोपिक प्रत्यास्थ का एक उदाहरण है।) [[यांत्रिक संतुलन]] की स्थितियों की गणना में प्रत्यास्थ संभावित ऊर्जा समीकरण का उपयोग किया जाता है। ऊर्जा संभावित है क्योंकि यह ऊर्जा के अन्य रूपों में परिवर्तित हो जाएगी, जैसे [[गतिज ऊर्जा]] और [[ध्वनि ऊर्जा]], जब वस्तु को इसकी [[लोच (भौतिकी)|प्रत्यास्थ (भौतिकी)]] द्वारा अपने मूल आकार (सुधार) में लौटने की अनुमति दी जाती है। | ||
<math display="block"> U = \frac 1 2 k\, \Delta x^2</math> | <math display="block"> U = \frac 1 2 k\, \Delta x^2</math> | ||
प्रत्यास्थ का सार प्रतिवर्तीता है। एक प्रत्यास्थ सामग्री पर लागू बल ऊर्जा को उस सामग्री में स्थानांतरित करते हैं, जो उस ऊर्जा को अपने परिवेश में उत्पन्न करने पर, अपने मूल आकार को पुनः प्राप्त कर सकती है। चूंकि, सभी सामग्रियों में विकृति की सीमा तक सीमा होती है, जिसे वे अपनी आंतरिक संरचना को तोड़े बिना या अपरिवर्तनीय रूप से परिवर्तित किए बिना सहन कर सकते हैं। इसलिए, ठोस सामग्री के लक्षण वर्णन में विशिष्टता सामान्यतः तनाव के संदर्भ में, इसकी प्रत्यास्थ सीमा सम्मिलित है। प्रत्यास्थ सीमा के अतिरिक्त, एक सामग्री प्रत्यास्थ ऊर्जा के रूप में उस पर किए गए यांत्रिक कार्य से सभी ऊर्जा को संग्रहित नहीं कर रही है। | प्रत्यास्थ का सार प्रतिवर्तीता है। एक प्रत्यास्थ सामग्री पर लागू बल ऊर्जा को उस सामग्री में स्थानांतरित करते हैं, जो उस ऊर्जा को अपने परिवेश में उत्पन्न करने पर, अपने मूल आकार को पुनः प्राप्त कर सकती है। चूंकि, सभी सामग्रियों में विकृति की सीमा तक सीमा होती है, जिसे वे अपनी आंतरिक संरचना को तोड़े बिना या अपरिवर्तनीय रूप से परिवर्तित किए बिना सहन कर सकते हैं। इसलिए, ठोस सामग्री के लक्षण वर्णन में विशिष्टता सामान्यतः तनाव के संदर्भ में, इसकी प्रत्यास्थ सीमा सम्मिलित है। प्रत्यास्थ सीमा के अतिरिक्त, एक सामग्री प्रत्यास्थ ऊर्जा के रूप में उस पर किए गए यांत्रिक कार्य से सभी ऊर्जा को संग्रहित नहीं कर रही है। | ||
किसी पदार्थ की या उसके अंदर प्रत्यास्थ ऊर्जा विन्यास की स्थिर ऊर्जा है। यह मुख्य रूप से नाभिकों के बीच अंतर-दूरियों को बदलकर संग्रहीत ऊर्जा के समान हो जाती है। तापीय ऊर्जा सामग्री के अंदर गतिज ऊर्जा का यादृच्छिक वितरण है, जिसके परिणामस्वरूप संतुलन विन्यास के बारे में सामग्री के सांख्यिकीय उतार-चढ़ाव होते हैं। | किसी पदार्थ की या उसके अंदर प्रत्यास्थ ऊर्जा विन्यास की स्थिर ऊर्जा है। यह मुख्य रूप से नाभिकों के बीच अंतर-दूरियों को बदलकर संग्रहीत ऊर्जा के समान हो जाती है। तापीय ऊर्जा सामग्री के अंदर गतिज ऊर्जा का यादृच्छिक वितरण है, जिसके परिणामस्वरूप संतुलन विन्यास के बारे में सामग्री के सांख्यिकीय उतार-चढ़ाव होते हैं। चूँकि, कुछ इंटरैक्शन है। उदाहरण के लिए, कुछ ठोस वस्तुओं के लिए, मुड़ना, झुकना और अन्य विकृतियाँ तापीय ऊर्जा उत्पन्न कर सकती हैं, जिससे सामग्री का तापमान बढ़ जाता है। ठोस पदार्थों में ऊष्मीय ऊर्जा अधिकांश आंतरिक प्रत्यास्थ तरंगों द्वारा ले जाई जाती है, जिन्हें [[फोनन|फोनोन]] कहा जाता है। प्रत्यास्थ तरंगें जो एक पृथक वस्तु के पैमाने पर बड़ी होती हैं, सामान्यतः मैक्रोस्कोपिक कंपन उत्पन्न करती हैं, जिसमें यादृच्छिकता की पर्याप्त कमी होती है कि उनके दोलन वस्तु के अंदर (प्रत्यास्थ) संभावित ऊर्जा और संपूर्ण वस्तु की गति की गतिज ऊर्जा के बीच बार-बार आदान-प्रदान होते हैं। | ||
