मैट्रिक्स डिटर्मिनेंट लेम्मा: Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
गणित में, विशेष रूप से रेखीय बीजगणित में, मैट्रिक्स निर्धारक स्वीकृत सिद्धांत एक व्युत्क्रमणीय मैट्रिक्स A के योग के निर्धारक की गणना करता है और स्तंभ सदिश u और एक पंक्ति सदिश v<sup>T</sup> के युग्मकीय गुणनफल, u-v<sup>T</sup> की गणना करता है।<sup>.<ref name="harville">{{cite book | last=Harville |first=D. A. | year = 1997 | title = एक सांख्यिकीविद् के दृष्टिकोण से मैट्रिक्स बीजगणित|location=New York | publisher = Springer-Verlag | isbn=0-387-94978-X }}</ref><ref name="brookes">{{cite web | author = Brookes, M. | title = मैट्रिक्स संदर्भ मैनुअल (ऑनलाइन)| url = http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html | year = 2005}}</ref>
गणित में, विशेष रूप से रेखीय बीजगणित में, मैट्रिक्स डिटर्मिनेंट लेम्मा एक व्युत्क्रमणीय मैट्रिक्स A के योग के डिटर्मिनेंट की गणना करता है और स्तंभ सदिश u और एक पंक्ति सदिश v<sup>T</sup> के युग्मकीय गुणनफल, u-v<sup>T</sup> की गणना करता है।<sup>.<ref name="harville">{{cite book | last=Harville |first=D. A. | year = 1997 | title = एक सांख्यिकीविद् के दृष्टिकोण से मैट्रिक्स बीजगणित|location=New York | publisher = Springer-Verlag | isbn=0-387-94978-X }}</ref><ref name="brookes">{{cite web | author = Brookes, M. | title = मैट्रिक्स संदर्भ मैनुअल (ऑनलाइन)| url = http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html | year = 2005}}</ref>


    
    
== कथन ==
== कथन ==
मान लीजिए A एक व्युत्क्रमणीय वर्ग आव्यूह है और u, v स्तंभ सदिश (ज्यामितीय) हैं। तब आव्यूह निर्धारक स्वीकृत सिद्धांत बताता है कि
मान लीजिए A एक व्युत्क्रमणीय वर्ग मैट्रिक्स है और u, v स्तंभ सदिश (ज्यामितीय) हैं। तब मैट्रिक्स डिटर्मिनेंट लेम्मा बताता है कि
:<math>\det\left(\mathbf{A} + \mathbf{uv}^\textsf{T}\right) = \left(1 + \mathbf{v}^\textsf{T}\mathbf{A}^{-1}\mathbf{u}\right)\,\det\left(\mathbf{A}\right)\,.</math>
:<math>\det\left(\mathbf{A} + \mathbf{uv}^\textsf{T}\right) = \left(1 + \mathbf{v}^\textsf{T}\mathbf{A}^{-1}\mathbf{u}\right)\,\det\left(\mathbf{A}\right)\,.</math>
यहाँ, uv<sup>T</sup> दो सदिश u और v का बाह्य गुणनफल है।
यहाँ, uv<sup>T</sup> दो सदिश u और v का बाह्य गुणनफल है।


प्रमेय को '''A''' के [[सहायक मैट्रिक्स|सहायक आव्यूह]] के संदर्भ में भी कहा जा सकता है:
प्रमेय को '''A''' के [[सहायक मैट्रिक्स]] के संदर्भ में भी कहा जा सकता है:
:<math>\det\left(\mathbf{A} + \mathbf{uv}^\textsf{T}\right) = \det\left(\mathbf{A}\right) + \mathbf{v}^\textsf{T}\mathrm{adj}\left(\mathbf{A}\right)\mathbf{u}\,,</math>
:<math>\det\left(\mathbf{A} + \mathbf{uv}^\textsf{T}\right) = \det\left(\mathbf{A}\right) + \mathbf{v}^\textsf{T}\mathrm{adj}\left(\mathbf{A}\right)\mathbf{u}\,,</math>
किस स्तिथि में यह लागू होता है कि वर्ग आव्यूह '''A''' उलटा है या नहीं।
किस स्तिथि में यह लागू होता है कि वर्ग मैट्रिक्स '''A''' विपरीत है या नहीं।


