अभिगृहीत सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Possible axiom for set theory}}
{{Short description|Possible axiom for set theory}}
गणित में, नियतत्व की अभिधारणा (संक्षिप्त रूप में AD) 1962 में जान माइसिल्स्की और [[Hugo Steinhaus|ह्यूगो स्टीनहॉस]] द्वारा प्रस्तुत सेट सिद्धांत के लिए संभावित [[स्वयंसिद्ध]] है। यह लंबाई ω (क्रमिक संख्या) ω के कुछ दो-व्यक्ति सांस्थितिक खेलों को संदर्भित करता है। AD बताता है कि निर्धारण के स्वयंसिद्ध का [[निर्धारित खेल]] होते हैं; यानी, दो खिलाड़ियों में से एक के पास [[जीतने की रणनीति]] है।
गणित में, '''अभिगृहीत सिद्धांत''' (संक्षिप्त रूप में AD) 1962 में जान माइसिल्स्की और [[Hugo Steinhaus|ह्यूगो स्टीनहॉस]] द्वारा प्रस्तुत सेट सिद्धांत के लिए संभावित [[स्वयंसिद्ध]] है। यह लंबाई ω (क्रमिक संख्या) ω के कुछ दो-व्यक्ति सांस्थितिक खेलों को संदर्भित करता है। AD बताता है कि निर्धारण के स्वयंसिद्ध का [[निर्धारित खेल]] होते हैं; यानी, दो खिलाड़ियों में से एक के पास [[जीतने की रणनीति]] है।


AD के लिए स्टाइनहॉस [[जान माइसिल्स्की]] की प्रेरणा इसके रोचक परिणाम थे, और सुझाव दिया कि AD सेट सिद्धांत के सबसे छोटे प्राकृतिक मॉडल एल[[L(R)|(आर)]] में सत्य हो सकता है, जो पसंद के स्वयंसिद्ध (AC) के केवल  कमजोर रूप को स्वीकार करता है, लेकिन इसमें सभी वास्तविक सम्मिलित हैं। संख्या और सभी क्रम संख्या AD के कुछ परिणाम प्रमेय से अनुसरण करते हैं जो पहले [[स्टीफन बानाच]] और स्टैनिस्लाव मजूर और [[मॉर्टन डेविस]] द्वारा सिद्ध किए गए थे। माइसिल्स्की और स्टैनिस्लाव स्विएर्ज़कोव्स्की ने एक और योगदान दिया: AD का अर्थ है कि [[वास्तविक संख्या]]ओं के सभी सेट [[Lebesgue मापने योग्य|लेबेस्ग मापने योग्य]] हैं। बाद में डोनाल्ड ए. मार्टिन और अन्य ने अधिक महत्वपूर्ण परिणाम सिद्ध किए, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत में। 1988 में, जॉन आर. स्टील और डब्ल्यू. ह्यूग वुडिन ने अनुसंधान की लंबी श्रृंखला समाप्त की जिसके अनुरूप कुछ [[बेशुमार|अच्छे]] कार्डिनल संख्याओं के अस्तित्व को मानते हुए <math>\alef_0</math>, उन्होंने माइसिल्स्की और स्टाइनहॉस के मूल अनुमान को सिद्ध किया कि एल(आर) में AD सत्य है।  
AD के लिए स्टाइनहॉस [[जान माइसिल्स्की]] की प्रेरणा इसके रोचक परिणाम थे, और सुझाव दिया कि AD सेट सिद्धांत के सबसे छोटे प्राकृतिक मॉडल एल[[L(R)|(आर)]] में सत्य हो सकता है, जो पसंद के स्वयंसिद्ध (AC) के केवल  कमजोर रूप को स्वीकार करता है, लेकिन इसमें सभी वास्तविक सम्मिलित हैं। संख्या और सभी क्रम संख्या AD के कुछ परिणाम प्रमेय से अनुसरण करते हैं जो पहले [[स्टीफन बानाच]] और स्टैनिस्लाव मजूर और [[मॉर्टन डेविस]] द्वारा सिद्ध किए गए थे। माइसिल्स्की और स्टैनिस्लाव स्विएर्ज़कोव्स्की ने एक और योगदान दिया: AD का अर्थ है कि [[वास्तविक संख्या]]ओं के सभी सेट [[Lebesgue मापने योग्य|लेबेस्ग मापने योग्य]] हैं। बाद में डोनाल्ड ए. मार्टिन और अन्य ने अधिक महत्वपूर्ण परिणाम सिद्ध किए, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत में। 1988 में, जॉन आर. स्टील और डब्ल्यू. ह्यूग वुडिन ने अनुसंधान की लंबी श्रृंखला समाप्त की जिसके अनुरूप कुछ [[बेशुमार|अच्छे]] कार्डिनल संख्याओं के अस्तित्व को मानते हुए <math>\alef_0</math>, उन्होंने माइसिल्स्की और स्टाइनहॉस के मूल अनुमान को सिद्ध किया कि एल(आर) में AD सत्य है।  
Line 6: Line 6:
== खेल के प्रकार जो निर्धारित होते हैं ==
== खेल के प्रकार जो निर्धारित होते हैं ==


