दहन ऊष्मा: Difference between revisions
No edit summary |
|||
(17 intermediate revisions by 5 users not shown) | |||
Line 22: | Line 22: | ||
ज़्वोलिंस्की और विल्होइट ने 1972 में दहन की ऊष्मा के लिए सकल और शुद्ध मूल्यों को परिभाषित किया। सकल परिभाषा में उत्पाद सबसे स्थिर यौगिक हैं, उदा- {{chem|H|2|O}}(l), {{chem|Br|2}}(l), {{chem|I|2}}(s) और {{chem|H|2|SO|4}}(l) आदि। शुद्ध परिभाषा में उत्पाद वे गैसें हैं जो तब उत्पन्न होती हैं जब यौगिक को खुली लौ में जलाया जाता है, उदा- {{chem|H|2|O}}(g), {{chem|Br|2}}(g), {{chem|I|2}}(g) और {{chem|SO|2}}(g) आदि। दोनों परिभाषाओं में C, F, Cl और N के उत्पाद {{chem|CO|2}}(g), {{chem|HF}}(g), {{chem|Cl|2}}(g) और {{chem|N|2}}(g), क्रमशः है।<ref>{{cite book |last1=Zwolinski |first1=Bruno J |last2=Wilhoit |first2=Randolf C. |chapter=Heats of formation and Heats of Combustion |pages=316–342 |chapter-url=https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section4l.pdf |editor1-last=Dwight E. |editor1-first=Gray |editor2-first=Bruce H. |editor2-last=Billings |title=अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स हैंडबुक|date=1972 |publisher=McGraw-Hill |isbn=978-0-07-001485-5 |access-date=2021-08-06 |archive-date=2021-08-06 |archive-url=https://web.archive.org/web/20210806144519/https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section4l.pdf |url-status=dead }}</ref> | ज़्वोलिंस्की और विल्होइट ने 1972 में दहन की ऊष्मा के लिए सकल और शुद्ध मूल्यों को परिभाषित किया। सकल परिभाषा में उत्पाद सबसे स्थिर यौगिक हैं, उदा- {{chem|H|2|O}}(l), {{chem|Br|2}}(l), {{chem|I|2}}(s) और {{chem|H|2|SO|4}}(l) आदि। शुद्ध परिभाषा में उत्पाद वे गैसें हैं जो तब उत्पन्न होती हैं जब यौगिक को खुली लौ में जलाया जाता है, उदा- {{chem|H|2|O}}(g), {{chem|Br|2}}(g), {{chem|I|2}}(g) और {{chem|SO|2}}(g) आदि। दोनों परिभाषाओं में C, F, Cl और N के उत्पाद {{chem|CO|2}}(g), {{chem|HF}}(g), {{chem|Cl|2}}(g) और {{chem|N|2}}(g), क्रमशः है।<ref>{{cite book |last1=Zwolinski |first1=Bruno J |last2=Wilhoit |first2=Randolf C. |chapter=Heats of formation and Heats of Combustion |pages=316–342 |chapter-url=https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section4l.pdf |editor1-last=Dwight E. |editor1-first=Gray |editor2-first=Bruce H. |editor2-last=Billings |title=अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स हैंडबुक|date=1972 |publisher=McGraw-Hill |isbn=978-0-07-001485-5 |access-date=2021-08-06 |archive-date=2021-08-06 |archive-url=https://web.archive.org/web/20210806144519/https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section4l.pdf |url-status=dead }}</ref> | ||
<big>'''डुलोंग का | <big>'''डुलोंग का सूत्र'''</big> | ||
ईंधन के अंतिम विश्लेषण के परिणामों से ताप मान की गणना की जा सकती है। विश्लेषण से, ईंधन ([[कार्बन]], [[हाइड्रोजन]], [[ गंधक |गंधक]]) में ज्वलनशील पदार्थों का प्रतिशत जाना जाता है। चूंकि इन तत्वों के दहन की ऊष्मा ज्ञात होती है, इसलिए डुलोंग के सूत्र का उपयोग करके ताप मान की गणना की जा सकती है: | ईंधन के अंतिम विश्लेषण के परिणामों से ताप मान की गणना की जा सकती है। विश्लेषण से, ईंधन ([[कार्बन]], [[हाइड्रोजन]], [[ गंधक |गंधक]]) में ज्वलनशील पदार्थों का प्रतिशत जाना जाता है। चूंकि इन तत्वों के दहन की ऊष्मा ज्ञात होती है, इसलिए डुलोंग के सूत्र का उपयोग करके ताप मान की गणना की जा सकती है: | ||
Line 28: | Line 28: | ||
LHV [kJ/g]= 33.87m<sub>C</sub> + 122.3(m<sub>H</sub> - m<sub>O</sub> ÷ 8) + 9.4m<sub>S</sub> | LHV [kJ/g]= 33.87m<sub>C</sub> + 122.3(m<sub>H</sub> - m<sub>O</sub> ÷ 8) + 9.4m<sub>S</sub> | ||
जहां m<sub>C</sub>, m<sub>H</sub>, m<sub>O</sub>, m<sub>N</sub>, और m<sub>S</sub> क्रमशः किसी भी (गीले, सूखे या राख मुक्त) आधार पर कार्बन, हाइड्रोजन, ऑक्सीजन, नाइट्रोजन, और सल्फर की सामग्री हैं।<ref>{{cite journal |last1=Hosokai |first1=Sou |last2=Matsuoka |first2=Koichi |last3=Kuramoto |first3=Koji |last4=Suzuki |first4=Yoshizo |title=गैस, तरल और ठोस ईंधन के ताप मान का अनुमान लगाने के लिए डुलोंग के सूत्र में संशोधन|journal=Fuel Processing Technology |date=1 November 2016 |volume=152 |pages=399–405 |doi=10.1016/j.fuproc.2016.06.040 }}</ref> | जहां m<sub>C</sub>, m<sub>H</sub>, m<sub>O</sub>, m<sub>N</sub>, और m<sub>S</sub> क्रमशः किसी भी (गीले, सूखे या राख मुक्त) आधार पर कार्बन, हाइड्रोजन, ऑक्सीजन, नाइट्रोजन, और सल्फर की सामग्री हैं। <ref>{{cite journal |last1=Hosokai |first1=Sou |last2=Matsuoka |first2=Koichi |last3=Kuramoto |first3=Koji |last4=Suzuki |first4=Yoshizo |title=गैस, तरल और ठोस ईंधन के ताप मान का अनुमान लगाने के लिए डुलोंग के सूत्र में संशोधन|journal=Fuel Processing Technology |date=1 November 2016 |volume=152 |pages=399–405 |doi=10.1016/j.fuproc.2016.06.040 }}</ref> | ||
=== उच्च ताप मान === | === उच्च ताप मान === | ||