== प्रमाण ==
== प्रमाण ==
पहले विशेष स्तिथि का सबूत '''A''' = '''I''' समानता से आता है:<ref name="ding">{{cite journal |  
पहले विशेष स्तिथि का प्रमाण '''A''' = '''I''' समानता से आता है:<ref name="ding">{{cite journal |  
authors = Ding, J., Zhou, A. | year =  2007 |  
authors = Ding, J., Zhou, A. | year =  2007 |  
title = Eigenvalues of rank-one updated matrices with some applications |  
title = Eigenvalues of rank-one updated matrices with some applications |  
Line 23: Line 23:
   \begin{pmatrix} \mathbf{I} & \mathbf{u} \\ 0 & 1 + \mathbf{v}^\textsf{T}\mathbf{u} \end{pmatrix}.
   \begin{pmatrix} \mathbf{I} & \mathbf{u} \\ 0 & 1 + \mathbf{v}^\textsf{T}\mathbf{u} \end{pmatrix}.
</math>
</math>
बाईं ओर का निर्धारक तीन आव्यूहों के निर्धारकों का गुणनफल होता है। चूँकि पहला और तीसरा आव्यूह इकाई विकर्ण के साथ त्रिकोणीय आव्यूह हैं, उनके निर्धारक सिर्फ 1 है। मध्य आव्यूह का निर्धारक हमारा वांछित मूल्य है।दाहिने हाथ की ओर का निर्धारक बस  (1 + '''v'''<sup>T</sup>'''u''') है। तो हमारे पास निम्न परिणाम है<sup>:
बाईं ओर का डिटर्मिनेंट तीन आव्यूहों के निर्धारकों का गुणनफल होता है। चूँकि पहला और तीसरा मैट्रिक्स इकाई विकर्ण के साथ त्रिकोणीय मैट्रिक्स हैं, उनके डिटर्मिनेंट केवल 1 है। मध्य मैट्रिक्स का डिटर्मिनेंट हमारा वांछित मूल्य है। दाहिने हाथ की ओर का डिटर्मिनेंट केवल (1 + '''v'''<sup>T</sup>'''u''') है। तो हमारे पास निम्न परिणाम है<sup>:


:<math>\det\left(\mathbf{I} + \mathbf{uv}^\textsf{T}\right) = \left(1 + \mathbf{v}^\textsf{T}\mathbf{u}\right).</math>
:<math>\det\left(\mathbf{I} + \mathbf{uv}^\textsf{T}\right) = \left(1 + \mathbf{v}^\textsf{T}\mathbf{u}\right).</math>
Line 36: Line 36:
== आवेदन ==
== आवेदन ==


यदि A का निर्धारक और व्युत्क्रम पहले से ही ज्ञात हैं, तो सूत्र मैट्रिक्स uvT द्वारा संशोधित A के निर्धारक की गणना करने के लिए एक संख्यात्मक रूप से सस्ता तरीका प्रदान करता है। गणना अपेक्षाकृत सस्ती है क्योंकि A + uvT के निर्धारक को खरोंच से गणना करने की आवश्यकता नहीं है (जो सामान्य रूप से महंगा है)। '''u''' और/या '''v''' के लिए ईकाई सदिश का उपयोग करके, '''के अलग-अलग कॉलम, पंक्तियों या''' तत्वों [4] में हेरफेर किया जा सकता है और इस तरह से अपेक्षाकृत सस्ते में एक संबंधित अद्यतन निर्धारक की गणना की जा सकती है।
यदि A का डिटर्मिनेंट और व्युत्क्रम पहले से ही ज्ञात हैं, तो सूत्र मैट्रिक्स uvT द्वारा संशोधित A के डिटर्मिनेंट की गणना करने के लिए एक संख्यात्मक रूप से सस्ता तरीका प्रदान करता है। गणना अपेक्षाकृत अल्पमूल्य है क्योंकि A + uvT के डिटर्मिनेंट को खरोंच से गणना करने की आवश्यकता नहीं है (जो सामान्य रूप से महंगा है)। '''u''' और/या '''v''' के लिए ईकाई सदिश का उपयोग करके, '''A''' के अलग-अलग क्रम, पंक्तियों या तत्वों [4] में छलयोजना किया जा सकता है और इस तरह से अपेक्षाकृत अल्पमूल्य में एक संबंधित अद्यतन डिटर्मिनेंट की गणना की जा सकती है।


