भिन्नात्मक स्तंभ: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[File:A giant distillation tower in Arak.jpg|thumb|[[मशीन साजी मिलते हैं]] द्वारा निर्मित 300x300 पीएक्स | मशीन साजी अरक (एमएसए)]]भिन्नात्मक स्तंभ आवश्यक वस्तु है जिसका उपयोग तरल मिश्रण के [[आसवन]] में मिश्रण को उसके घटक भागों, या भिन्नों में अस्थिरता के अंतर के आधार पर पृथक करने के लिए किया जाता है। छोटे स्तर के प्रयोगशाला आसवनों के साथ-साथ बड़े स्तर के औद्योगिक आसवनों में खंडित स्तंभ का उपयोग किया जाता है।
[[File:A giant distillation tower in Arak.jpg|thumb|[[मशीन साजी मिलते हैं]] द्वारा निर्मित 300x300 पीएक्स | मशीन साजी अरक (एमएसए)]]'''भिन्नात्मक स्तंभ''' आवश्यक वस्तु है, जिसका उपयोग तरल मिश्रण के [[आसवन]] में मिश्रण को उसके घटक भागों, या भिन्नों में अस्थिरता के अंतर के आधार पर पृथक करने के लिए किया जाता है। छोटे स्तर के प्रयोगशाला आसवनों के साथ-साथ बड़े स्तर के औद्योगिक आसवनों में खंडित स्तंभ का उपयोग किया जाता है।


== प्रयोगशाला भिन्नात्मक स्तंभ ==
== प्रयोगशाला भिन्नात्मक स्तंभ ==
[[Image:Fractional distillation lab apparatus.svg|thumb|300px|चित्रा 1: [[लिबिग कंडेनसर|लिबिग संघनित्र]] का उपयोग करके आंशिक आसवन उपकरण प्राप्त करना।]]
[[Image:Fractional distillation lab apparatus.svg|thumb|300px|चित्रा 1: [[लिबिग कंडेनसर|लिबिग संघनित्र]] का उपयोग करके आंशिक आसवन उपकरण प्राप्त करना।]]
[[File:Vigreux column lab.jpg|thumb|left|200px|प्रयोगशाला सेटअप में विग्रेक्स स्तंभ]]प्रयोगशाला अंशांकन स्तंभ कांच के बने पदार्थ का टुकड़ा है जिसका उपयोग तरल यौगिकों के वाष्पीकृत मिश्रण को घनिष्ठ अस्थिरता के साथ पृथक करने के लिए किया जाता है। सबसे अधिक उपयोग किया जाने वाला या तो [[विग्रेक्स कॉलम|विग्रेक्स स्तंभ]] या कांच के मोतियों या धातु के टुकड़ों जैसे रास्चिग के छल्ले से भरा सीधा स्तंभ है। खंडित स्तंभ राउल्ट के नियम के अनुसार मिश्रित वाष्प को ठंडा, संघनित और पुनः वाष्पीकृत करके मिश्रण को पृथक करने में सहायता करते हैं। प्रत्येक संघनन-[[वाष्पीकरण]] चक्र के साथ, वाष्प निश्चित घटक में समृद्ध होते हैं। बड़ा सतह क्षेत्र अधिक चक्रों की अनुमति देता है, और पृथक्करण में सुधार करता है। यह विग्रेक्स स्तंभ या पैक्ड खंडित स्तंभ के लिए औचित्य है। [[कताई बैंड आसवन|स्पिनिंग बैंड आसवन]] स्तंभ के अंदर घूर्णन बैंड का उपयोग करके परिणाम प्राप्त करता है जिससे कि बढ़ते वाष्पों को विवश किया जा सके और संघनन को निकट संपर्क में लाया जा सके, संतुलन को अधिक तीव्रता से प्राप्त किया जा सके।
[[File:Vigreux column lab.jpg|thumb|left|200px|प्रयोगशाला सेटअप में विग्रेक्स स्तंभ]]प्रयोगशाला अंशांकन स्तंभ कांच के बने पदार्थ का टुकड़ा है जिसका उपयोग तरल यौगिकों के वाष्पीकृत मिश्रण को घनिष्ठ अस्थिरता के साथ पृथक करने के लिए किया जाता है। सबसे अधिक उपयोग किया जाने वाला या तो [[विग्रेक्स कॉलम|विग्रेक्स स्तंभ]] या कांच के मोतियों या धातु के टुकड़ों जैसे रास्चिग के छल्ले से भरा सीधा स्तंभ है। खंडित स्तंभ राउल्ट के नियम के अनुसार मिश्रित वाष्प को ठंडा, संघनित और पुनः वाष्पीकृत करके मिश्रण को पृथक करने में सहायता करते हैं। प्रत्येक संघनन-[[वाष्पीकरण]] चक्र के साथ, वाष्प निश्चित घटक में समृद्ध होते हैं। बड़ा सतह क्षेत्र अधिक चक्रों की अनुमति देता है, और पृथक्करण में सुधार करता है। यह विग्रेक्स स्तंभ या पैक्ड खंडित स्तंभ के लिए औचित्य है। [[कताई बैंड आसवन|स्पिनिंग बैंड आसवन]] स्तंभ के अंदर घूर्णन बैंड का उपयोग करके परिणाम प्राप्त करता है जिससे कि बढ़ते वाष्पों को विवश किया जा सके और संघनन को निकट संपर्क में लाया जा सके, संतुलन को अधिक तीव्रता से प्राप्त किया जा सकता है।