उच्च ताप मान में (एचएचवी; सकल ऊर्जा, ऊपरी ताप मान, सकल कैलोरी मान जीसीवी, या उच्च कैलोरी मान; एचसीवी) ईंधन के पूर्ण दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा की ऊपरी सीमा को प्रदर्शित करता है। इसे प्रति इकाई द्रव्यमान या पदार्थ के आयतन में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी दहन के सभी उत्पादों को मूल पूर्व-दहन तापमान पर वापस लाकर और विशेष रूप से उत्पादित वाष्प को संघनित करके निर्धारित किया जाता है। इस प्रकार के माप प्रायः {{convert|25|C|F K|abbr=on}} मानक तापमान का उपयोग करते हैं {{citation needed|date=June 2015}} यह दहन की ऊष्मागतिकीय | उच्च ताप मान में (एचएचवी; सकल ऊर्जा, ऊपरी ताप मान, सकल कैलोरी मान जीसीवी, या उच्च कैलोरी मान; एचसीवी) ईंधन के पूर्ण दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा की ऊपरी सीमा को प्रदर्शित करता है। इसे प्रति इकाई द्रव्यमान या पदार्थ के आयतन में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी दहन के सभी उत्पादों को मूल पूर्व-दहन तापमान पर वापस लाकर और विशेष रूप से उत्पादित वाष्प को संघनित करके निर्धारित किया जाता है। इस प्रकार के माप प्रायः {{convert|25|C|F K|abbr=on}} मानक तापमान का उपयोग करते हैं {{citation needed|date=June 2015}} यह दहन की ऊष्मागतिकीय के समान होता है क्योंकि प्रतिक्रिया के लिए एन्थैल्पी परिवर्तन दहन से पूर्व और पश्चात में यौगिकों के सामान्य तापमान को मान लेता है, इस स्थिति में दहन द्वारा उत्पादित पानी तरल के रूप में संघनित होता है। उच्च ताप मूल्य दहन उत्पादों में पानी के [[वाष्पीकरण]] की [[तापीय धारिता]] को ध्यान में रखता है, और ईंधन के लिए ताप मान की गणना करने में उपयोगी होता है जहां प्रतिक्रिया उत्पादों का संघनन व्यावहारिक होता है (उदाहरण के लिए, अंतरिक्ष ताप के लिए उपयोग किए जाने वाले गैस से चलने वाले [[ बायलर |बायलर]] में)। दूसरे शब्दों में, एचएचवी मानता है कि दहन के अंत में (दहन के उत्पाद में) पानी के सभी घटक तरल अवस्था में हैं {{convert|150|C}} से कम तापमान पर वितरित ऊष्मा का उपयोग किया जा सकता है। | ||
=== | === निम्न ताप मान में मूल्य === | ||
निम्न ताप मान (एलएचवी; शुद्ध कैलोरी मान; एनसीवी, या निम्न कैलोरी मान; एलसीवी) ईंधन के दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा का उपाय है, जिसे प्रति इकाई द्रव्यमान या पदार्थ की मात्रा में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी के विपरीत, एलएचवी ऊर्जा हानियों पर विचार करता है जैसे कि पानी को वाष्पीकृत करने के लिए उपयोग की जाने वाली ऊर्जा - चूँकि इसकी त्रुटिहीन परिभाषा पर समान रूप से सहमति नहीं है। परिभाषा उच्च ताप मान से पानी के वाष्पीकरण की ऊष्मा को | निम्न ताप मान (एलएचवी; शुद्ध कैलोरी मान; एनसीवी, या निम्न कैलोरी मान; एलसीवी) ईंधन के दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा का उपाय है, जिसे प्रति इकाई द्रव्यमान या पदार्थ की मात्रा में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी के विपरीत, एलएचवी ऊर्जा हानियों पर विचार करता है जैसे कि पानी को वाष्पीकृत करने के लिए उपयोग की जाने वाली ऊर्जा - चूँकि इसकी त्रुटिहीन परिभाषा पर समान रूप से सहमति नहीं है। परिभाषा उच्च ताप मान से पानी के वाष्पीकरण की ऊष्मा को घटाना है। यह वाष्प के रूप में किसी भी H<sub>2</sub>O के साथ प्रतिक्रिया करता है। पानी को वाष्पीकृत करने के लिए आवश्यक ऊर्जा इसलिए ऊष्मा के रूप में निरंतर नहीं की जाती है। | ||
एलएचवी गणना मानती है कि दहन प्रक्रिया का जल घटक दहन के अंत में वाष्प अवस्था में होता है, जैसा कि उच्च ताप मान (एचएचवी) ( | एलएचवी गणना मानती है कि दहन प्रक्रिया का जल घटक दहन के अंत में वाष्प अवस्था में होता है, जैसा कि उच्च ताप मान (एचएचवी) (सकल कैलोरी मान या सकल सीवी) के विपरीत होता है, जो यह मानता है कि पानी दहन प्रक्रिया के पश्चात तरल अवस्था में होता है। | ||
एलएचवी की अन्य परिभाषा यह है कि जब उत्पादों को {{convert|150|C}} तक ठंडा किया जाता है तो ऊष्मा की मात्रा निरंतर होती है। इसका तात्पर्य यह है कि पानी और अन्य प्रतिक्रिया उत्पादों के वाष्पीकरण की गुप्त ऊष्मा वापस नहीं आती है। यह ईंधनों की तुलना करने में उपयोगी है जहां दहन उत्पादों का संघनन अव्यावहारिक है, या {{convert|150|C}} से अल्प तापमान पर ऊष्मा का उपयोग नहीं किया जा सकता है। | एलएचवी की अन्य परिभाषा यह है कि जब उत्पादों को {{convert|150|C}} तक ठंडा किया जाता है तो ऊष्मा की मात्रा निरंतर होती है। इसका तात्पर्य यह है कि पानी और अन्य प्रतिक्रिया उत्पादों के वाष्पीकरण की गुप्त ऊष्मा वापस नहीं आती है। यह ईंधनों की तुलना करने में उपयोगी है जहां दहन उत्पादों का संघनन अव्यावहारिक है, या {{convert|150|C}} से अल्प तापमान पर ऊष्मा का उपयोग नहीं किया जा सकता है। | ||
Line 46: | Line 46: | ||
=== सकल ताप मूल्य === | === सकल ताप मूल्य === | ||
वाष्प के रूप में निकलने वाले निकास में पानी के लिए सकल ताप मूल्य | वाष्प के रूप में निकलने वाले निकास में पानी के लिए सकल ताप मूल्य ग्रहण करते हैं, जैसा कि एलएचवी करता है, किन्तु सकल ताप मूल्य में दहन से पूर्व ईंधन में तरल पानी भी सम्मिलित होता है। यह मान [[लकड़ी]] या [[कोयला]] जैसे ईंधन के लिए महत्वपूर्ण है, जिसमें सामान्यतः जलने से पूर्व कुछ मात्रा में पानी होता है। | ||
== ताप मान मापना == | == ताप मान मापना == | ||
उच्च ताप मान प्रयोगात्मक रूप से | उच्च ताप मान प्रयोगात्मक रूप से बम कैलोरीमीटर में निर्धारित किया जाता है। {{convert|25|C}} पर स्टील कंटेनर में ईंधन और ऑक्सीकारक (जैसे हाइड्रोजन के दो मोल और ऑक्सीजन का एक मोल) के स्टोइकोमेट्रिक मिश्रण का दहन इग्निशन डिवाइस द्वारा प्रारंभ किया गया है और प्रतिक्रियाओं को पूर्ण करने की अनुमति देता है। जब दहन के समय हाइड्रोजन और ऑक्सीजन प्रतिक्रिया करते हैं, तो जल वाष्प उत्पन्न होता है। पोत और इसकी सामग्री को मूल 25 डिग्री सेल्सियस तक ठंडा किया जाता है और उच्च ताप मान को समान प्रारंभिक और अंतिम तापमान के मध्य निरंतर ऊष्मा के रूप में निर्धारित किया जाता है। | ||
जब | जब निम्न ताप मान (एलएचवी) निर्धारित किया जाता है, तो शीतलन को 150 °C पर रोक दिया जाता है और प्रतिक्रिया ताप केवल आंशिक रूप से पुनर्प्राप्त किया जाता है। 150 डिग्री सेल्सियस की सीमा [[एसिड गैस|अम्ल गैस]] ओस-बिंदु पर आधारित है। | ||