जब आव्यूह निर्धारक स्वीकृत सिद्धांत का उपयोग शर्मन-मॉरिसन सूत्र के संयोजन में किया जाता है, तो व्युत्क्रम और निर्धारक दोनों को आसानी से एक साथ अद्यतन किया जा सकता है।
जब मैट्रिक्स डिटर्मिनेंट लेम्मा का उपयोग शर्मन-मॉरिसन सूत्र के संयोजन में किया जाता है, तो व्युत्क्रम और डिटर्मिनेंट दोनों को आसानी से एक साथ अद्यतन किया जा सकता है।


== सामान्यीकरण ==
== सामान्यीकरण ==
मान लीजिए A एक उलटा ''n''-by-''n'' आव्यूह है और U, V ''n''-by-''m'' आव्यूह हैं। तब
मान लीजिए A एक उलटा ''n''-दर-''n'' मैट्रिक्स है और U, V ''n''-दर-''m'' मैट्रिक्स हैं। तब
:<math>\det\left(\mathbf{A} + \mathbf{UV}^\textsf{T}\right) = \det\left(\mathbf{I_m} + \mathbf{V}^\textsf{T}\mathbf{A}^{-1}\mathbf{U}\right)\det(\mathbf{A}).</math> विशेष मामले में <math>\mathbf{A}=\mathbf{I_n}</math> यह वेनस्टाइन-एरोन्सजन पहचान है।
:<math>\det\left(\mathbf{A} + \mathbf{UV}^\textsf{T}\right) = \det\left(\mathbf{I_m} + \mathbf{V}^\textsf{T}\mathbf{A}^{-1}\mathbf{U}\right)\det(\mathbf{A}).</math> विशेष स्तिथि में <math>\mathbf{A}=\mathbf{I_n}</math> यह वेनस्टाइन-एरोन्सजन अस्मिता है।


अतिरिक्त रूप से एक व्युत्क्रमणीय m-by-m आव्यूह 'W' दिए जाने पर, संबंध को इस रूप में भी व्यक्त किया जा सकता है
अतिरिक्त रूप से एक व्युत्क्रमणीय m-दर-m मैट्रिक्स 'W' दिए जाने पर, संबंध को इस रूप में भी व्यक्त किया जा सकता है
:<math>\det\left(\mathbf{A} + \mathbf{UWV}^\textsf{T}\right) = \det\left(\mathbf{W}^{-1} + \mathbf{V}^\textsf{T}\mathbf{A}^{-1}\mathbf{U}\right)\det\left(\mathbf{W}\right)\det\left(\mathbf{A}\right).</math>
:<math>\det\left(\mathbf{A} + \mathbf{UWV}^\textsf{T}\right) = \det\left(\mathbf{W}^{-1} + \mathbf{V}^\textsf{T}\mathbf{A}^{-1}\mathbf{U}\right)\det\left(\mathbf{W}\right)\det\left(\mathbf{A}\right).</math>




== यह भी देखें ==
== यह भी देखें ==
* शर्मन-मॉरिसन सूत्र, जो दिखाता है कि व्युत्क्रम को कैसे अद्यतन किया जाए, ए<sup>-1</sup>, प्राप्त करने के लिए (A + uv<sup>टी</sup>)<sup>-1</sup>.
* शर्मन-मॉरिसन सूत्र, जो दिखाता है कि (A + uvT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
* [[ वुडबरी मैट्रिक्स पहचान | वुडबरी आव्यूह पहचान]] , जो दिखाता है कि व्युत्क्रम को कैसे अपडेट किया जाए, ए<sup>-1</sup>, प्राप्त करने के लिए (A + UCV<sup>टी</sup>)<sup>-1</sup>.
* वुडबरी सूत्र, जो दर्शाता है कि (A + UCVT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
* (ए + यूसीवी) के लिए [[द्विपद व्युत्क्रम प्रमेय]]<sup>टी</sup>)<sup>-1</sup>.
* ('''A''' + '''UCV'''<sup>T</sup>)<sup>−1</sup> के लिए [[द्विपद व्युत्क्रम प्रमेय|द्विपद व्युत्क्रम प्रमेय।]]


== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: रैखिक बीजगणित में नींबू]] [[Category: मैट्रिक्स सिद्धांत]]


 
[[Category:CS1 maint]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]
[[Category:Created On 24/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:मैट्रिक्स सिद्धांत]]
[[Category:रैखिक बीजगणित में नींबू]]