विशिष्ट भिन्नात्मक आसवन में, तरल मिश्रण को आसवन फ्लास्क में गर्म किया जाता है, और परिणामी वाष्प प्रभाजन स्तंभ में ऊपर उठता है (चित्र 1 देखें)। वाष्प स्तंभ के अंदर ग्लास स्पर्स ([[सैद्धांतिक प्लेट]] के रूप में जाना जाता है) पर संघनित होता है, और डिस्टिलिंग फ्लास्क में लौटता है, बढ़ते डिस्टिलेट वाष्प को [[ भाटा |रिफ्लक्स]] करता है। सबसे गर्म ट्रे स्तंभ के नीचे और सबसे ठंडी ट्रे के ऊपर है। स्थिर अवस्था की स्थिति में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प संतुलन तक पहुँचते हैं। वाष्प का केवल सबसे अधिक वाष्पशील गैस रूप में ऊपर तक रहता है, जहां यह तब [[कंडेनसर (गर्मी हस्तांतरण)|संघनित्र]] के माध्यम से आगे बढ़ सकता है, जो वाष्प को तब तक ठंडा करता है जब तक कि यह एक तरल डिस्टिलेट में संघनित न हो जाए। अधिक ट्रे (गर्मी, प्रवाह, आदि की व्यावहारिक सीमा तक) जोड़कर पृथक्करण को बढ़ाया जा सकता है।
विशिष्ट भिन्नात्मक आसवन में, तरल मिश्रण को आसवन फ्लास्क में गर्म किया जाता है, और परिणामी वाष्प प्रभाजन स्तंभ में ऊपर उठता है (चित्र 1 देखें)। वाष्प स्तंभ के अंदर ग्लास स्पर्स ([[सैद्धांतिक प्लेट]] के रूप में जाना जाता है) पर संघनित होता है, और डिस्टिलिंग फ्लास्क में लौटता है, बढ़ते डिस्टिलेट वाष्प को [[ भाटा |रिफ्लक्स]] करता है। सबसे गर्म ट्रे स्तंभ के नीचे और सबसे ठंडी ट्रे के ऊपर है। स्थिर अवस्था की स्थिति में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प संतुलन तक पहुँचते हैं। वाष्प का केवल सबसे अधिक वाष्पशील गैस रूप में ऊपर तक रहता है, जहां यह तब [[कंडेनसर (गर्मी हस्तांतरण)|संघनित्र]] के माध्यम से आगे बढ़ सकता है, जो वाष्प को तब तक ठंडा करता है जब तक कि यह एक तरल डिस्टिलेट में संघनित न हो जाए। अधिक ट्रे (ऊष्मा, प्रवाह, आदि की व्यावहारिक सीमा तक) एकीकृत पृथक्करण को बढ़ाया जा सकता है।