नोट: उच्च ताप मान ( | नोट: उच्च ताप मान (एचएचवी) की गणना पानी के तरल रूप में होने के उत्पाद के साथ की जाती है जबकि निम्न ताप मान (एलएचवी) की गणना जल के वाष्प रूप में होने के उत्पाद के साथ की जाती है। | ||
== | == ऊष्मा मूल्यों के मध्य संबंध == | ||
दो ताप मूल्यों के मध्य का अंतर ईंधन की रासायनिक संरचना पर निर्भर करता है। शुद्ध कार्बन या कार्बन मोनोऑक्साइड | दो ताप मूल्यों के मध्य का अंतर ईंधन की रासायनिक संरचना पर निर्भर करता है। शुद्ध कार्बन या कार्बन मोनोऑक्साइड की स्थिति में, दो ताप मान लगभग समान होते हैं, अंतर 150 डिग्री सेल्सियस और 25 डिग्री सेल्सियस के मध्य कार्बन डाइऑक्साइड की [[समझदार गर्मी|योग्य]] ऊष्मा सामग्री होती है (संवेदनशील ताप विनिमय तापमान में परिवर्तन का कारण बनता है, जबकि गुप्त ऊष्मा को निरंतर तापमान पर [[चरण संक्रमण]] के लिए जोड़ा या घटाया गया। उदाहरण: वाष्पीकरण की ऊष्मा या [[संलयन की तापीय धारिता]])। हाइड्रोजन के लिए, अंतर अत्यधिक महत्वपूर्ण है क्योंकि इसमें 150 डिग्री सेल्सियस और 100 डिग्री सेल्सियस के मध्य जल वाष्प की योग्य ऊष्मा, 100 डिग्री सेल्सियस पर संघनन की गुप्त ऊष्मा और 100 डिग्री सेल्सियस और 25 डिग्री सेल्सियस के मध्य संघनित पानी की योग्य ऊष्मा सम्मिलित है। कुल मिलाकर, हाइड्रोजन का उच्च ताप मान इसके निम्न ताप मान (142एमजे/किग्रा के प्रति 120एमजे/किग्रा). हाइड्रोकार्बन के लिए, अंतर ईंधन की हाइड्रोजन सामग्री पर निर्भर करता है। [[पेट्रोल]] और [[डीजल ईंधन]] के लिए उच्च ताप मान निम्न ताप मान से क्रमशः लगभग 10% और 7% अधिक है, और प्राकृतिक गैस के लिए लगभग 11% है। | ||
एचएचवी को एलएचवी से संबंधित करने | एचएचवी को एलएचवी से संबंधित करने की सामान्य विधि है: | ||
: <math>\mathrm{HHV} = \mathrm{LHV} + H_\mathrm{v}\left(\frac{n_\mathrm{H_2O,out}}{n_\mathrm{fuel,in}}\right)</math> | : <math>\mathrm{HHV} = \mathrm{LHV} + H_\mathrm{v}\left(\frac{n_\mathrm{H_2O,out}}{n_\mathrm{fuel,in}}\right)</math> | ||
जहां | जहां ''H''<sub>v</sub> पानी के वाष्पीकरण की ऊष्मा है, n<sub>{{chem|H|2|O}},out</sub> वाष्पीकृत पानी के मोल्स की संख्या है और n<sub>fuel,in</sub> दहन किए गए ईंधन के मोल्स की संख्या है। <ref>Air Quality Engineering, CE 218A, W. Nazaroff and R. Harley, University of California Berkeley, 2007</ref> | ||
* अधिकांश अनुप्रयोग जो ईंधन को जलाते हैं जल वाष्प उत्पन्न करते हैं, जिसका उपयोग नहीं किया जाता है और इस प्रकार इसकी ऊष्मा सामग्री को | * अधिकांश अनुप्रयोग जो ईंधन को जलाते हैं जल वाष्प उत्पन्न करते हैं, जिसका उपयोग नहीं किया जाता है और इस प्रकार इसकी ऊष्मा सामग्री को नष्ट कर देता है। ऐसे अनुप्रयोगों में, प्रक्रिया के लिए 'बेंचमार्क' देने के लिए निम्न ताप मान का उपयोग किया जाना चाहिए। | ||
* चूँकि , कुछ विशिष्ट | * चूँकि, कुछ विशिष्ट स्तिथियों में उचित ऊर्जा गणना के लिए, उच्च ताप मान उचित होता है। यह [[प्राकृतिक गैस]] के लिए विशेष रूप से प्रासंगिक है, जिसकी उच्च हाइड्रोजन सामग्री अधिक पानी उत्पन्न करती है, जब इसे संघनित बॉयलरों और [[बिजलीघर|विद्युत संयंत्रों]] में फ़्लू-गैस संघनन के साथ जलाया जाता है जो दहन द्वारा उत्पादित जल वाष्प को संघनित करता है, ऊष्मा को ठीक करता है जो अन्यथा नष्ट हो जाएगा। | ||
== शब्दों का प्रयोग == | == शब्दों का प्रयोग == | ||
इंजन निर्माता सामान्यतः | इंजन निर्माता सामान्यतः ईंधन व्यय को निम्न ताप मान से आंकते हैं क्योंकि इंजन में निकास कभी संघनित नहीं होता है, और ऐसा करने से उन्हें पारंपरिक विद्युत संयंत्र के नियमों की तुलना में अधिक आकर्षक संख्या प्रकाशित करने की अनुमति मिलती है। पारंपरिक विद्युत उद्योग ने विशेष रूप से दशकों तक एचएचवी (उच्च ताप मूल्य) का उपयोग किया था, भले ही वस्तुतः इन सभी संयंत्रों ने निकास को संघनित नहीं किया था। अमेरिकी उपभोक्ताओं को ज्ञात होना चाहिए कि उच्च ताप मान के आधार पर संबंधित ईंधन-व्यय का आंकड़ा कुछ अधिक होगा। | ||
एचएचवी और एलएचवी परिभाषाओं के मध्य का अंतर अंतहीन भ्रम | एचएचवी और एलएचवी परिभाषाओं के मध्य का अंतर अंतहीन भ्रम उत्पन्न करता है जब उद्धरणकर्ता उपयोग किए जा रहे सम्मेलन को बताने के लिए व्याकुल नहीं होते हैं।<ref>{{cite web|url=http://www.claverton-energy.com/the-difference-between-lcv-and-hcv-or-lower-and-higher-heating-value-or-net-and-gross-is-clearly-understood-by-all-energy-engineers-there-is-no-right-or-wrong-definition.html|title=एलसीवी और एचसीवी (या कम और उच्च ताप मान, या शुद्ध और सकल) के बीच का अंतर सभी ऊर्जा इंजीनियरों द्वारा स्पष्ट रूप से समझा जाता है। कोई 'सही' या 'गलत' परिभाषा नहीं है। - क्लेवर्टन ग्रुप|website=www.claverton-energy.com}}</ref> चूंकि प्राकृतिक गैस जलाने वाले विद्युत संयंत्र के लिए दो प्रकारों के मध्य सामान्यतः 10% का अंतर होता है। प्रतिक्रिया के केवल बेंचमार्किंग भाग के लिए एलएचवी उपयुक्त हो सकता है, किन्तु एचएचवी का उपयोग समग्र ऊर्जा दक्षता गणनाओं के लिए किया जाना चाहिए, यदि केवल भ्रम से बचने के लिए, और किसी भी स्थिति में, मूल्य या सम्मेलन स्पष्ट रूप से कहा जाना चाहिए। | ||
== नमी | == नमी के लिए लेखांकन == | ||
एचएचवी और एलएचवी दोनों को एआर (सभी नमी की गणना), एमएफ और एमएएफ (केवल हाइड्रोजन के दहन से पानी) के संदर्भ में व्यक्त किया जा सकता है। एआर, एमएफ और एमएएफ सामान्यतः | एचएचवी और एलएचवी दोनों को एआर (सभी नमी की गणना), एमएफ और एमएएफ (केवल हाइड्रोजन के दहन से पानी) के संदर्भ में व्यक्त किया जा सकता है। एआर, एमएफ और एमएएफ सामान्यतः कोयले के ताप मूल्यों को प्रदर्शित करने के लिए उपयोग किए जाते हैं: | ||
* | * एआर (जैसा प्राप्त हुआ) प्रदर्शित करता है कि ईंधन ताप मान को उपस्थित सभी नमी और राख बनाने वाले खनिजों के साथ मापा गया है। | ||