Latest revision as of 16:15, 6 November 2023

गणित में, विशेष रूप से रेखीय बीजगणित में, मैट्रिक्स डिटर्मिनेंट लेम्मा एक व्युत्क्रमणीय मैट्रिक्स A के योग के डिटर्मिनेंट की गणना करता है और स्तंभ सदिश u और एक पंक्ति सदिश vT के युग्मकीय गुणनफल, u-vT की गणना करता है।.[1][2]


कथन

मान लीजिए A एक व्युत्क्रमणीय वर्ग मैट्रिक्स है और u, v स्तंभ सदिश (ज्यामितीय) हैं। तब मैट्रिक्स डिटर्मिनेंट लेम्मा बताता है कि

यहाँ, uvT दो सदिश u और v का बाह्य गुणनफल है।

प्रमेय को A के सहायक मैट्रिक्स के संदर्भ में भी कहा जा सकता है:

किस स्तिथि में यह लागू होता है कि वर्ग मैट्रिक्स A विपरीत है या नहीं।

प्रमाण

पहले विशेष स्तिथि का प्रमाण A = I समानता से आता है:[3]

बाईं ओर का डिटर्मिनेंट तीन आव्यूहों के निर्धारकों का गुणनफल होता है। चूँकि पहला और तीसरा मैट्रिक्स इकाई विकर्ण के साथ त्रिकोणीय मैट्रिक्स हैं, उनके डिटर्मिनेंट केवल 1 है। मध्य मैट्रिक्स का डिटर्मिनेंट हमारा वांछित मूल्य है। दाहिने हाथ की ओर का डिटर्मिनेंट केवल (1 + vTu) है। तो हमारे पास निम्न परिणाम है:

तब सामान्य स्थिति को इस प्रकार पाया जा सकता हैː


आवेदन

यदि A का डिटर्मिनेंट और व्युत्क्रम पहले से ही ज्ञात हैं, तो सूत्र मैट्रिक्स uvT द्वारा संशोधित A के डिटर्मिनेंट की गणना करने के लिए एक संख्यात्मक रूप से सस्ता तरीका प्रदान करता है। गणना अपेक्षाकृत अल्पमूल्य है क्योंकि A + uvT के डिटर्मिनेंट को खरोंच से गणना करने की आवश्यकता नहीं है (जो सामान्य रूप से महंगा है)। u और/या v के लिए ईकाई सदिश का उपयोग करके, A के अलग-अलग क्रम, पंक्तियों या तत्वों [4] में छलयोजना किया जा सकता है और इस तरह से अपेक्षाकृत अल्पमूल्य में एक संबंधित अद्यतन डिटर्मिनेंट की गणना की जा सकती है।

जब मैट्रिक्स डिटर्मिनेंट लेम्मा का उपयोग शर्मन-मॉरिसन सूत्र के संयोजन में किया जाता है, तो व्युत्क्रम और डिटर्मिनेंट दोनों को आसानी से एक साथ अद्यतन किया जा सकता है।

सामान्यीकरण

मान लीजिए A एक उलटा n-दर-n मैट्रिक्स है और U, V n-दर-m मैट्रिक्स हैं। तब

विशेष स्तिथि में यह वेनस्टाइन-एरोन्सजन अस्मिता है।

अतिरिक्त रूप से एक व्युत्क्रमणीय m-दर-m मैट्रिक्स 'W' दिए जाने पर, संबंध को इस रूप में भी व्यक्त किया जा सकता है


यह भी देखें

  • शर्मन-मॉरिसन सूत्र, जो दिखाता है कि (A + uvT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
  • वुडबरी सूत्र, जो दर्शाता है कि (A + UCVT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
  • (A + UCVT)−1 के लिए द्विपद व्युत्क्रम प्रमेय।

संदर्भ

  1. Harville, D. A. (1997). एक सांख्यिकीविद् के दृष्टिकोण से मैट्रिक्स बीजगणित. New York: Springer-Verlag. ISBN 0-387-94978-X.
  2. Brookes, M. (2005). "मैट्रिक्स संदर्भ मैनुअल (ऑनलाइन)".
  3. Ding, J., Zhou, A. (2007). "Eigenvalues of rank-one updated matrices with some applications". Applied Mathematics Letters. 20 (12): 1223–1226. doi:10.1016/j.aml.2006.11.016. ISSN 0893-9659.{{cite journal}}: CS1 maint: uses authors parameter (link)