[[Image:Colonne distillazione.jpg|right|thumb|300px|चित्र 2: विशिष्ट औद्योगिक भिन्नात्मक स्तंभ]]
[[Image:Colonne distillazione.jpg|right|thumb|300px|चित्र 2: विशिष्ट औद्योगिक भिन्नात्मक स्तंभ]]
Line 15: Line 15:
आसवन सबसे सामान्य और ऊर्जा-गहन पृथक्करण प्रक्रियाओं में से है। पृथक्करण की प्रभावशीलता स्तंभ की ऊँचाई और व्यास पर निर्भर करती है, स्तंभ की ऊँचाई से व्यास का अनुपात, और वह सामग्री जिसमें आसवन स्तंभ सम्मिलित होता है।<ref>{{cite web|title=आसवन स्तंभ|url=http://www.brewhaus.com/Distillation-Columns.aspx|website=Brewhaus|access-date=4 August 2015}}</ref> विशिष्ट रासायनिक संयंत्र में, कुल ऊर्जा खपत का लगभग 40% भाग है।<ref>{{cite book|author1=Felder, R. |author2=Roussea, W. |edition=3rd|title=रासायनिक प्रक्रियाओं के प्राथमिक सिद्धांत|publisher=Wiley|year=2005|isbn=978-0-471-68757-3}}</ref> औद्योगिक आसवन सामान्यतः बड़े, ऊर्ध्वाधर बेलनाकार स्तंभों (जैसा कि चित्र 2 में दिखाया गया है) में किया जाता है, जिसे आसवन टावर या आसवन स्तंभों के रूप में जाना जाता है, जिनका व्यास लगभग 65 सेंटीमीटर से लेकर 6 मीटर तक और ऊँचाई लगभग 6 मीटर से 60 मीटर या उससे अधिक तक होती है।
आसवन सबसे सामान्य और ऊर्जा-गहन पृथक्करण प्रक्रियाओं में से है। पृथक्करण की प्रभावशीलता स्तंभ की ऊँचाई और व्यास पर निर्भर करती है, स्तंभ की ऊँचाई से व्यास का अनुपात, और वह सामग्री जिसमें आसवन स्तंभ सम्मिलित होता है।<ref>{{cite web|title=आसवन स्तंभ|url=http://www.brewhaus.com/Distillation-Columns.aspx|website=Brewhaus|access-date=4 August 2015}}</ref> विशिष्ट रासायनिक संयंत्र में, कुल ऊर्जा खपत का लगभग 40% भाग है।<ref>{{cite book|author1=Felder, R. |author2=Roussea, W. |edition=3rd|title=रासायनिक प्रक्रियाओं के प्राथमिक सिद्धांत|publisher=Wiley|year=2005|isbn=978-0-471-68757-3}}</ref> औद्योगिक आसवन सामान्यतः बड़े, ऊर्ध्वाधर बेलनाकार स्तंभों (जैसा कि चित्र 2 में दिखाया गया है) में किया जाता है, जिसे आसवन टावर या आसवन स्तंभों के रूप में जाना जाता है, जिनका व्यास लगभग 65 सेंटीमीटर से लेकर 6 मीटर तक और ऊँचाई लगभग 6 मीटर से 60 मीटर या उससे अधिक तक होती है।
[[Image:Continuous Binary Fractional Distillation.PNG|right|thumb|300px|चित्र 3: एक निरंतर अंशांकन कॉलम की केमिकल इंजीनियरिंग योजनाबद्ध]]
[[Image:Continuous Binary Fractional Distillation.PNG|right|thumb|300px|चित्र 3: एक निरंतर अंशांकन कॉलम की केमिकल इंजीनियरिंग योजनाबद्ध]]
   [[Image:Tray Distillation Tower.PNG|frame|right|चित्र 4: फ्रैक्शनेटिंग कॉलम में ठेठ बबल-कैप ट्रे की केमिकल इंजीनियरिंग योजनाबद्ध]]औद्योगिक आसवन टावर सामान्यतः निरंतर स्थिर अवस्था में संचालित होते हैं। जब तक फ़ीड, गर्मी, परिवेश के तापमान या संघनन में परिवर्तन से कठिनाई न हो, फ़ीड की मात्रा सामान्य रूप से विस्थापित किये जाने वाले उत्पाद की मात्रा के समान होती है।
   [[Image:Tray Distillation Tower.PNG|frame|right|चित्र 4: फ्रैक्शनेटिंग कॉलम में ठेठ बबल-कैप ट्रे की केमिकल इंजीनियरिंग योजनाबद्ध]]औद्योगिक आसवन टावर सामान्यतः निरंतर स्थिर अवस्था में संचालित होते हैं। जब तक फ़ीड, ऊष्मा, परिवेश के तापमान या संघनन में परिवर्तन से कठिनाई न हो, फ़ीड की मात्रा सामान्य रूप से विस्थापित किये जाने वाले उत्पाद की मात्रा के समान होती है।


[[ पुनर्वाष्पित्र |पुनर्वाष्पित्र]] और फीड के साथ स्तंभ में प्रवेश करने वाली गर्मी की मात्रा ऊपरी संघनित्र द्वारा और उत्पादों के साथ निकाली गई गर्मी की मात्रा के समान होनी चाहिए। आसवन स्तंभ में प्रवेश करने वाली गर्मी महत्वपूर्ण ऑपरेटिंग पैरामीटर है, स्तंभ में अतिरिक्त या अपर्याप्त गर्मी के अतिरिक्त झाग, रोना, प्रवेश या बाढ़ हो सकती है।
[[ पुनर्वाष्पित्र |पुनर्वाष्पित्र]] और फीड के साथ स्तंभ में प्रवेश करने वाली ऊष्मा की मात्रा ऊपरी संघनित्र द्वारा और उत्पादों के साथ निकाली गई ऊष्मा की मात्रा के समान होनी चाहिए। आसवन स्तंभ में प्रवेश करने वाली ऊष्मा महत्वपूर्ण संचालन पैरामीटर है, स्तंभ में अतिरिक्त या अपर्याप्त ऊष्मा के अतिरिक्त झाग या बाढ़ हो सकती है।