* एमएफ (नमी रहित) या सूखा | * एमएफ (नमी रहित) या सूखा प्रदर्शित करता है कि ईंधन के ताप मान को सभी निहित नमी से सुखाए जाने के पश्चात मापा गया है, किन्तु फिर भी इसके राख बनाने वाले खनिजों को निरंतर रखा गया है। | ||
* | * एमएएफ (नमी और राख-मुक्त) या डीएएफ (शुष्क और राख-मुक्त) प्रदर्शित करता है कि ईंधन ताप मान को निहित नमी और राख बनाने वाले खनिजों की अनुपस्थिति में मापा गया है। | ||
== दहन तालिकाओं का ताप == | == दहन तालिकाओं का ताप == | ||
Line 118: | Line 118: | ||
|align=left|[[Peat|पीट]] (नम)|| 6.00 || 2,500 || || | |align=left|[[Peat|पीट]] (नम)|| 6.00 || 2,500 || || | ||
|} | |} | ||
{{clear}} | |||
{| class="wikitable sortable" style="text-align: right;" align="left" | {| class="wikitable sortable" style="text-align: right;" align="left" | ||
Line 141: | Line 143: | ||
|align=left| [[Carbon|कार्बन]] || 32.8 || 14,100 || 393.5 | |align=left| [[Carbon|कार्बन]] || 32.8 || 14,100 || 393.5 | ||
|} | |} | ||
{{clear}} | |||
{| class="wikitable sortable" style="text-align: right;" align="left" | {| class="wikitable sortable" style="text-align: right;" align="left" | ||
|+कुछ कार्बनिक यौगिकों के लिए कम ताप मान<br />(25 °C [77 °F] पर){{Citation needed|date=May 2011}} | |+कुछ कार्बनिक यौगिकों के लिए कम ताप मान<br />(25 °C [77 °F] पर){{Citation needed|date=May 2011}} | ||
Line 150: | Line 152: | ||
! [[Joule|kJ]]/[[mole (unit)|mol]] | ! [[Joule|kJ]]/[[mole (unit)|mol]] | ||
|- | |- | ||
! colspan="5" | | ! colspan="5" | एल्केन | ||
|- | |- | ||
| [[Methane|मीथेन]] | | [[Methane|मीथेन]] | ||
Line 689: | Line 691: | ||
; | ; | ||
; | ; | ||
{{clear}} | |||
;टिप्पणी | ;टिप्पणी | ||
* कार्बन, कार्बन मोनोऑक्साइड और सल्फर के दहन के लिए निम्न और उच्च ताप मूल्यों के मध्य कोई अंतर नहीं है क्योंकि उन पदार्थों के दहन के समय कोई पानी नहीं बनता है। | * कार्बन, कार्बन मोनोऑक्साइड और सल्फर के दहन के लिए निम्न और उच्च ताप मूल्यों के मध्य कोई अंतर नहीं है क्योंकि उन पदार्थों के दहन के समय कोई पानी नहीं बनता है। | ||
* बीटीयू/पौंड मान की गणना एमजे/किग्रा (1 एमजे/किग्रा = 430 बीटीयू/पौंड) से की जाती है। | * बीटीयू/पौंड मान की गणना एमजे/किग्रा (1 एमजे/किग्रा = 430 बीटीयू/पौंड) से की जाती है। | ||
[[Category:All articles lacking reliable references|Heat Of Combustion]] | |||
[[Category:All articles with unsourced statements|Heat Of Combustion]] | |||
[[Category:Articles lacking reliable references from September 2019|Heat Of Combustion]] | |||
[[Category:Articles with unsourced statements from June 2015|Heat Of Combustion]] | |||
[[Category:Articles with unsourced statements from May 2011|Heat Of Combustion]] | |||
[[Category:Created On 31/03/2023|Heat Of Combustion]] | |||
[[Category:Lua-based templates|Heat Of Combustion]] | |||
[[Category:Machine Translated Page|Heat Of Combustion]] | |||
[[Category:Multi-column templates|Heat Of Combustion]] | |||
[[Category:Pages using div col with small parameter|Heat Of Combustion]] | |||
[[Category:Pages with empty portal template|Heat Of Combustion]] | |||
[[Category:Pages with script errors|Heat Of Combustion]] | |||
[[Category:Portal templates with redlinked portals|Heat Of Combustion]] | |||
[[Category:Short description with empty Wikidata description|Heat Of Combustion]] | |||
[[Category:Templates Vigyan Ready|Heat Of Combustion]] | |||
[[Category:Templates that add a tracking category|Heat Of Combustion]] | |||
[[Category:Templates that generate short descriptions|Heat Of Combustion]] | |||
[[Category:Templates using TemplateData|Heat Of Combustion]] | |||
[[Category:Templates using under-protected Lua modules|Heat Of Combustion]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:इंजीनियरिंग ऊष्मप्रवैगिकी|Heat Of Combustion]] | |||
[[Category:ईंधन|Heat Of Combustion]] | |||
[[Category:ऊष्मारसायन|Heat Of Combustion]] | |||
[[Category:थर्मोडायनामिक गुण|Heat Of Combustion]] | |||
[[Category:दहन|Heat Of Combustion]] | |||
[[Category:परमाणु भौतिकी|Heat Of Combustion]] | |||
== विभिन्न स्रोतों से प्राकृतिक गैसों का उच्च ताप मान == | == विभिन्न स्रोतों से प्राकृतिक गैसों का उच्च ताप मान == | ||
Line 715: | Line 745: | ||
{{div col end}} | {{div col end}} | ||
प्राकृतिक गैस का निम्न ताप मान सामान्यतः इसके उच्च ताप मान का लगभग 90% होता है। यह तालिका मानक घन मीटर (1[[मानक वातावरण (इकाई)]]<nowiki>, 15°C), मान प्रति सामान्य घन मीटर में | प्राकृतिक गैस का निम्न ताप मान सामान्यतः इसके उच्च ताप मान का लगभग 90% होता है। यह तालिका मानक घन मीटर (1[[मानक वातावरण (इकाई)]]<nowiki>, 15°C), मान प्रति सामान्य घन मीटर में परिवर्तित करने के लिए (1{{nbsp}एटीएम, 0°C), उपरोक्त तालिका को 1.0549 से गुणा करें।</nowiki> | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 749: | Line 779: | ||
{{DEFAULTSORT:Heat Of Combustion}} | {{DEFAULTSORT:Heat Of Combustion}} | ||
[[Category: | [[Category:All articles lacking reliable references|Heat Of Combustion]] | ||
[[Category:Created On 31/03/2023]] | [[Category:All articles with unsourced statements|Heat Of Combustion]] | ||
[[Category:Articles lacking reliable references from September 2019|Heat Of Combustion]] | |||