यद्यपि प्रत्यास्थ सामान्यतः ठोस निकायों या सामग्रियों के यांत्रिकी से जुड़ा हुआ है, यहां तक कि शास्त्रीय ऊष्मप्रवैगिकी पर प्रारंभिक साहित्य भी तरल पदार्थ की प्रत्यास्थ को परिभाषित करता है और उपरोक्त परिचय में प्रदान की गई व्यापक परिभाषा के अनुकूल प्रणाली से उपयोग करता है।<ref name=TH>{{cite book |title=ताप का सिद्धांत|edition=9th|last=Maxwell |first=J.C. |author-link=James Clerk Maxwell|editor=Peter Pesic |year=1888 |publisher=Dover Publications Inc.|location=Mineola, N.Y. |isbn=0-486-41735-2 }}</ref>{{rp|107 et seq.}} | यद्यपि प्रत्यास्थ सामान्यतः ठोस निकायों या सामग्रियों के यांत्रिकी से जुड़ा हुआ है, यहां तक कि शास्त्रीय ऊष्मप्रवैगिकी पर प्रारंभिक साहित्य भी तरल पदार्थ की प्रत्यास्थ को परिभाषित करता है और उपरोक्त परिचय में प्रदान की गई व्यापक परिभाषा के अनुकूल प्रणाली से उपयोग करता है।<ref name=TH>{{cite book |title=ताप का सिद्धांत|edition=9th|last=Maxwell |first=J.C. |author-link=James Clerk Maxwell|editor=Peter Pesic |year=1888 |publisher=Dover Publications Inc.|location=Mineola, N.Y. |isbn=0-486-41735-2 }}</ref>{{rp|107 et seq.}} | ||
ठोस में कभी-कभी जटिल व्यवहार के साथ जटिल क्रिस्टलीय पदार्थ | ठोस में कभी-कभी जटिल व्यवहार के साथ जटिल क्रिस्टलीय पदार्थ सम्मिलित होते हैं। इसके विपरीत, संपीड़ित तरल पदार्थ और विशेष रूप से गैसों का व्यवहार, नगण्य जटिलता के साथ प्रत्यास्थ ऊर्जा का सार प्रदर्शित करता है। सरल ऊष्मागतिकीय सूत्र: | ||
<math> dU = -P\,dV \ ,</math> | <math> dU = -P\,dV \ ,</math> | ||
Line 45: | Line 40: | ||
== कॉन्टिनम सिस्टम्स == | == कॉन्टिनम सिस्टम्स == | ||
अधिकांश पदार्थ को कई अलग-अलग विधियों से विकृत किया जा सकता है: स्ट्रेचिंग, शीयरिंग, बेंडिंग, ट्विस्टिंग आदि। प्रत्येक प्रकार की विकृति एक विकृत सामग्री की प्रत्यास्थ ऊर्जा में योगदान करती है। [[ऑर्थोगोनल निर्देशांक]] में, तनाव के कारण प्रति इकाई आयतन प्रत्यास्थ ऊर्जा इस प्रकार योगदान का योग है: | |||
<math display="block">U = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl},</math> | <math display="block">U = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl},</math> | ||
जहां <math>C_{ijkl}</math> एक चौथा टेंसर रैंक है, जिसे प्रत्यास्थ, या कभी-कभी कठोरता, टेन्सर कहा जाता है<ref>{{Cite book|last=Dove | first = Martin T. |title=संरचना और गतिकी: सामग्री का एक परमाणु दृश्य|date=2003 |publisher=Oxford University Press |isbn=0-19-850677-5 | location=Oxford| oclc=50022684}}</ref> जो यांत्रिक प्रणालियों के प्रत्यास्थ मोडुली का सामान्यीकरण है, और <math>\varepsilon_{ij}</math> तनाव टेन्सर है (आइंस्टीन सारांश संकेतन का उपयोग बार-बार होने वाले सूचकांकों पर योग को दर्शाने के लिए किया गया है)। <math> C_{ijkl}</math> के मान सामग्री की [[क्रिस्टल]] संरचना पर निर्भर करता है: सामान्य स्थिति में, सममित प्रकृति के कारण वैरेप्सिलॉन (<math>\sigma</math>) और प्रत्यास्थ टेंसर (<math>\varepsilon</math>) में 21 स्वतंत्र प्रत्यास्थ गुणांक होते हैं।