नियतत्व का स्वयंसिद्ध निम्नलिखित विशिष्ट रूप के खेलों को संदर्भित करता है:
अभिगृहीत का स्वयंसिद्ध निम्नलिखित विशिष्ट रूप के खेलों को संदर्भित करता है:


बायर स्पेस (सेट थ्योरी) ω के उपसमुच्चय A पर विचार करें'''<sup>[[प्राकृतिक संख्या]]ओं के सभी अनंत अनुक्रमों का ω</sup> दो खिलाड़ी, 'I' और 'II' बारी-बारी से प्राकृतिक संख्याएँ चुनते हैं ।'''
बायर स्पेस (सेट थ्योरी) ω के उपसमुच्चय A पर विचार करें'''<sup>[[प्राकृतिक संख्या]]ओं के सभी अनंत अनुक्रमों का ω</sup> दो खिलाड़ी, 'I' और 'II' बारी-बारी से प्राकृतिक संख्याएँ चुनते हैं ।'''
:''n''<sub>0</sub>, ''n''<sub>1</sub>, ''n''<sub>2</sub>, ''n''<sub>3</sub>, ...
:''n''<sub>0</sub>, ''n''<sub>1</sub>, ''n''<sub>2</sub>, ''n''<sub>3</sub>, ...
असीम रूप से कई चालों के बाद, एक क्रम <math>(n_i)_{i \in \omega}</math> उत्पन्न होता है। प्लेयर गेम जीतता है अगर और केवल अगर उत्पन्न अनुक्रम ''A.'' का  तत्व है। नियतत्व की कसौटी यह कथन है कि ऐसे सभी खेल निर्धारित होते हैं।
असीम रूप से कई चालों के बाद, एक क्रम <math>(n_i)_{i \in \omega}</math> उत्पन्न होता है। प्लेयर गेम जीतता है अगर और केवल अगर उत्पन्न अनुक्रम ''A.'' का  तत्व है। अभिगृहीत की कसौटी यह कथन है कि ऐसे सभी खेल निर्धारित होते हैं।


सभी खेलों को निर्धारित सिद्ध करने के लिए दृढ़ संकल्प के सिद्धांत की आवश्यकता नहीं होती है। यदि समुच्चय ''A'' क्लोपेन समुच्चय है, तो खेल अनिवार्य रूप से एक परिमित खेल है, और इसलिए निर्धारित है। इसी तरह, अगर ''A''<nowiki/>' एक [[बंद सेट]] है, तो खेल निर्धारित किया जाता है। यह 1975 में डोनाल्ड ''A'' मार्टिन द्वारा दिखाया गया था कि खेल जिसका जीतने वाला सेट [[बोरेल सेट]] है, निर्धारित किया जाता है। यह पर्याप्त रूप से बड़े कार्डिनल्स के अस्तित्व से अनुसरण करता है कि जीतने वाले सेट के साथ सभी गेम एक [[प्रक्षेपण सेट]] निर्धारित होते हैं (प्रक्षेपीय निर्धारणा देखें), और यह कि AD एल(आर) में है।
सभी खेलों को निर्धारित सिद्ध करने के लिए दृढ़ संकल्प के सिद्धांत की आवश्यकता नहीं होती है। यदि समुच्चय ''A'' क्लोपेन समुच्चय है, तो खेल अनिवार्य रूप से एक परिमित खेल है, और इसलिए निर्धारित है। इसी तरह, अगर ''A''<nowiki/>' एक [[बंद सेट]] है, तो खेल निर्धारित किया जाता है। यह 1975 में डोनाल्ड ''A'' मार्टिन द्वारा दिखाया गया था कि खेल जिसका जीतने वाला सेट [[बोरेल सेट]] है, निर्धारित किया जाता है। यह पर्याप्त रूप से बड़े कार्डिनल्स के अस्तित्व से अनुसरण करता है कि जीतने वाले सेट के साथ सभी गेम एक [[प्रक्षेपण सेट]] निर्धारित होते हैं (प्रक्षेपीय निर्धारणा देखें), और यह कि AD एल(आर) में है।