[[Category:Articles with unsourced statements from June 2015|Heat Of Combustion]] | |||
[[Category:Articles with unsourced statements from May 2011|Heat Of Combustion]] | |||
[[Category:Created On 31/03/2023|Heat Of Combustion]] | |||
[[Category:Lua-based templates|Heat Of Combustion]] | |||
[[Category:Machine Translated Page|Heat Of Combustion]] | |||
[[Category:Multi-column templates|Heat Of Combustion]] | |||
[[Category:Pages using div col with small parameter|Heat Of Combustion]] | |||
[[Category:Pages with empty portal template|Heat Of Combustion]] | |||
[[Category:Pages with script errors|Heat Of Combustion]] | |||
[[Category:Portal templates with redlinked portals|Heat Of Combustion]] | |||
[[Category:Short description with empty Wikidata description|Heat Of Combustion]] | |||
[[Category:Templates Vigyan Ready|Heat Of Combustion]] | |||
[[Category:Templates that add a tracking category|Heat Of Combustion]] | |||
[[Category:Templates that generate short descriptions|Heat Of Combustion]] | |||
[[Category:Templates using TemplateData|Heat Of Combustion]] | |||
[[Category:Templates using under-protected Lua modules|Heat Of Combustion]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:इंजीनियरिंग ऊष्मप्रवैगिकी|Heat Of Combustion]] | |||
[[Category:ईंधन|Heat Of Combustion]] | |||
[[Category:ऊष्मारसायन|Heat Of Combustion]] | |||
[[Category:थर्मोडायनामिक गुण|Heat Of Combustion]] | |||
[[Category:दहन|Heat Of Combustion]] | |||
[[Category:परमाणु भौतिकी|Heat Of Combustion]] |
Latest revision as of 12:04, 3 November 2023
रासायनिक पदार्थ में, सामान्यतः ईंधन या भोजन (खाद्य ऊर्जा देखें) का ताप मान (या ऊर्जा मान या कैलोरी मान), इसकी निर्दिष्ट मात्रा के दहन के समय निकलने वाली ऊष्मा की मात्रा होती है।
कैलोरी मान ऊष्मा के रूप में निरंतर कुल ऊर्जा है, जब कोई पदार्थ मानक परिस्थितियों में ऑक्सीजन के साथ पूर्ण दहन से निकलता है। रासायनिक प्रतिक्रिया में सामान्यतः हाइड्रोकार्बन या अन्य कार्बनिक अणु होते है जो ऑक्सीजन के साथ प्रतिक्रिया करके कार्बन डाईऑक्साइड और पानी बनाते है और ऊष्मा त्याग देता है। इसे मात्राओं के साथ व्यक्त किया जा सकता है:
- ईंधन की ऊर्जा/मोल (इकाई)।
- ऊर्जा/ईंधन का द्रव्यमान
- ऊर्जा/ईंधन की मात्रा
दहन की तापीय धारिता दो प्रकार की होती है, जिसे उच्च (er) और निम्न (er) ऊष्मा (ing) मान कहा जाता है, यह इस विषय पर निर्भर करता है कि उत्पादों को कितना ठंडा करने की अनुमति है और क्या H
2O जैसे यौगिक को संघनित करने की अनुमति है।
उच्च ताप मूल्यों को पारंपरिक रूप से बम कैलोरीमीटर से मापा जाता है। निम्न ताप मानों की गणना उच्च ताप मान परीक्षण आँकड़ों से की जाती है। उनकी गणना ΔH के गठन की मानक एन्थैल्पी के मध्य के अंतर के रूप में भी की जा सकती है {{su|b=f|p=⦵} उत्पादों और अभिकारकों का} (चूँकि यह दृष्टिकोण कुछ सीमा तक कृत्रिम है क्योंकि गठन के अधिकांश तापों की गणना सामान्यतः दहन की मापी गई ऊष्माओं से की जाती है)।
सम्मेलन के अनुसार, दहन की (उच्च) ऊष्मा को उनके मानक अवस्था में स्थिर उत्पादों को बनाने के लिए किसी यौगिक के पूर्ण दहन के लिए प्रस्तावित ऊष्मा के रूप में परिभाषित किया जाता है: हाइड्रोजन को पानी (इसकी तरल अवस्था में), कार्बन में परिवर्तित किया जाता है। कार्बन डाइऑक्साइड और नाइट्रोजन गैस में परिवर्तित हो जाती है। अर्थात दहन की ऊष्मा, ΔH°comb, निम्नलिखित प्रतिक्रिया की ऊष्मा है:
- C
cH
hN
nO
o (std.) + (c + h⁄4 - o⁄2) O2 (g)→ cCO2 (g) + h⁄2H2O (l) ) + n⁄2N2(g)
क्लोरीन और सल्फर अधिक मानकीकृत नहीं हैं; उन्हें सामान्यतः हाइड्रोजन क्लोराइड गैस में परिवर्तित करने के लिए माना जाता है और SO
2 या SO3 गैस, क्रमशः, जलीय हाइड्रोक्लोरिक और सल्फ्यूरिक एसिड को पतला करने के लिए, जब दहन बम कैलोरीमीटर का उपयोग किया जाता है जिसमें पानी की कुछ मात्रा होती है।[1][obsolete source]
निर्धारण के प्रकार
सकल और शुद्ध
ज़्वोलिंस्की और विल्होइट ने 1972 में दहन की ऊष्मा के लिए सकल और शुद्ध मूल्यों को परिभाषित किया। सकल परिभाषा में उत्पाद सबसे स्थिर यौगिक हैं, उदा- H
2O(l), Br
2(l), I
2(s) और H
2SO
4(l) आदि। शुद्ध परिभाषा में उत्पाद वे गैसें हैं जो तब उत्पन्न होती हैं जब यौगिक को खुली लौ में जलाया जाता है, उदा- H
2O(g), Br
2(g), I
2(g) और SO
2(g) आदि। दोनों परिभाषाओं में C, F, Cl और N के उत्पाद CO
2(g), HF(g), Cl
2(g) और N
2(g), क्रमशः है।[2]
डुलोंग का सूत्र
ईंधन के अंतिम विश्लेषण के परिणामों से ताप मान की गणना की जा सकती है। विश्लेषण से, ईंधन (कार्बन, हाइड्रोजन, गंधक) में ज्वलनशील पदार्थों का प्रतिशत जाना जाता है। चूंकि इन तत्वों के दहन की ऊष्मा ज्ञात होती है, इसलिए डुलोंग के सूत्र का उपयोग करके ताप मान की गणना की जा सकती है:
LHV [kJ/g]= 33.87mC + 122.3(mH - mO ÷ 8) + 9.4mS
जहां mC, mH, mO, mN, और mS क्रमशः किसी भी (गीले, सूखे या राख मुक्त) आधार पर कार्बन, हाइड्रोजन, ऑक्सीजन, नाइट्रोजन, और सल्फर की सामग्री हैं। [3]
उच्च ताप मान