<ref>{{Cite book|last=Nye | first = J. F.| title=क्रिस्टल के भौतिक गुण: टेंसर और मेट्रिसेस द्वारा उनका प्रतिनिधित्व|date=1985 |publisher=Clarendon Press |isbn=0-19-851165-5 | edition=1st published in pbk. with corrections, 1985| location=Oxford [Oxfordshire] | oclc=11114089}}</ref> सामग्री की समरूपता द्वारा इस संख्या को और कम किया जा सकता है: 9 एक [[ऑर्थोरोम्बिक क्रिस्टल सिस्टम]] क्रिस्टल के लिए, 5 [[हेक्सागोनल क्रिस्टल परिवार]] संरचना के लिए, और 3 [[घन क्रिस्टल प्रणाली]] समरूपता के लिए।<ref>{{Cite journal | last1=Mouhat|first1=Félix | last2=Coudert|first2=François-Xavier | date=2014-12-05 | title=विभिन्न क्रिस्टल प्रणालियों में आवश्यक और पर्याप्त लोचदार स्थिरता की स्थिति| journal=Physical Review B|language=en|volume=90 |issue=22 |pages=224104 |doi=10.1103/PhysRevB.90.224104 |arxiv=1410.0065 |bibcode=2014PhRvB..90v4104M |s2cid=54058316 |issn=1098-0121}}</ref> अंत में, एक [[समदैशिक]] सामग्री के लिए <math>C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left( \delta_{ik} \delta_{jl} + \delta_{il}\delta_{jk} \right)</math> के साथ केवल दो स्वतंत्र पैरामीटर हैं, जहां <math>\lambda</math> और <math>\mu</math> लमे स्थिरांक हैं, और <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है। | |||
तनाव टेन्सर को किसी भी तरह से विकृति को प्रतिबिंबित करने के लिए परिभाषित किया जा सकता है, जिसके परिणामस्वरूप कुल रोटेशन के तहत अपरिवर्तनीयता होती है, लेकिन सबसे | तनाव टेन्सर को किसी भी तरह से विकृति को प्रतिबिंबित करने के लिए परिभाषित किया जा सकता है, जिसके परिणामस्वरूप कुल रोटेशन के तहत अपरिवर्तनीयता होती है, लेकिन सबसे सामान्य परिभाषा जिसके संबंध में प्रत्यास्थ टेन्सर सामान्यतः व्यक्त किए जाते हैं, तनाव को सभी गैर-रेखीय शर्तों के साथ विस्थापन के ढाल के सममित भाग के रूप में परिभाषित करता है। दबा हुआ: | ||
<math display="block">\varepsilon_{ij} = \frac{1}{2} \left( \partial_i u_j + \partial_j u_i \right)</math> | <math display="block">\varepsilon_{ij} = \frac{1}{2} \left( \partial_i u_j + \partial_j u_i \right)</math> | ||
जहां <math>u_i</math> में एक बिंदु पर विस्थापन है <math>i</math>-वीं दिशा और <math>\partial_j</math> में आंशिक व्युत्पन्न है <math>j</math>-वीं दिशा। ध्यान दें कि: | |||
<math display="block"> \varepsilon_{jj} = \partial_j u_j</math> | <math display="block"> \varepsilon_{jj} = \partial_j u_j</math> | ||
जहां कोई योग का | जहां कोई योग का उद्देश्य नहीं है। चूँकि पूर्ण आइंस्टीन संकेतन सूचकांकों के बढ़े हुए और घटे हुए जोड़े पर योग करता है, प्रत्यास्थ और स्ट्रेन टेन्सर घटकों के मान सामान्यतः सभी सूचकांकों को कम करके व्यक्त किए जाते हैं। इस प्रकार सावधान रहें (यहाँ के रूप में) कि कुछ संदर्भों में एक दोहराया सूचकांक उस सूचकांक (<math>j</math> इस स्थिति में) के योग से अधिक नहीं होता है, लेकिन एक टेंसर का केवल एक घटक है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 66: | Line 61: | ||