नियतत्व के स्वयंसिद्ध का तात्पर्य है कि वास्तविक रेखा के प्रत्येक उप-स्थान ''X'' के लिए स्थलीय स्थान के रूप में, बनच-मजूर खेल बीएम(एक्स) निर्धारित किया जाता है (और इसलिए प्रत्येक सेट का रियल के पास बायर की संपत्ति है)।
अभिगृहीत के स्वयंसिद्ध का तात्पर्य है कि वास्तविक रेखा के प्रत्येक उप-स्थान ''X'' के लिए स्थलीय स्थान के रूप में, बनच-मजूर खेल बीएम(एक्स) निर्धारित किया जाता है (और इसलिए प्रत्येक सेट का रियल के पास बायर की संपत्ति है)।


== पसंद के स्वयंसिद्ध के साथ निर्धारण के स्वयंसिद्ध की असंगति ==
== पसंद के स्वयंसिद्ध के साथ निर्धारण के स्वयंसिद्ध की असंगति ==
Line 30: Line 30:
# α पर [[ट्रांसफिनिट इंडक्शन]] के साथ S1 और S2 की सभी संभावित रणनीतियों को प्रोसेस करें। उन सभी अनुक्रमों के लिए जो उसके बाद A या B में नहीं हैं, मनमाने ढंग से तय करें कि वे A के हैं या B के हैं। इसलिए B, A का पूरक है।
# α पर [[ट्रांसफिनिट इंडक्शन]] के साथ S1 और S2 की सभी संभावित रणनीतियों को प्रोसेस करें। उन सभी अनुक्रमों के लिए जो उसके बाद A या B में नहीं हैं, मनमाने ढंग से तय करें कि वे A के हैं या B के हैं। इसलिए B, A का पूरक है।


एक बार यह हो जाने के बाद, एक ω-खेल G के लिए तैयारी करें। यदि आप मुझे पहले खिलाड़ी की रणनीति s1 देते हैं, तो एक α होता है <math>\in</math> J ऐसा है कि s1 = s1(α), और हमने A का निर्माण ऐसा किया है कि s1(α) विफल हो जाता है (दूसरे खिलाड़ी के कुछ विकल्पों {b(2), b(4), b(6) पर) . इसलिए s1 विफल रहता है। इसी तरह, किसी भी खिलाड़ी की कोई अन्य रणनीति विफल हो जाती है। इसलिए नियतत्व का स्वयंसिद्ध और पसंद का स्वयंसिद्ध असंगत है।
एक बार यह हो जाने के बाद, एक ω-खेल G के लिए तैयारी करें। यदि आप मुझे पहले खिलाड़ी की रणनीति s1 देते हैं, तो एक α होता है <math>\in</math> J ऐसा है कि s1 = s1(α), और हमने A का निर्माण ऐसा किया है कि s1(α) विफल हो जाता है (दूसरे खिलाड़ी के कुछ विकल्पों {b(2), b(4), b(6) पर) . इसलिए s1 विफल रहता है। इसी तरह, किसी भी खिलाड़ी की कोई अन्य रणनीति विफल हो जाती है। इसलिए अभिगृहीत का स्वयंसिद्ध और पसंद का स्वयंसिद्ध असंगत है।