उच्च ताप मान में (एचएचवी; सकल ऊर्जा, ऊपरी ताप मान, सकल कैलोरी मान जीसीवी, या उच्च कैलोरी मान; एचसीवी) ईंधन के पूर्ण दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा की ऊपरी सीमा को प्रदर्शित करता है। इसे प्रति इकाई द्रव्यमान या पदार्थ के आयतन में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी दहन के सभी उत्पादों को मूल पूर्व-दहन तापमान पर वापस लाकर और विशेष रूप से उत्पादित वाष्प को संघनित करके निर्धारित किया जाता है। इस प्रकार के माप प्रायः 25 °C (77 °F; 298 K) मानक तापमान का उपयोग करते हैं[citation needed] यह दहन की ऊष्मागतिकीय के समान होता है क्योंकि प्रतिक्रिया के लिए एन्थैल्पी परिवर्तन दहन से पूर्व और पश्चात में यौगिकों के सामान्य तापमान को मान लेता है, इस स्थिति में दहन द्वारा उत्पादित पानी तरल के रूप में संघनित होता है। उच्च ताप मूल्य दहन उत्पादों में पानी के वाष्पीकरण की तापीय धारिता को ध्यान में रखता है, और ईंधन के लिए ताप मान की गणना करने में उपयोगी होता है जहां प्रतिक्रिया उत्पादों का संघनन व्यावहारिक होता है (उदाहरण के लिए, अंतरिक्ष ताप के लिए उपयोग किए जाने वाले गैस से चलने वाले बायलर में)। दूसरे शब्दों में, एचएचवी मानता है कि दहन के अंत में (दहन के उत्पाद में) पानी के सभी घटक तरल अवस्था में हैं 150 °C (302 °F) से कम तापमान पर वितरित ऊष्मा का उपयोग किया जा सकता है।
निम्न ताप मान में मूल्य
निम्न ताप मान (एलएचवी; शुद्ध कैलोरी मान; एनसीवी, या निम्न कैलोरी मान; एलसीवी) ईंधन के दहन द्वारा उत्पादित उपलब्ध तापीय ऊर्जा का उपाय है, जिसे प्रति इकाई द्रव्यमान या पदार्थ की मात्रा में ऊर्जा की इकाई के रूप में मापा जाता है। एचएचवी के विपरीत, एलएचवी ऊर्जा हानियों पर विचार करता है जैसे कि पानी को वाष्पीकृत करने के लिए उपयोग की जाने वाली ऊर्जा - चूँकि इसकी त्रुटिहीन परिभाषा पर समान रूप से सहमति नहीं है। परिभाषा उच्च ताप मान से पानी के वाष्पीकरण की ऊष्मा को घटाना है। यह वाष्प के रूप में किसी भी H2O के साथ प्रतिक्रिया करता है। पानी को वाष्पीकृत करने के लिए आवश्यक ऊर्जा इसलिए ऊष्मा के रूप में निरंतर नहीं की जाती है।
एलएचवी गणना मानती है कि दहन प्रक्रिया का जल घटक दहन के अंत में वाष्प अवस्था में होता है, जैसा कि उच्च ताप मान (एचएचवी) (सकल कैलोरी मान या सकल सीवी) के विपरीत होता है, जो यह मानता है कि पानी दहन प्रक्रिया के पश्चात तरल अवस्था में होता है।
एलएचवी की अन्य परिभाषा यह है कि जब उत्पादों को 150 °C (302 °F) तक ठंडा किया जाता है तो ऊष्मा की मात्रा निरंतर होती है। इसका तात्पर्य यह है कि पानी और अन्य प्रतिक्रिया उत्पादों के वाष्पीकरण की गुप्त ऊष्मा वापस नहीं आती है। यह ईंधनों की तुलना करने में उपयोगी है जहां दहन उत्पादों का संघनन अव्यावहारिक है, या 150 °C (302 °F) से अल्प तापमान पर ऊष्मा का उपयोग नहीं किया जा सकता है।
अमेरिकन पेट्रोलियम संस्थान (एपीआई) द्वारा अपनाई गई निम्न ताप मान की परिभाषा, 60 °F (15+5⁄9 °C) के संदर्भ तापमान का उपयोग करती है।
गैस प्रोसेसर्स सप्लायर्स एसोसिएशन (जीपीएसए) द्वारा प्रयुक्त और मूल रूप से एपीआई (एपीआई अनुसंधान परियोजना 44 के लिए एकत्रित आँकड़ें) द्वारा उपयोग की जाने वाली अन्य परिभाषा, सभी दहन उत्पादों की एन्थैल्पी है जो संदर्भ तापमान (एपीआई अनुसंधान परियोजना 44 प्रयुक्त) 25 डिग्री सेल्सियस पर ईंधन की एन्थैल्पी को घटाती है। जीपीएसए वर्तमान में 60 डिग्री फारेनहाइट का उपयोग करता है), स्तुईचिओमेटरी ऑक्सीजन (O2) की एन्थैल्पी घटाकर, दहन उत्पादों की वाष्प सामग्री के वाष्पीकरण की ऊष्मा को घटा देता है।
परिभाषा जिसमें दहन उत्पादों को सभी संदर्भ तापमान पर लौटाया जाता है, अन्य परिभाषाओं का उपयोग करते समय उच्च ताप मान से अधिक सरलता से गणना की जाती है और वास्तव में यह थोड़ा भिन्न उत्तर देता है।
सकल ताप मूल्य
वाष्प के रूप में निकलने वाले निकास में पानी के लिए सकल ताप मूल्य ग्रहण करते हैं, जैसा कि एलएचवी करता है, किन्तु सकल ताप मूल्य में दहन से पूर्व ईंधन में तरल पानी भी सम्मिलित होता है। यह मान लकड़ी या कोयला जैसे ईंधन के लिए महत्वपूर्ण है, जिसमें सामान्यतः जलने से पूर्व कुछ मात्रा में पानी होता है।
ताप मान मापना
उच्च ताप मान प्रयोगात्मक रूप से बम कैलोरीमीटर में निर्धारित किया जाता है। 25 °C (77 °F) पर स्टील कंटेनर में ईंधन और ऑक्सीकारक (जैसे हाइड्रोजन के दो मोल और ऑक्सीजन का एक मोल) के स्टोइकोमेट्रिक मिश्रण का दहन इग्निशन डिवाइस द्वारा प्रारंभ किया गया है और प्रतिक्रियाओं को पूर्ण करने की अनुमति देता है। जब दहन के समय हाइड्रोजन और ऑक्सीजन प्रतिक्रिया करते हैं, तो जल वाष्प उत्पन्न होता है। पोत और इसकी सामग्री को मूल 25 डिग्री सेल्सियस तक ठंडा किया जाता है और उच्च ताप मान को समान प्रारंभिक और अंतिम तापमान के मध्य निरंतर ऊष्मा के रूप में निर्धारित किया जाता है।
जब निम्न ताप मान (एलएचवी) निर्धारित किया जाता है, तो शीतलन को 150 °C पर रोक दिया जाता है और प्रतिक्रिया ताप केवल आंशिक रूप से पुनर्प्राप्त किया जाता है। 150 डिग्री सेल्सियस की सीमा अम्ल गैस ओस-बिंदु पर आधारित है।
नोट: उच्च ताप मान (एचएचवी) की गणना पानी के तरल रूप में होने के उत्पाद के साथ की जाती है जबकि निम्न ताप मान (एलएचवी) की गणना जल के वाष्प रूप में होने के उत्पाद के साथ की जाती है।
ऊष्मा मूल्यों के मध्य संबंध
दो ताप मूल्यों के मध्य का अंतर ईंधन की रासायनिक संरचना पर निर्भर करता है। शुद्ध कार्बन या कार्बन मोनोऑक्साइड की स्थिति में, दो ताप मान लगभग समान होते हैं, अंतर 150 डिग्री सेल्सियस और 25 डिग्री सेल्सियस के मध्य कार्बन डाइऑक्साइड की योग्य ऊष्मा सामग्री होती है (संवेदनशील ताप विनिमय तापमान में परिवर्तन का कारण बनता है, जबकि गुप्त ऊष्मा को निरंतर तापमान पर चरण संक्रमण के लिए जोड़ा या घटाया गया। उदाहरण: वाष्पीकरण की ऊष्मा या संलयन की तापीय धारिता)। हाइड्रोजन के लिए, अंतर अत्यधिक महत्वपूर्ण है क्योंकि इसमें 150 डिग्री सेल्सियस और 100 डिग्री सेल्सियस के मध्य जल वाष्प की योग्य ऊष्मा, 100 डिग्री सेल्सियस पर संघनन की गुप्त ऊष्मा और 100 डिग्री सेल्सियस और 25 डिग्री सेल्सियस के मध्य संघनित पानी की योग्य ऊष्मा सम्मिलित है। कुल मिलाकर, हाइड्रोजन का उच्च ताप मान इसके निम्न ताप मान (142एमजे/किग्रा के प्रति 120एमजे/किग्रा). हाइड्रोकार्बन के लिए, अंतर ईंधन की हाइड्रोजन सामग्री पर निर्भर करता है। पेट्रोल और डीजल ईंधन के लिए उच्च ताप मान निम्न ताप मान से क्रमशः लगभग 10% और 7% अधिक है, और प्राकृतिक गैस के लिए लगभग 11% है।