* <ref>{{cite journal |last1=Eshelby |first1=J.D |title=लोचदार ऊर्जा-गति टेन्सर|journal=Journal of Elasticity |date=November 1975 |volume=5 |issue=3–4 |pages=321–335 |doi=10.1007/BF00126994 |s2cid=121320629 }}</ref> | * <ref>{{cite journal |last1=Eshelby |first1=J.D |title=लोचदार ऊर्जा-गति टेन्सर|journal=Journal of Elasticity |date=November 1975 |volume=5 |issue=3–4 |pages=321–335 |doi=10.1007/BF00126994 |s2cid=121320629 }}</ref> | ||
[[Category:Articles with short description]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 26/12/2022]] | [[Category:Created On 26/12/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 12:15, 2 November 2023
प्रत्यास्थ ऊर्जा यांत्रिक संभावित ऊर्जा है जो सामग्री या भौतिक प्रणाली के विन्यास में संग्रहीत होती है क्योंकि यह उस पर किए गए कार्य (भौतिकी) द्वारा प्रत्यास्थ विरूपण के अधीन है। प्रत्यास्थ ऊर्जा तब होती है जब वस्तुएं किसी भी तरह से अस्थायी रूप से संकुचित, फैली हुई या सामान्यतः किसी भी तरह से विरूपण (यांत्रिकी) किया जाता है। प्रत्यास्थ सिद्धांत मुख्य रूप से ठोस निकायों और सामग्रियों के यांत्रिकी के लिए औपचारिकताओं को विकसित करता है।[1](ध्यान दें, एक तनी हुई रबर बैंड द्वारा किया गया कार्य प्रत्यास्थ ऊर्जा का उदाहरण नहीं है। यह एंट्रोपिक प्रत्यास्थ का एक उदाहरण है।) यांत्रिक संतुलन की स्थितियों की गणना में प्रत्यास्थ संभावित ऊर्जा समीकरण का उपयोग किया जाता है। ऊर्जा संभावित है क्योंकि यह ऊर्जा के अन्य रूपों में परिवर्तित हो जाएगी, जैसे गतिज ऊर्जा और ध्वनि ऊर्जा, जब वस्तु को इसकी प्रत्यास्थ (भौतिकी) द्वारा अपने मूल आकार (सुधार) में लौटने की अनुमति दी जाती है।
किसी पदार्थ की या उसके अंदर प्रत्यास्थ ऊर्जा विन्यास की स्थिर ऊर्जा है। यह मुख्य रूप से नाभिकों के बीच अंतर-दूरियों को बदलकर संग्रहीत ऊर्जा के समान हो जाती है। तापीय ऊर्जा सामग्री के अंदर गतिज ऊर्जा का यादृच्छिक वितरण है, जिसके परिणामस्वरूप संतुलन विन्यास के बारे में सामग्री के सांख्यिकीय उतार-चढ़ाव होते हैं। चूँकि, कुछ इंटरैक्शन है। उदाहरण के लिए, कुछ ठोस वस्तुओं के लिए, मुड़ना, झुकना और अन्य विकृतियाँ तापीय ऊर्जा उत्पन्न कर सकती हैं, जिससे सामग्री का तापमान बढ़ जाता है। ठोस पदार्थों में ऊष्मीय ऊर्जा अधिकांश आंतरिक प्रत्यास्थ तरंगों द्वारा ले जाई जाती है, जिन्हें फोनोन कहा जाता है। प्रत्यास्थ तरंगें जो एक पृथक वस्तु के पैमाने पर बड़ी होती हैं, सामान्यतः मैक्रोस्कोपिक कंपन उत्पन्न करती हैं, जिसमें यादृच्छिकता की पर्याप्त कमी होती है कि उनके दोलन वस्तु के अंदर (प्रत्यास्थ) संभावित ऊर्जा और संपूर्ण वस्तु की गति की गतिज ऊर्जा के बीच बार-बार आदान-प्रदान होते हैं।
यद्यपि प्रत्यास्थ सामान्यतः ठोस निकायों या सामग्रियों के यांत्रिकी से जुड़ा हुआ है, यहां तक कि शास्त्रीय ऊष्मप्रवैगिकी पर प्रारंभिक साहित्य भी तरल पदार्थ की प्रत्यास्थ को परिभाषित करता है और उपरोक्त परिचय में प्रदान की गई व्यापक परिभाषा के अनुकूल प्रणाली से उपयोग करता है।[2]: 107 et seq.