== [[असीम तर्क]] और नियतत्व का स्वयंसिद्ध ==
== [[असीम तर्क]] और अभिगृहीत का स्वयंसिद्ध ==


20वीं सदी के अंत में इन्फिनिटरी तर्क के कई अलग-अलग संस्करण प्रस्तावित किए गए थे। नियतत्व के स्वयंसिद्ध में विश्वास करने का एक कारण यह है कि इसे इस प्रकार लिखा जा सकता है (अनंत तर्क के  संस्करण में):
20वीं सदी के अंत में इन्फिनिटरी तर्क के कई अलग-अलग संस्करण प्रस्तावित किए गए थे। अभिगृहीत के स्वयंसिद्ध में विश्वास करने का एक कारण यह है कि इसे इस प्रकार लिखा जा सकता है (अनंत तर्क के  संस्करण में):


<math>\forall G \subseteq Seq(S):</math>
<math>\forall G \subseteq Seq(S):</math>
Line 44: Line 44:
नोट: Seq(S) सभी का समुच्चय है <math>\omega</math> s के अनुक्रम। यहां वाक्य [[परिमाणक (तर्क)]] की अनगिनत अनंत सूची के साथ असीम रूप से लंबे हैं जहां दीर्घवृत्त दिखाई देते हैं।
नोट: Seq(S) सभी का समुच्चय है <math>\omega</math> s के अनुक्रम। यहां वाक्य [[परिमाणक (तर्क)]] की अनगिनत अनंत सूची के साथ असीम रूप से लंबे हैं जहां दीर्घवृत्त दिखाई देते हैं।


== बड़े कार्डिनल और नियतत्व का स्वयंसिद्ध ==
== बड़े कार्डिनल और अभिगृहीत का स्वयंसिद्ध ==


निर्धारकता के स्वयंसिद्ध की संगति बड़े कार्डिनल स्वयंसिद्धों की संगति के प्रश्न से निकटता से संबंधित है। डब्ल्यू ह्यूग वुडिन के एक प्रमेय के अनुसार, जर्मेलो-फ्रेंकेल सेट सिद्धांत बिना पसंद सिद्धांत (जेडएफ) की स्थिरता एक साथ निर्धारण के स्वयंसिद्ध के साथ, जर्मेलो-फ्रेंकेल बिना पसंद सिद्धांत (जेडएफसी) की संगति के साथ-साथ असीम रूप से अस्तित्व के बराबर है। कई [[वुड का कार्डिनल]]। चूंकि वुडिन कार्डिनल [[दुर्गम कार्डिनल]] हैं, यदि AD संगत है, तो दुर्गम कार्डिनल्स की अनंतता है।
निर्धारकता के स्वयंसिद्ध की संगति बड़े कार्डिनल स्वयंसिद्धों की संगति के प्रश्न से निकटता से संबंधित है। डब्ल्यू ह्यूग वुडिन के एक प्रमेय के अनुसार, जर्मेलो-फ्रेंकेल सेट सिद्धांत बिना पसंद सिद्धांत (जेडएफ) की स्थिरता एक साथ निर्धारण के स्वयंसिद्ध के साथ, जर्मेलो-फ्रेंकेल बिना पसंद सिद्धांत (जेडएफसी) की संगति के साथ-साथ असीम रूप से अस्तित्व के बराबर है। कई [[वुड का कार्डिनल]]। चूंकि वुडिन कार्डिनल [[दुर्गम कार्डिनल]] हैं, यदि AD संगत है, तो दुर्गम कार्डिनल्स की अनंतता है।
Line 85: Line 85:


{{Set theory}}
{{Set theory}}
[[Category: समुच्चय सिद्धांत के अभिगृहीत]] [[Category: निश्चय]] [[Category: बड़े कार्डिनल्स]]


 
[[Category:CS1 maint]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:निश्चय]]
[[Category:बड़े कार्डिनल्स]]
[[Category:समुच्चय सिद्धांत के अभिगृहीत]]