एचएचवी को एलएचवी से संबंधित करने की सामान्य विधि है:
जहां Hv पानी के वाष्पीकरण की ऊष्मा है, nH
2O,out वाष्पीकृत पानी के मोल्स की संख्या है और nfuel,in दहन किए गए ईंधन के मोल्स की संख्या है। [4]
- अधिकांश अनुप्रयोग जो ईंधन को जलाते हैं जल वाष्प उत्पन्न करते हैं, जिसका उपयोग नहीं किया जाता है और इस प्रकार इसकी ऊष्मा सामग्री को नष्ट कर देता है। ऐसे अनुप्रयोगों में, प्रक्रिया के लिए 'बेंचमार्क' देने के लिए निम्न ताप मान का उपयोग किया जाना चाहिए।
- चूँकि, कुछ विशिष्ट स्तिथियों में उचित ऊर्जा गणना के लिए, उच्च ताप मान उचित होता है। यह प्राकृतिक गैस के लिए विशेष रूप से प्रासंगिक है, जिसकी उच्च हाइड्रोजन सामग्री अधिक पानी उत्पन्न करती है, जब इसे संघनित बॉयलरों और विद्युत संयंत्रों में फ़्लू-गैस संघनन के साथ जलाया जाता है जो दहन द्वारा उत्पादित जल वाष्प को संघनित करता है, ऊष्मा को ठीक करता है जो अन्यथा नष्ट हो जाएगा।
शब्दों का प्रयोग
इंजन निर्माता सामान्यतः ईंधन व्यय को निम्न ताप मान से आंकते हैं क्योंकि इंजन में निकास कभी संघनित नहीं होता है, और ऐसा करने से उन्हें पारंपरिक विद्युत संयंत्र के नियमों की तुलना में अधिक आकर्षक संख्या प्रकाशित करने की अनुमति मिलती है। पारंपरिक विद्युत उद्योग ने विशेष रूप से दशकों तक एचएचवी (उच्च ताप मूल्य) का उपयोग किया था, भले ही वस्तुतः इन सभी संयंत्रों ने निकास को संघनित नहीं किया था। अमेरिकी उपभोक्ताओं को ज्ञात होना चाहिए कि उच्च ताप मान के आधार पर संबंधित ईंधन-व्यय का आंकड़ा कुछ अधिक होगा।
एचएचवी और एलएचवी परिभाषाओं के मध्य का अंतर अंतहीन भ्रम उत्पन्न करता है जब उद्धरणकर्ता उपयोग किए जा रहे सम्मेलन को बताने के लिए व्याकुल नहीं होते हैं।[5] चूंकि प्राकृतिक गैस जलाने वाले विद्युत संयंत्र के लिए दो प्रकारों के मध्य सामान्यतः 10% का अंतर होता है। प्रतिक्रिया के केवल बेंचमार्किंग भाग के लिए एलएचवी उपयुक्त हो सकता है, किन्तु एचएचवी का उपयोग समग्र ऊर्जा दक्षता गणनाओं के लिए किया जाना चाहिए, यदि केवल भ्रम से बचने के लिए, और किसी भी स्थिति में, मूल्य या सम्मेलन स्पष्ट रूप से कहा जाना चाहिए।
नमी के लिए लेखांकन
एचएचवी और एलएचवी दोनों को एआर (सभी नमी की गणना), एमएफ और एमएएफ (केवल हाइड्रोजन के दहन से पानी) के संदर्भ में व्यक्त किया जा सकता है। एआर, एमएफ और एमएएफ सामान्यतः कोयले के ताप मूल्यों को प्रदर्शित करने के लिए उपयोग किए जाते हैं:
- एआर (जैसा प्राप्त हुआ) प्रदर्शित करता है कि ईंधन ताप मान को उपस्थित सभी नमी और राख बनाने वाले खनिजों के साथ मापा गया है।
- एमएफ (नमी रहित) या सूखा प्रदर्शित करता है कि ईंधन के ताप मान को सभी निहित नमी से सुखाए जाने के पश्चात मापा गया है, किन्तु फिर भी इसके राख बनाने वाले खनिजों को निरंतर रखा गया है।
- एमएएफ (नमी और राख-मुक्त) या डीएएफ (शुष्क और राख-मुक्त) प्रदर्शित करता है कि ईंधन ताप मान को निहित नमी और राख बनाने वाले खनिजों की अनुपस्थिति में मापा गया है।
दहन तालिकाओं का ताप
ईंधन | एचएचवी | एलएचवी | ||
---|---|---|---|---|
MJ/kg | BTU/lb | kJ/mol | MJ/kg | |
हाइड्रोजन | 141.80 | 61,000 | 286 | 119.96 |
मीथेन | 55.50 | 23,900 | 890 | 50.00 |
ईथेन | 51.90 | 22,400 | 1,560 | 47.62 |
प्रोपेन | 50.35 | 21,700 | 2,220 | 46.35 |
ब्यूटेन | 49.50 | 20,900 | 2,877 | 45.75 |
पेंटेन | 48.60 | 21,876 | 3,509 | 45.35 |
पैराफिन मोम | 46.00 | 19,900 | 41.50 | |
किरोसीन | 46.20 | 19,862 | 43.00 | |
डीज़ल | 44.80 | 19,300 | 43.4 | |
कोयला (एन्थ्रेसाइट) | 32.50 | 14,000 | ||
कोयला (लिग्नाइट - यूएसए) | 15.00 | 6,500 | ||
लकड़ी (एमएएफ) | 21.70 | 8,700 | ||
लकड़ी का ईंधन | 21.20 | 9,142 | 17.0 | |
पीट (सूखा) | 15.00 | 6,500 | ||
पीट (नम) | 6.00 | 2,500 |
ईंधन | MJ/kg | BTU/lb | kJ/mol |
---|---|---|---|
मेथनॉल | 22.7 | 9,800 | 726 |
इथेनॉल | 29.7 | 12,800 | 1,367 |
1-प्रोपेनॉल | 33.6 | 14,500 | 2,020 |
एसिटिलीन | 49.9 | 21,500 | 1,300 |
बेंजीन | 41.8 | 18,000 | 3,268 |
अमोनिया | 22.5 | 9,690 | 382.6 |
हाइड्राज़ीन | 19.4 | 8,370 | 622.0 |
हेक्सामाइन | 30.0 | 12,900 | 4,200.0 |
कार्बन | 32.8 | 14,100 | 393.5 |
ईंधन | MJ/kg | MJ/L | BTU/lb | kJ/mol |
---|---|---|---|---|
एल्केन | ||||
मीथेन | 50.009 | 6.9 | 21,504 | 802.34 |
ईथेन | 47.794 | — | 20,551 | 1,437.2 |
प्रोपेन | 46.357 | 25.3 | 19,934 | 2,044.2 |
ब्यूटेन | 45.752 | — | 19,673 | 2,659.3 |
पेंटेन | 45.357 | 28.39 | 21,706 | 3,272.6 |
हेक्सेन | 44.752 | 29.30 | 19,504 | 3,856.7 |
हेपटैन | 44.566 | 30.48 | 19,163 | 4,465.8 |
ओकटाइन | 44.427 | — | 19,104 | 5,074.9 |
नॉनने | 44.311 | 31.82 | 19,054 | 5,683.3 |
डेकेन | 44.240 | 33.29 | 19,023 | 6,294.5 |
अंडरकेन | 44.194 | 32.70 | 19,003 | 6,908.0 |
डोडेकेन | 44.147 | 33.11 | 18,983 | 7,519.6 |
आइसोपैराफिन्स | ||||
आइसोबुटेन | 45.613 | — | 19,614 | 2,651.0 |
आइसोपेंटेन | 45.241 | 27.87 | 19,454 | 3,264.1 |
2-मिथाइलपेंटेन | 44.682 | 29.18 | 19,213 | 3,850.7 |
2,3-डाइमिथाइलब्यूटेन | 44.659 | 29.56 | 19,203 | 3,848.7 |
2,3-डाइमिथाइलपेंटेन | 44.496 | 30.92 | 19,133 | 4,458.5 |
2,2,4-ट्राइमिथाइलपेंटेन | 44.310 | 30.49 | 19,053 | 5,061.5 |
नेफ्थेनिस | ||||
साइक्लोपेंटेन | 44.636 | 33.52 | 19,193 | 3,129.0 |
मिथाइलसाइक्लोपेंटेन | 44.636? | 33.43? | 19,193? | 3,756.6? |
साइक्लो हेक्सेन | 43.450 | 33.85 | 18,684 | 3,656.8 |
मिथाइलसाइक्लोहेक्सेन | 43.380 | 33.40 | 18,653 | 4,259.5 |
मोनो ओलेफ़िन | ||||
ईथीलीन | 47.195 | — | — | — |
प्रोपलीन | 45.799 | — | — | — |
1-ब्यूटेन | 45.334 | — | — | — |
सीआईएस-2-ब्यूटेन | 45.194 | — | — | — |