चित्र 3 में औद्योगिक खंडित स्तंभ को दर्शाया गया है जो फीड स्ट्रीम को आसुत अंश और बॉटम्स अंश में पृथक करता है। चूँकि, अनेक औद्योगिक खंडित स्तंभ में स्तंभ के अंतराल पर आउटलेट होते हैं जिससे कि विभिन्न उबलते रेंज वाले कई उत्पादों को मल्टी-कंपोनेंट फीड स्ट्रीम डिस्टिल करने वाले स्तंभ से वापस लिया जा सके। सबसे अल्प क्वथनांक वाले सबसे हल्के उत्पाद स्तंभों के शीर्ष से बाहर निकलते हैं और उच्चतम क्वथनांक वाले सबसे भारी उत्पाद नीचे से बाहर निकलते हैं।
चित्र 3 में औद्योगिक खंडित स्तंभ को दर्शाया गया है जो फीड स्ट्रीम को आसुत अंश और बॉटम्स अंश में पृथक करता है। चूँकि, अनेक औद्योगिक खंडित स्तंभ के अंतराल पर आउटलेट होते हैं जिससे कि विभिन्न श्रेणी वाले अनेक उत्पादों को मल्टी-कंपोनेंट फीड स्ट्रीम डिस्टिल करने वाले स्तंभ से वापस लिया जा सके। सबसे अल्प क्वथनांक वाले उत्पाद स्तंभों के शीर्ष से बाहर निकलते हैं और उच्चतम क्वथनांक वाले उत्पाद नीचे से बाहर निकलते हैं।


औद्योगिक अंशांकन स्तंभ उत्पादों के उत्तम पृथक्करण को प्राप्त करने के लिए बाहरी भाटा का उपयोग करते हैं।<ref name=Kister/><ref name=Perry/>भाटा संघनित ऊपरी तरल उत्पाद के भाग को संदर्भित करता है जो कि खंडित स्तंभ के ऊपरी भाग में लौटता है जैसा कि चित्र 3 में दिखाया गया है।
औद्योगिक अंशांकन स्तंभ उत्पादों के उत्तम पृथक्करण को प्राप्त करने के लिए बाहरी भाटा का उपयोग करते हैं।<ref name=Kister/><ref name=Perry/>भाटा संघनित ऊपरी तरल उत्पाद के भाग को संदर्भित करता है जो कि खंडित स्तंभ के ऊपरी भाग में लौटता है जैसा कि चित्र 3 में दिखाया गया है।


स्तंभ के अंदर, डाउनफ्लोइंग रिफ्लक्स लिक्विड अपफ्लोइंग वेपर्स को कूलिंग और कंडेनसेशन प्रदान करता है जिससे डिस्टिलेशन टॉवर की प्रभावकारिता बढ़ जाती है। जितना अधिक रिफ्लक्स अधिक ट्रे प्रदान की जाती हैं, उतना ही उत्तम होता है कि टावर अल्प उबलने वाली सामग्री को उच्च उबलने वाली सामग्री से पृथक करे।
स्तंभ के अंदर, डाउनफ्लोइंग रिफ्लक्स लिक्विड अपफ्लोइंग वेपर्स को ठंडा करता है और कंडेनसेशन प्रदान करता है जिससे डिस्टिलेशन टॉवर की प्रभावकारिता बढ़ जाती है। जितना अधिक रिफ्लक्स ट्रे प्रदान की जाती हैं, उतना ही उत्तम होता है कि टावर अल्प उबलने वाली सामग्री को उच्च उबलने वाली सामग्री से पृथक करे।


अंशांकन स्तंभ का डिज़ाइन और संचालन फ़ीड की संरचना के साथ-साथ वांछित उत्पादों की संरचना पर निर्भर करता है। मैककेबे-थिले विधि जैसे सरल, बाइनरी घटक फ़ीड, विश्लेषणात्मक विधियों को देखते हुए<ref name=Perry/><ref name=Beychok>{{cite journal | last = Beychok | first = Milton | title = मैककेबे-थिले आरेख का बीजगणितीय समाधान| journal = Chemical Engineering Progress | date = May 1951 }}</ref><ref name=SeaderHenley>{{cite book |author1=Seader, J. D. |author2=Henley, Ernest J. | title = पृथक्करण प्रक्रिया सिद्धांत| publisher = Wiley | location = New York | year = 1998| isbn = 0-471-58626-9}}</ref> या फ़ेंस्के समीकरण<ref name=Perry/>उपयोग किया जा सकता है। बहु-घटक फ़ीड के लिए, सिमुलेशन मॉडल का उपयोग डिज़ाइन, संचालन और निर्माण दोनों के लिए किया जाता है।
अंशांकन स्तंभ का डिज़ाइन और संचालन फ़ीड की संरचना के साथ-साथ वांछित उत्पादों की संरचना पर निर्भर करता है। मैककेबे-थिले विधि जैसे सरल, बाइनरी घटक फ़ीड, विश्लेषणात्मक विधियों को देखते हुए<ref name=Perry/><ref name=Beychok>{{cite journal | last = Beychok | first = Milton | title = मैककेबे-थिले आरेख का बीजगणितीय समाधान| journal = Chemical Engineering Progress | date = May 1951 }}</ref><ref name=SeaderHenley>{{cite book |author1=Seader, J. D. |author2=Henley, Ernest J. | title = पृथक्करण प्रक्रिया सिद्धांत| publisher = Wiley | location = New York | year = 1998| isbn = 0-471-58626-9}}</ref> या फ़ेंस्के समीकरण<ref name=Perry/> का उपयोग किया जा सकता है। बहु-घटक फ़ीड के लिए, सिमुलेशन मॉडल का उपयोग डिज़ाइन, संचालन और निर्माण दोनों के लिए किया जाता है।