Latest revision as of 15:38, 2 November 2023

गणित में, अभिगृहीत सिद्धांत (संक्षिप्त रूप में AD) 1962 में जान माइसिल्स्की और ह्यूगो स्टीनहॉस द्वारा प्रस्तुत सेट सिद्धांत के लिए संभावित स्वयंसिद्ध है। यह लंबाई ω (क्रमिक संख्या) ω के कुछ दो-व्यक्ति सांस्थितिक खेलों को संदर्भित करता है। AD बताता है कि निर्धारण के स्वयंसिद्ध का निर्धारित खेल होते हैं; यानी, दो खिलाड़ियों में से एक के पास जीतने की रणनीति है।

AD के लिए स्टाइनहॉस जान माइसिल्स्की की प्रेरणा इसके रोचक परिणाम थे, और सुझाव दिया कि AD सेट सिद्धांत के सबसे छोटे प्राकृतिक मॉडल एल(आर) में सत्य हो सकता है, जो पसंद के स्वयंसिद्ध (AC) के केवल कमजोर रूप को स्वीकार करता है, लेकिन इसमें सभी वास्तविक सम्मिलित हैं। संख्या और सभी क्रम संख्या AD के कुछ परिणाम प्रमेय से अनुसरण करते हैं जो पहले स्टीफन बानाच और स्टैनिस्लाव मजूर और मॉर्टन डेविस द्वारा सिद्ध किए गए थे। माइसिल्स्की और स्टैनिस्लाव स्विएर्ज़कोव्स्की ने एक और योगदान दिया: AD का अर्थ है कि वास्तविक संख्याओं के सभी सेट लेबेस्ग मापने योग्य हैं। बाद में डोनाल्ड ए. मार्टिन और अन्य ने अधिक महत्वपूर्ण परिणाम सिद्ध किए, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत में। 1988 में, जॉन आर. स्टील और डब्ल्यू. ह्यूग वुडिन ने अनुसंधान की लंबी श्रृंखला समाप्त की जिसके अनुरूप कुछ अच्छे कार्डिनल संख्याओं के अस्तित्व को मानते हुए , उन्होंने माइसिल्स्की और स्टाइनहॉस के मूल अनुमान को सिद्ध किया कि एल(आर) में AD सत्य है।

खेल के प्रकार जो निर्धारित होते हैं

अभिगृहीत का स्वयंसिद्ध निम्नलिखित विशिष्ट रूप के खेलों को संदर्भित करता है:

बायर स्पेस (सेट थ्योरी) ω के उपसमुच्चय A पर विचार करेंप्राकृतिक संख्याओं के सभी अनंत अनुक्रमों का ω दो खिलाड़ी, 'I' और 'II' बारी-बारी से प्राकृतिक संख्याएँ चुनते हैं ।

n0, n1, n2, n3, ...

असीम रूप से कई चालों के बाद, एक क्रम उत्पन्न होता है। प्लेयर गेम जीतता है अगर और केवल अगर उत्पन्न अनुक्रम A. का तत्व है। अभिगृहीत की कसौटी यह कथन है कि ऐसे सभी खेल निर्धारित होते हैं।

सभी खेलों को निर्धारित सिद्ध करने के लिए दृढ़ संकल्प के सिद्धांत की आवश्यकता नहीं होती है। यदि समुच्चय A क्लोपेन समुच्चय है, तो खेल अनिवार्य रूप से एक परिमित खेल है, और इसलिए निर्धारित है। इसी तरह, अगर A' एक बंद सेट है, तो खेल निर्धारित किया जाता है। यह 1975 में डोनाल्ड A मार्टिन द्वारा दिखाया गया था कि खेल जिसका जीतने वाला सेट बोरेल सेट है, निर्धारित किया जाता है। यह पर्याप्त रूप से बड़े कार्डिनल्स के अस्तित्व से अनुसरण करता है कि जीतने वाले सेट के साथ सभी गेम एक प्रक्षेपण सेट निर्धारित होते हैं (प्रक्षेपीय निर्धारणा देखें), और यह कि AD एल(आर) में है।

अभिगृहीत के स्वयंसिद्ध का तात्पर्य है कि वास्तविक रेखा के प्रत्येक उप-स्थान X के लिए स्थलीय स्थान के रूप में, बनच-मजूर खेल बीएम(एक्स) निर्धारित किया जाता है (और इसलिए प्रत्येक सेट का रियल के पास बायर की संपत्ति है)।