ट्रांस-2-ब्यूटेन | 45.124 | — | — | — |
आइसोब्यूटीन | 45.055 | — | — | — |
1-पेन्टीन | 45.031 | — | — | — |
2-मिथाइल-1-पेंटीन | 44.799 | — | — | — |
1-हेक्सेन | 44.426 | — | — | — |
डियो लेफिन्स | ||||
1,3-ब्यूटाडाइन | 44.613 | — | — | — |
आइसोप्रेन | 44.078 | - | — | — |
नाइट्रस डेरिवेद | ||||
नाईट्रोमीथेन | 10.513 | — | — | — |
नाइट्रोप्रोपेन | 20.693 | — | — | — |
एसिटिलीन | ||||
एसिटिलीन | 48.241 | — | — | — |
मिथाइल एसिटिलीन | 46.194 | — | — | — |
1-ब्यूटाइन | 45.590 | — | — | — |
1-पेन्टाइन | 45.217 | — | — | — |
एरोमेटिक्स | ||||
बेंजीन | 40.170 | — | — | — |
टोल्यूनि | 40.589 | — | — | — |
ओ-ज़ाइलीन | 40.961 | — | — | — |
एम-ज़ाइलीन | 40.961 | — | — | — |
पी-ज़ाइलीन | 40.798 | — | — | — |
इथाइलबेंजीन | 40.938 | — | — | — |
1,2,4-ट्राइमिथाइलबेंजीन | 40.984 | — | — | — |
एन-प्रोपील बेंजीन | 41.193 | — | — | — |
कमेने | 41.217 | — | — | — |
अल्कोहल | ||||
मेथनॉल | 19.930 | 15.78 | 8,570 | 638.6 |
इथेनॉल | 26.70 | 22.77 | 12,412 | 1,230.1 |
1-प्रोपेनॉल | 30.680 | 24.65 | 13,192 | 1,843.9 |
इसोप्रोपेनोल | 30.447 | 23.93 | 13,092 | 1,829.9 |
एन-बुटेनॉल | 33.075 | 26.79 | 14,222 | 2,501.6 |
इसोबुटानॉल | 32.959 | 26.43 | 14,172 | 2,442.9 |
टर्ट-ब्यूटेनॉल | 32.587 | 25.45 | 14,012 | 2,415.3 |
एन-पेंटेनॉल | 34.727 | 28.28 | 14,933 | 3,061.2 |
आइसोमाइल अल्कोहल | 31.416? | 35.64? | 13,509? | 2,769.3? |
ईथर | ||||
मेथोक्सीमीथेन | 28.703 | — | 12,342 | 1,322.3 |
एथोक्सीएथेन | 33.867 | 24.16 | 14,563 | 2,510.2 |
प्रोपोक्सीप्रोपेन | 36.355 | 26.76 | 15,633 | 3,568.0 |
ब्यूटोक्सीब्यूटेन | 37.798 | 28.88 | 16,253 | 4,922.4 |
एल्डिहाइड और कीटोन्स | ||||
फॉर्मलडिहाइड | 17.259 | — | — | 570.78 [7] |
एसीटैल्डिहाइड | 24.156 | — | — | — |
प्रोपियोलडिहाइड | 28.889 | — | — | — |
ब्यूटिराल्डिहाइड | 31.610 | — | — | — |
एसीटोन | 28.548 | 22.62 | — | — |
अन्य प्रजातियाँ | ||||
कार्बन (ग्रेफाइट) | 32.808 | — | — | — |
हाइड्रोजन | 120.971 | 1.8 | 52,017 | 244 |
कार्बन मोनोआक्साइड | 10.112 | — | 4,348 | 283.24 |
अमोनिया | 18.646 | — | 8,018 | 317.56 |
सल्फर (ठोस) | 9.163 | — | 3,940 | 293.82 |
- टिप्पणी
- कार्बन, कार्बन मोनोऑक्साइड और सल्फर के दहन के लिए निम्न और उच्च ताप मूल्यों के मध्य कोई अंतर नहीं है क्योंकि उन पदार्थों के दहन के समय कोई पानी नहीं बनता है।
- बीटीयू/पौंड मान की गणना एमजे/किग्रा (1 एमजे/किग्रा = 430 बीटीयू/पौंड) से की जाती है।
विभिन्न स्रोतों से प्राकृतिक गैसों का उच्च ताप मान
अंतर्राष्ट्रीय ऊर्जा एजेंसी प्रति मानक घन मीटर गैस के निम्नलिखित विशिष्ट उच्च ताप मूल्यों की रिपोर्ट करती है:[8]
- एलजीरिया: 39.57 MJ/Sm3
- बांग्लादेश: 36.00 MJ/Sm3
- कनाडा: 39.00 MJ/Sm3
- चीन: 38.93 MJ/Sm3
- इंडोनेशिया: 40.60 MJ/Sm3
- ईरान: 39.36 MJ/Sm3
- नीदरलैंड: 33.32 MJ/Sm3
- नॉर्वे: 39.24 MJ/Sm3
- पाकिस्तान: 34.90 MJ/Sm3
- कतर: 41.40 MJ/Sm3
- रूस: 38.23 MJ/Sm3
- सऊदी अरब: 38.00 MJ/Sm3
- तुर्कमेनिस्तान: 37.89 MJ/Sm3
- यूनाइटेड किंगडम: 39.71 MJ/Sm3
- संयुक्त राज्य अमेरिका: 38.42 MJ/Sm3
- उज़्बेकिस्तान: 37.89 MJ/Sm3
प्राकृतिक गैस का निम्न ताप मान सामान्यतः इसके उच्च ताप मान का लगभग 90% होता है। यह तालिका मानक घन मीटर (1मानक वातावरण (इकाई), 15°C), मान प्रति सामान्य घन मीटर में परिवर्तित करने के लिए (1{{nbsp}एटीएम, 0°C), उपरोक्त तालिका को 1.0549 से गुणा करें।
यह भी देखें
- एडियाबेटिक लौ तापमान
- स्रोत द्वारा विद्युत् का व्यय
- विद्युत दक्षता
- ईंधन दक्षता की ऊर्जा सामग्री
- ऊर्जा रूपांतरण दक्षता
- ऊर्जा घनत्व
- कोयले का ऊर्जा मूल्य
- उष्माक्षेपी प्रतिक्रिया
- आकड़ों की योग्यता
- अग्नि
- खाद्य ऊर्जा
- आंतरिक ऊर्जा
- आईएसओ 15971
- यांत्रिक दक्षता
- ऊष्मीय दक्षता
- वोबे इंडेक्स: ताप घनत्व
संदर्भ
- ↑ Kharasch, M.S. (February 1929). "कार्बनिक यौगिकों के दहन का ताप". Bureau of Standards Journal of Research. 2 (2): 359. doi:10.6028/jres.002.007.
- ↑ Zwolinski, Bruno J; Wilhoit, Randolf C. (1972). "Heats of formation and Heats of Combustion" (PDF). In Dwight E., Gray; Billings, Bruce H. (eds.). अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स हैंडबुक. McGraw-Hill. pp. 316–342. ISBN 978-0-07-001485-5. Archived from the original (PDF) on 2021-08-06. Retrieved 2021-08-06.
- ↑ Hosokai, Sou; Matsuoka, Koichi; Kuramoto, Koji; Suzuki, Yoshizo (1 November 2016). "गैस, तरल और ठोस ईंधन के ताप मान का अनुमान लगाने के लिए डुलोंग के सूत्र में संशोधन". Fuel Processing Technology. 152: 399–405. doi:10.1016/j.fuproc.2016.06.040.
- ↑ Air Quality Engineering, CE 218A, W. Nazaroff and R. Harley, University of California Berkeley, 2007
- ↑ "एलसीवी और एचसीवी (या कम और उच्च ताप मान, या शुद्ध और सकल) के बीच का अंतर सभी ऊर्जा इंजीनियरों द्वारा स्पष्ट रूप से समझा जाता है। कोई 'सही' या 'गलत' परिभाषा नहीं है। - क्लेवर्टन ग्रुप". www.claverton-energy.com.
- ↑ 6.0 6.1 Linstrom, Peter (2021). NIST Chemistry WebBook. NIST Standard Reference Database Number 69. NIST Office of Data and Informatics. doi:10.18434/T4D303.
- ↑ "Methanal". webbook.nist.gov.
- ↑ "Key World Energy Statistics (2016)" (PDF). iea.org.
अग्रिम पठन
- Guibet, J.-C. (1997). Carburants et moteurs. Publication de l'Institut Français du Pétrole. ISBN 978-2-7108-0704-9.
बाहरी संबंध
- NIST Chemistry WebBook
- "Lower and Higher Heating Values of Gas, Liquid and Solid Fuels" (PDF). Biomass Energy Data Book. U.S. Department of Energy. 2011.