ठोस में कभी-कभी जटिल व्यवहार के साथ जटिल क्रिस्टलीय पदार्थ सम्मिलित होते हैं। इसके विपरीत, संपीड़ित तरल पदार्थ और विशेष रूप से गैसों का व्यवहार, नगण्य जटिलता के साथ प्रत्यास्थ ऊर्जा का सार प्रदर्शित करता है। सरल ऊष्मागतिकीय सूत्र:
जहां dU पुनर्प्राप्त करने योग्य आंतरिक ऊर्जा U में एक अतिसूक्ष्म परिवर्तन है, और P एक समान दबाव (प्रति इकाई क्षेत्र में एक बल) है जो ब्याज के भौतिक मानकों पर लागू होता है, और dV आयतन में अतिसूक्ष्म परिवर्तन है जो आंतरिक ऊर्जा में परिवर्तन के समान है। ऋण चिह्न प्रकट होता है क्योंकि सकारात्मक लागू दबाव द्वारा संपीड़न के अनुसार dV नकारात्मक होता है जो आंतरिक ऊर्जा को भी बढ़ाता है। उत्क्रमण करने पर, एक सिस्टम द्वारा किया जाने वाला कार्य इसकी आंतरिक ऊर्जा में परिवर्तन का ऋणात्मक होता है, जो बढ़ती हुई मात्रा के धनात्मक dV के अनुरूप होता है। दूसरे शब्दों में, सिस्टम अपने परिवेश पर काम करते समय संग्रहीत आंतरिक ऊर्जा खो देता है। दबाव तनाव है और वॉल्यूमेट्रिक परिवर्तन सामग्री के अंदर बिंदुओं के सापेक्ष अंतर को बदलने से मेल खाता है। पूर्वगामी सूत्र के तनाव-तनाव-आंतरिक ऊर्जा संबंध को जटिल क्रिस्टलीय संरचना वाले ठोस पदार्थों की प्रत्यास्थ ऊर्जा के योगों में दोहराया जाता है।
यांत्रिक प्रणालियों में प्रत्यास्थ संभावित ऊर्जा
यांत्रिक सिस्टम के घटक प्रत्यास्थ संभावित ऊर्जा को संचित करते हैं यदि सिस्टम पर बल लागू होने पर वे विकृत हो जाते हैं। जब कोई बाहरी बल वस्तु को विस्थापित या विकृत करता है, तो कार्य (भौतिकी) द्वारा किसी वस्तु में ऊर्जा स्थानांतरित की जाती है। स्थानांतरित ऊर्जा की मात्रा बल और वस्तु के विस्थापन का वेक्टर डॉट उत्पाद है। जैसे ही सिस्टम पर बल लागू होते हैं, वे आंतरिक रूप से इसके घटक भागों में वितरित हो जाते हैं। जबकि स्थानांतरित की गई कुछ ऊर्जा अधिग्रहीत वेग की गतिज ऊर्जा के रूप में संग्रहीत हो सकती है, घटक वस्तुओं के विरूपण के परिणामस्वरूप संग्रहीत प्रत्यास्थ ऊर्जा होती है।
एक प्रोटोटाइपिकल प्रत्यास्थ घटक एक कुंडलित वसंत है। वसंत के रैखिक प्रत्यास्थ प्रदर्शन को आनुपातिकता के स्थिरांक द्वारा पैरामीट्रिज किया जाता है, जिसे वसंत स्थिरांक कहा जाता है। इस स्थिरांक को सामान्यतः k (हुक का नियम भी देखें) के रूप में दर्शाया जाता है और यह ज्यामिति, क्रॉस-सेक्शनल क्षेत्र, अविकृत लंबाई और उस सामग्री की प्रकृति पर निर्भर करता है जिससे कॉइल का फैशन होता है। विरूपण की एक निश्चित सीमा के अंदर, k स्थिर रहता है और उस विस्थापन पर वसंत द्वारा उत्पन्न पुनर्स्थापना बल के परिमाण के विस्थापन के नकारात्मक अनुपात के रूप में परिभाषित किया जाता है।