पसंद के स्वयंसिद्ध के साथ निर्धारण के स्वयंसिद्ध की असंगति

पसंद के स्वयंसिद्ध की धारणा के अंतर्गत, हम निर्धारण के स्वयंसिद्ध के लिए एक प्रति-उदाहरण बनाते हैं। ω-गेम G में सभी प्रथम खिलाड़ी रणनीतियों के सेट S1 में वही प्रमुखता है जो कॉन्टिनम की प्रमुखता है। सभी दूसरे खिलाड़ी रणनीतियों के सेट S2 के लिए भी यही सच है। बता दें कि sg में सभी संभावित अनुक्रमों का सेट है, और as[g] के अनुक्रमों का सबसेट है जो पहले खिलाड़ी को जीत दिलाते हैं। पसंद के स्वयंसिद्ध के साथ हम सातत्य को अच्छी तरह से आदेश दे सकते हैं, और हम ऐसा इस तरह से कर सकते हैं कि किसी भी उचित प्रारंभिक भाग में सातत्य की तुलना में कम प्रमुखता हो। हम S1 और S2 दोनों को अनुक्रमित करने के लिए प्राप्त सुव्यवस्थित सेट J का उपयोग करते हैं, और A का निर्माण इस तरह करते हैं कि यह एक प्रति उदाहरण होगा।

हम खाली समुच्चय A और B से शुरू करते हैं। मान लीजिए α J S1 और S2 में रणनीतियों का सूचकांक हो। हमें पहले खिलाड़ी की सभी रणनीतियों S1 = {s1(α)} और दूसरे खिलाड़ी की सभी रणनीतियों S2 = {s2(α) पर विचार करने की आवश्यकता है ताकि यह सुनिश्चित हो सके कि प्रत्येक रणनीति के लिए दूसरे खिलाड़ी की रणनीति है जो जीतता है उसके खिलाफ। विचार किए गए खिलाड़ी की प्रत्येक रणनीति के लिए हम क्रम उत्पन्न करेंगे जो दूसरे खिलाड़ी को जीत दिलाएगा। मान लीजिए कि वह समय है जिसकी धुरी की लंबाई ℵ है0 और जिसका उपयोग प्रत्येक खेल अनुक्रम के दौरान किया जाता है। हम α पर ट्रांसफिनिट रिकर्सन द्वारा काउंटर उदाहरण a बनाते हैं:

  1. पहले खिलाड़ी की रणनीति s1(α) पर विचार करें।
  2. इस रणनीति को ω-खेल पर प्रयुक्त करें, (पहले खिलाड़ी की रणनीति s1(α) के साथ) एक अनुक्रम {a(1), b(2), a(3), b(4),..., a(t), b(t+1),...}, जो A से संबंधित नहीं है। यह संभव है, क्योंकि {b(2), b(4), b(6) के लिए विकल्पों की संख्या} में निरंतरता के समान ही प्रमुखता है, जो कि उचित प्रारंभिक भाग की प्रमुखता से बड़ी है { β J | B J का α}
  3. इस क्रम को B में जोड़ें (यदि यह पहले से ही B में नहीं है), यह इंगित करने के लिए कि s1(α) हारता है ({b(2), b(4), b(6) पर
  4. दूसरे खिलाड़ी की रणनीति s2(α) पर विचार करें।
  5. इस रणनीति को एक ω-खेल पर प्रयुक्त करें, (दूसरे खिलाड़ी की रणनीति s2(α) के साथ) एक अनुक्रम {a(1), b(2), a(3), b(4),..., उत्पन्न करें। a(t), b(t+1),...}, जो B से संबंधित नहीं है। यह संभव है, क्योंकि {a(1), a(3), a(5) के लिए विकल्पों की संख्या में निरंतरता के समान ही प्रमुखता है, जो कि उचित प्रारंभिक भाग की प्रमुखता से बड़ी है { β J | V J का α}
  6. इस अनुक्रम को A में जोड़ें (यदि यह पहले से ही A में नहीं है), यह इंगित करने के लिए कि s2(α) हारता है ({a(1), a(3), a(5)} पर
  7. α पर ट्रांसफिनिट इंडक्शन के साथ S1 और S2 की सभी संभावित रणनीतियों को प्रोसेस करें। उन सभी अनुक्रमों के लिए जो उसके बाद A या B में नहीं हैं, मनमाने ढंग से तय करें कि वे A के हैं या B के हैं। इसलिए B, A का पूरक है।