बबल-कैप ट्रे या प्लेटें भौतिक उपकरणों के प्रकारों में से हैं, जिनका उपयोग अपफ्लोइंग वेपर और औद्योगिक खंडित स्तंभ के अंदर डाउनफ्लोइंग तरल के मध्य उत्तम संपर्क प्रदान करने के लिए किया जाता है। ऐसी ट्रे को चित्र 4 और 5 में दिखाया गया है।
बबल-कैप ट्रे या प्लेटें भौतिक उपकरणों के प्रकारों में से हैं, जिनका उपयोग अपफ्लोइंग वेपर और औद्योगिक खंडित स्तंभ के अंदर डाउनफ्लोइंग तरल के मध्य उत्तम संपर्क प्रदान करने के लिए किया जाता है। ऐसी ट्रे को चित्र 4 और 5 में दिखाया गया है।
Line 31: Line 31:
ट्रे या प्लेट की दक्षता सामान्यतः सैद्धांतिक 100% कुशल [[संतुलन चरण]] की तुलना में अल्प होती है। इसलिए, सैद्धांतिक वाष्प-तरल संतुलन की आवश्यक संख्या की तुलना में आंशिक स्तंभ को सदैव अधिक वास्तविक, भौतिक प्लेटों की आवश्यकता होती है। [[Image:Bubble Cap Trays.PNG|frame|right|चित्र 5: बबल कैप के साथ ट्रे की एक जोड़ी का विवरण दिखाते हुए चित्र 4 के फ्रैक्शनेटिंग टॉवर का खंड]]
ट्रे या प्लेट की दक्षता सामान्यतः सैद्धांतिक 100% कुशल [[संतुलन चरण]] की तुलना में अल्प होती है। इसलिए, सैद्धांतिक वाष्प-तरल संतुलन की आवश्यक संख्या की तुलना में आंशिक स्तंभ को सदैव अधिक वास्तविक, भौतिक प्लेटों की आवश्यकता होती है। [[Image:Bubble Cap Trays.PNG|frame|right|चित्र 5: बबल कैप के साथ ट्रे की एक जोड़ी का विवरण दिखाते हुए चित्र 4 के फ्रैक्शनेटिंग टॉवर का खंड]]


[[File:Distillation Column (Tower).png|thumb|right|400px|चित्र 6: एक आसवन स्तंभ का संपूर्ण दृश्य]]औद्योगिक उपयोगों में, कभी-कभी ट्रे के अतिरिक्त स्तंभ में [[खचाखच भरे बिस्तर|पैकिंग सामग्री]] का उपयोग किया जाता है, विशेष रूप से जब स्तंभ में अल्प दबाव की बूंदों की आवश्यकता होती है, जैसे कि [[ खालीपन | वैक्यूम]] के अंतर्गत कार्य करते समय होती है। यह पैकिंग सामग्री या तो रैंडम डंप की गई पैकिंग हो सकती है ({{convert|1|–|3|in|cm|abbr=on|disp=or}} चौड़ा) जैसे रैशिग रिंग्स या [[ संरचित पैकिंग |संरचित पैकिंग]] है। तरल पदार्थ पैकिंग की सतह को गीला करते हैं, और वाष्प इस गीली सतह से निकलती हैं, जहां बड़े स्तर पर स्थानांतरण होता है। भिन्न -भिन्न आकार की पैकिंग में भिन्न-भिन्न सतह क्षेत्र होते हैं और पैकिंग के मध्य शून्य स्थान होता है। ये दोनों कारक पैकिंग प्रदर्शन को प्रभावित करते हैं।
[[File:Distillation Column (Tower).png|thumb|right|400px|चित्र 6: एक आसवन स्तंभ का संपूर्ण दृश्य]]औद्योगिक उपयोगों में, कभी-कभी ट्रे के अतिरिक्त स्तंभ में [[खचाखच भरे बिस्तर|पैकिंग सामग्री]] का उपयोग किया जाता है, विशेष रूप से जब स्तंभ में अल्प दबाव की बूंदों की आवश्यकता होती है, तो [[ खालीपन |निर्वात]] के अंतर्गत कार्य करते समय होती है। यह पैकिंग सामग्री या तो रैंडम डंप की गई पैकिंग हो सकती है ({{convert|1|–|3|in|cm|abbr=on|disp=or}} चौड़ा) जैसे रैशिग रिंग्स या [[ संरचित पैकिंग |संरचित पैकिंग]] है। तरल पदार्थ पैकिंग की सतह को गीला करते हैं, और वाष्प इस गीली सतह से निकलती हैं, जहां बड़े स्तर पर स्थानांतरण होता है। भिन्न -भिन्न आकार की पैकिंग में भिन्न-भिन्न सतह क्षेत्र होते हैं और पैकिंग के मध्य शून्य स्थान होता है। ये दोनों कारक पैकिंग प्रदर्शन को प्रभावित करते हैं।
 