प्रति इकाई आयतन प्रत्यास्थ संभावित ऊर्जा द्वारा दिया गया है:
सामान्य स्थिति में, तनाव टेंसर घटकों εij के एक समारोह के रूप में लोचदार ऊर्जा मुक्त ऊर्जा प्रति इकाई मात्रा f द्वारा दी जाती है
कॉन्टिनम सिस्टम्स
अधिकांश पदार्थ को कई अलग-अलग विधियों से विकृत किया जा सकता है: स्ट्रेचिंग, शीयरिंग, बेंडिंग, ट्विस्टिंग आदि। प्रत्येक प्रकार की विकृति एक विकृत सामग्री की प्रत्यास्थ ऊर्जा में योगदान करती है। ऑर्थोगोनल निर्देशांक में, तनाव के कारण प्रति इकाई आयतन प्रत्यास्थ ऊर्जा इस प्रकार योगदान का योग है:
तनाव टेन्सर को किसी भी तरह से विकृति को प्रतिबिंबित करने के लिए परिभाषित किया जा सकता है, जिसके परिणामस्वरूप कुल रोटेशन के तहत अपरिवर्तनीयता होती है, लेकिन सबसे सामान्य परिभाषा जिसके संबंध में प्रत्यास्थ टेन्सर सामान्यतः व्यक्त किए जाते हैं, तनाव को सभी गैर-रेखीय शर्तों के साथ विस्थापन के ढाल के सममित भाग के रूप में परिभाषित करता है। दबा हुआ:
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Landau, L.D.; Lifshitz, E. M. (1986). लोच का सिद्धांत (3rd ed.). Oxford, England: Butterworth Heinemann. ISBN 0-7506-2633-X.
- ↑ Maxwell, J.C. (1888). Peter Pesic (ed.). ताप का सिद्धांत (9th ed.). Mineola, N.Y.: Dover Publications Inc. ISBN 0-486-41735-2.
- ↑ Dove, Martin T. (2003). संरचना और गतिकी: सामग्री का एक परमाणु दृश्य. Oxford: Oxford University Press. ISBN 0-19-850677-5. OCLC 50022684.
- ↑ Nye, J. F. (1985). क्रिस्टल के भौतिक गुण: टेंसर और मेट्रिसेस द्वारा उनका प्रतिनिधित्व (1st published in pbk. with corrections, 1985 ed.). Oxford [Oxfordshire]: Clarendon Press. ISBN 0-19-851165-5. OCLC 11114089.
- ↑ Mouhat, Félix; Coudert, François-Xavier (2014-12-05). "विभिन्न क्रिस्टल प्रणालियों में आवश्यक और पर्याप्त लोचदार स्थिरता की स्थिति". Physical Review B (in English). 90 (22): 224104. arXiv:1410.0065. Bibcode:2014PhRvB..90v4104M. doi:10.1103/PhysRevB.90.224104. ISSN 1098-0121. S2CID 54058316.
स्रोत
- ↑ Eshelby, J.D (November 1975). "लोचदार ऊर्जा-गति टेन्सर". Journal of Elasticity. 5 (3–4): 321–335. doi:10.1007/BF00126994. S2CID 121320629.