एक बार यह हो जाने के बाद, एक ω-खेल G के लिए तैयारी करें। यदि आप मुझे पहले खिलाड़ी की रणनीति s1 देते हैं, तो एक α होता है J ऐसा है कि s1 = s1(α), और हमने A का निर्माण ऐसा किया है कि s1(α) विफल हो जाता है (दूसरे खिलाड़ी के कुछ विकल्पों {b(2), b(4), b(6) पर) . इसलिए s1 विफल रहता है। इसी तरह, किसी भी खिलाड़ी की कोई अन्य रणनीति विफल हो जाती है। इसलिए अभिगृहीत का स्वयंसिद्ध और पसंद का स्वयंसिद्ध असंगत है।

असीम तर्क और अभिगृहीत का स्वयंसिद्ध

20वीं सदी के अंत में इन्फिनिटरी तर्क के कई अलग-अलग संस्करण प्रस्तावित किए गए थे। अभिगृहीत के स्वयंसिद्ध में विश्वास करने का एक कारण यह है कि इसे इस प्रकार लिखा जा सकता है (अनंत तर्क के संस्करण में):

या

नोट: Seq(S) सभी का समुच्चय है s के अनुक्रम। यहां वाक्य परिमाणक (तर्क) की अनगिनत अनंत सूची के साथ असीम रूप से लंबे हैं जहां दीर्घवृत्त दिखाई देते हैं।

बड़े कार्डिनल और अभिगृहीत का स्वयंसिद्ध

निर्धारकता के स्वयंसिद्ध की संगति बड़े कार्डिनल स्वयंसिद्धों की संगति के प्रश्न से निकटता से संबंधित है। डब्ल्यू ह्यूग वुडिन के एक प्रमेय के अनुसार, जर्मेलो-फ्रेंकेल सेट सिद्धांत बिना पसंद सिद्धांत (जेडएफ) की स्थिरता एक साथ निर्धारण के स्वयंसिद्ध के साथ, जर्मेलो-फ्रेंकेल बिना पसंद सिद्धांत (जेडएफसी) की संगति के साथ-साथ असीम रूप से अस्तित्व के बराबर है। कई वुड का कार्डिनल। चूंकि वुडिन कार्डिनल दुर्गम कार्डिनल हैं, यदि AD संगत है, तो दुर्गम कार्डिनल्स की अनंतता है।

इसके अतिरिक्त, अगर वुडिन कार्डिनल्स के एक अनंत सेट की परिकल्पना को उन सभी की तुलना में एक औसत दर्जे का कार्डिनल का अस्तित्व जोड़ा जाता है, तो लेबेसेग का एक बहुत मजबूत सिद्धांत वास्तविकताओं के औसत दर्जे का सेट उभरता है, क्योंकि यह तब सिद्ध होता है कि निर्धारण का स्वयंसिद्ध है L (R) में सच है, और इसलिए L (R) में वास्तविक संख्याओं का हर सेट निर्धारित होता है।

प्रोजेक्टिव ऑर्डिनल्स

मॉस्कोवाकिस ने अध्यादेश प्रस्तुत किया , जो की लंबाई की ऊपरी सीमा है -नॉर्म्स (इंजेक्शन ए अध्यादेशों में सेट करें), जहां प्रोजेक्टिव पदानुक्रम का एक स्तर है। ad मानते हुए, सभी प्रारंभिक क्रमिक हैं, और हमारे पास है , और के लिए वें सुस्लिन कार्डिनल के बराबर है .[1]


यह भी देखें

संदर्भ


इनलाइन उद्धरण

  1. V. G. Kanovei, The axiom of determinacy and the modern development of descriptive set theory, UDC 510.225; 510.223, Plenum Publishing Corporation (1988) p.270,282. Accessed 20 January 2023.


अग्रिम पठन