[[Category:CS1 maint]]
[[Category:CS1 maint]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
Line 50: Line 49:
*[[भाप आसवन]]
*[[भाप आसवन]]
*सैद्धांतिक प्लेट
*सैद्धांतिक प्लेट
* [[वैक्यूम आसवन]]
* [[वैक्यूम आसवन|निर्वात आसवन]]
*आंशिक आसवन
*आंशिक आसवन


Line 75: Line 74:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 08:53, 3 November 2023

मशीन साजी अरक (एमएसए)

भिन्नात्मक स्तंभ आवश्यक वस्तु है, जिसका उपयोग तरल मिश्रण के आसवन में मिश्रण को उसके घटक भागों, या भिन्नों में अस्थिरता के अंतर के आधार पर पृथक करने के लिए किया जाता है। छोटे स्तर के प्रयोगशाला आसवनों के साथ-साथ बड़े स्तर के औद्योगिक आसवनों में खंडित स्तंभ का उपयोग किया जाता है।

प्रयोगशाला भिन्नात्मक स्तंभ

चित्रा 1: लिबिग संघनित्र का उपयोग करके आंशिक आसवन उपकरण प्राप्त करना।
प्रयोगशाला सेटअप में विग्रेक्स स्तंभ

प्रयोगशाला अंशांकन स्तंभ कांच के बने पदार्थ का टुकड़ा है जिसका उपयोग तरल यौगिकों के वाष्पीकृत मिश्रण को घनिष्ठ अस्थिरता के साथ पृथक करने के लिए किया जाता है। सबसे अधिक उपयोग किया जाने वाला या तो विग्रेक्स स्तंभ या कांच के मोतियों या धातु के टुकड़ों जैसे रास्चिग के छल्ले से भरा सीधा स्तंभ है। खंडित स्तंभ राउल्ट के नियम के अनुसार मिश्रित वाष्प को ठंडा, संघनित और पुनः वाष्पीकृत करके मिश्रण को पृथक करने में सहायता करते हैं। प्रत्येक संघनन-वाष्पीकरण चक्र के साथ, वाष्प निश्चित घटक में समृद्ध होते हैं। बड़ा सतह क्षेत्र अधिक चक्रों की अनुमति देता है, और पृथक्करण में सुधार करता है। यह विग्रेक्स स्तंभ या पैक्ड खंडित स्तंभ के लिए औचित्य है। स्पिनिंग बैंड आसवन स्तंभ के अंदर घूर्णन बैंड का उपयोग करके परिणाम प्राप्त करता है जिससे कि बढ़ते वाष्पों को विवश किया जा सके और संघनन को निकट संपर्क में लाया जा सके, संतुलन को अधिक तीव्रता से प्राप्त किया जा सकता है।

विशिष्ट भिन्नात्मक आसवन में, तरल मिश्रण को आसवन फ्लास्क में गर्म किया जाता है, और परिणामी वाष्प प्रभाजन स्तंभ में ऊपर उठता है (चित्र 1 देखें)। वाष्प स्तंभ के अंदर ग्लास स्पर्स (सैद्धांतिक प्लेट के रूप में जाना जाता है) पर संघनित होता है, और डिस्टिलिंग फ्लास्क में लौटता है, बढ़ते डिस्टिलेट वाष्प को रिफ्लक्स करता है। सबसे गर्म ट्रे स्तंभ के नीचे और सबसे ठंडी ट्रे के ऊपर है। स्थिर अवस्था की स्थिति में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प संतुलन तक पहुँचते हैं। वाष्प का केवल सबसे अधिक वाष्पशील गैस रूप में ऊपर तक रहता है, जहां यह तब संघनित्र के माध्यम से आगे बढ़ सकता है, जो वाष्प को तब तक ठंडा करता है जब तक कि यह एक तरल डिस्टिलेट में संघनित न हो जाए। अधिक ट्रे (ऊष्मा, प्रवाह, आदि की व्यावहारिक सीमा तक) एकीकृत पृथक्करण को बढ़ाया जा सकता है।

चित्र 2: विशिष्ट औद्योगिक भिन्नात्मक स्तंभ

औद्योगिक अंशांकन स्तंभ

आंशिक आसवन केमिकल इंजीनियरिंग के इकाई संचालन में से है।[1][2] खंडित स्तंभ का व्यापक रूप से रासायनिक प्रक्रिया उद्योगों में उपयोग किया जाता है जहां बड़ी मात्रा में तरल पदार्थों को आसुत किया जाता है।[3][4][5] ऐसे उद्योग [[पेट्रोलियम]] प्रसंस्करण, पेट्रोकेमिकल उत्पादन, प्राकृतिक गैस प्रसंस्करण, कोयला टार प्रसंस्करण, शराब बनाना, तरल वायु पृथक्करण और हाइड्रोकार्बन विलायक उत्पादन हैं। आंशिक आसवन तेल शोधशाला में अपना व्यापक अनुप्रयोग करता है। ऐसी रिफाइनरियों में कच्चा तेल फीडस्टॉक जटिल, बहुघटक मिश्रण होता है जिसे पृथक किया जाना चाहिए। सामान्यतः शुद्ध रासायनिक यौगिकों के उत्पादन की आशा नहीं की जाती है, चूँकि, क्वथनांक की अपेक्षाकृत छोटी सीमा के अंदर यौगिकों के समूहों का उत्पादन, की अपेक्षा की जाती है, जिन्हें अंश भी कहा जाता है। यह प्रक्रिया भिन्नात्मक आसवन या प्रभाजन नाम की उत्पत्ति है।

आसवन सबसे सामान्य और ऊर्जा-गहन पृथक्करण प्रक्रियाओं में से है। पृथक्करण की प्रभावशीलता स्तंभ की ऊँचाई और व्यास पर निर्भर करती है, स्तंभ की ऊँचाई से व्यास का अनुपात, और वह सामग्री जिसमें आसवन स्तंभ सम्मिलित होता है।[6] विशिष्ट रासायनिक संयंत्र में, कुल ऊर्जा खपत का लगभग 40% भाग है।[7] औद्योगिक आसवन सामान्यतः बड़े, ऊर्ध्वाधर बेलनाकार स्तंभों (जैसा कि चित्र 2 में दिखाया गया है) में किया जाता है, जिसे आसवन टावर या आसवन स्तंभों के रूप में जाना जाता है, जिनका व्यास लगभग 65 सेंटीमीटर से लेकर 6 मीटर तक और ऊँचाई लगभग 6 मीटर से 60 मीटर या उससे अधिक तक होती है।

चित्र 3: एक निरंतर अंशांकन कॉलम की केमिकल इंजीनियरिंग योजनाबद्ध
चित्र 4: फ्रैक्शनेटिंग कॉलम में ठेठ बबल-कैप ट्रे की केमिकल इंजीनियरिंग योजनाबद्ध

औद्योगिक आसवन टावर सामान्यतः निरंतर स्थिर अवस्था में संचालित होते हैं। जब तक फ़ीड, ऊष्मा, परिवेश के तापमान या संघनन में परिवर्तन से कठिनाई न हो, फ़ीड की मात्रा सामान्य रूप से विस्थापित किये जाने वाले उत्पाद की मात्रा के समान होती है।

पुनर्वाष्पित्र और फीड के साथ स्तंभ में प्रवेश करने वाली ऊष्मा की मात्रा ऊपरी संघनित्र द्वारा और उत्पादों के साथ निकाली गई ऊष्मा की मात्रा के समान होनी चाहिए। आसवन स्तंभ में प्रवेश करने वाली ऊष्मा महत्वपूर्ण संचालन पैरामीटर है, स्तंभ में अतिरिक्त या अपर्याप्त ऊष्मा के अतिरिक्त झाग या बाढ़ हो सकती है।

चित्र 3 में औद्योगिक खंडित स्तंभ को दर्शाया गया है जो फीड स्ट्रीम को आसुत अंश और बॉटम्स अंश में पृथक करता है। चूँकि, अनेक औद्योगिक खंडित स्तंभ के अंतराल पर आउटलेट होते हैं जिससे कि विभिन्न श्रेणी वाले अनेक उत्पादों को मल्टी-कंपोनेंट फीड स्ट्रीम डिस्टिल करने वाले स्तंभ से वापस लिया जा सके। सबसे अल्प क्वथनांक वाले उत्पाद स्तंभों के शीर्ष से बाहर निकलते हैं और उच्चतम क्वथनांक वाले उत्पाद नीचे से बाहर निकलते हैं।

औद्योगिक अंशांकन स्तंभ उत्पादों के उत्तम पृथक्करण को प्राप्त करने के लिए बाहरी भाटा का उपयोग करते हैं।[3][5]भाटा संघनित ऊपरी तरल उत्पाद के भाग को संदर्भित करता है जो कि खंडित स्तंभ के ऊपरी भाग में लौटता है जैसा कि चित्र 3 में दिखाया गया है।

स्तंभ के अंदर, डाउनफ्लोइंग रिफ्लक्स लिक्विड अपफ्लोइंग वेपर्स को ठंडा करता है और कंडेनसेशन प्रदान करता है जिससे डिस्टिलेशन टॉवर की प्रभावकारिता बढ़ जाती है। जितना अधिक रिफ्लक्स ट्रे प्रदान की जाती हैं, उतना ही उत्तम होता है कि टावर अल्प उबलने वाली सामग्री को उच्च उबलने वाली सामग्री से पृथक करे।

अंशांकन स्तंभ का डिज़ाइन और संचालन फ़ीड की संरचना के साथ-साथ वांछित उत्पादों की संरचना पर निर्भर करता है। मैककेबे-थिले विधि जैसे सरल, बाइनरी घटक फ़ीड, विश्लेषणात्मक विधियों को देखते हुए[5][8][9] या फ़ेंस्के समीकरण[5] का उपयोग किया जा सकता है। बहु-घटक फ़ीड के लिए, सिमुलेशन मॉडल का उपयोग डिज़ाइन, संचालन और निर्माण दोनों के लिए किया जाता है।

बबल-कैप ट्रे या प्लेटें भौतिक उपकरणों के प्रकारों में से हैं, जिनका उपयोग अपफ्लोइंग वेपर और औद्योगिक खंडित स्तंभ के अंदर डाउनफ्लोइंग तरल के मध्य उत्तम संपर्क प्रदान करने के लिए किया जाता है। ऐसी ट्रे को चित्र 4 और 5 में दिखाया गया है।

ट्रे या प्लेट की दक्षता सामान्यतः सैद्धांतिक 100% कुशल संतुलन चरण की तुलना में अल्प होती है। इसलिए, सैद्धांतिक वाष्प-तरल संतुलन की आवश्यक संख्या की तुलना में आंशिक स्तंभ को सदैव अधिक वास्तविक, भौतिक प्लेटों की आवश्यकता होती है।

चित्र 5: बबल कैप के साथ ट्रे की एक जोड़ी का विवरण दिखाते हुए चित्र 4 के फ्रैक्शनेटिंग टॉवर का खंड
चित्र 6: एक आसवन स्तंभ का संपूर्ण दृश्य

औद्योगिक उपयोगों में, कभी-कभी ट्रे के अतिरिक्त स्तंभ में पैकिंग सामग्री का उपयोग किया जाता है, विशेष रूप से जब स्तंभ में अल्प दबाव की बूंदों की आवश्यकता होती है, तो निर्वात के अंतर्गत कार्य करते समय होती है। यह पैकिंग सामग्री या तो रैंडम डंप की गई पैकिंग हो सकती है (1–3 in or 2.5–7.6 cm चौड़ा) जैसे रैशिग रिंग्स या संरचित पैकिंग है। तरल पदार्थ पैकिंग की सतह को गीला करते हैं, और वाष्प इस गीली सतह से निकलती हैं, जहां बड़े स्तर पर स्थानांतरण होता है। भिन्न -भिन्न आकार की पैकिंग में भिन्न-भिन्न सतह क्षेत्र होते हैं और पैकिंग के मध्य शून्य स्थान होता है। ये दोनों कारक पैकिंग प्रदर्शन को प्रभावित करते हैं।

यह भी देखें

संदर्भ

  1. Kroschwitz, Jacqueline; Seidel, Arza (2004). किर्क-ओथमर एनसाइक्लोपीडिया ऑफ केमिकल टेक्नोलॉजी (5th ed.). Hoboken, New Jersey: Wiley-Interscience. ISBN 0-471-48810-0.
  2. McCabe, W., Smith, J. and Harriott, P. (2004). केमिकल इंजीनियरिंग की इकाई संचालन (7th ed.). McGraw Hill. ISBN 0-07-284823-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. 3.0 3.1 Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 0-07-034909-6.
  4. King, C.J. (1980). पृथक्करण प्रक्रियाएं (2nd ed.). McGraw Hill. ISBN 0-07-034612-7.
  5. 5.0 5.1 5.2 5.3 Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 0-07-049479-7.
  6. "आसवन स्तंभ". Brewhaus. Retrieved 4 August 2015.
  7. Felder, R.; Roussea, W. (2005). रासायनिक प्रक्रियाओं के प्राथमिक सिद्धांत (3rd ed.). Wiley. ISBN 978-0-471-68757-3.
  8. Beychok, Milton (May 1951). "मैककेबे-थिले आरेख का बीजगणितीय समाधान". Chemical Engineering Progress.
  9. Seader, J. D.; Henley, Ernest J. (1998). पृथक्करण प्रक्रिया सिद्धांत. New York: Wiley. ISBN 0-471-58626-9.


बाहरी संबंध