एन-वेक्टर मॉडल: Difference between revisions
(Created page with "{{DISPLAYTITLE:''n''-vector model}} सांख्यिकीय यांत्रिकी में, ''एन''-वेक्टर मॉडल या ओ(''एन'')...") |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:''n''-vector model}} | {{DISPLAYTITLE:''n''-vector model}} | ||
[[सांख्यिकीय यांत्रिकी]] में, ''एन''-वेक्टर मॉडल या | [[सांख्यिकीय यांत्रिकी]] में, '''''एन''-वेक्टर मॉडल''' या '''O(''n'')''' मॉडल एक पारदर्शी जालक पर [[स्पिन (भौतिकी)|स्पाइन (भौतिकी)]] को परस्पर क्रिया करने की एक सरल प्रणाली है। इसे एच. यूजीन स्टेनली द्वारा [[आइसिंग मॉडल]], [[एक्सवाई मॉडल]] और [[शास्त्रीय हाइजेनबर्ग मॉडल]] के सामान्यीकरण के रूप में विकसित किया गया था।<ref>{{cite journal|last=Stanley|first=H. E.|title=स्पिन के आयाम पर महत्वपूर्ण गुणों की निर्भरता|journal=Phys. Rev. Lett.|year=1968|volume=20|issue=12|pages=589–592|doi=10.1103/PhysRevLett.20.589|bibcode=1968PhRvL..20..589S}}</ref> n-वेक्टर मॉडल में, n-घटक इकाई-लंबाई शास्त्रीय स्पाइन (भौतिकी) <math>\mathbf{s}_i</math> एक d-आयामी जाली के शीर्ष पर रखा गया है। n-वेक्टर मॉडल का [[हैमिल्टनियन यांत्रिकी]] द्वारा दिया गया है: | ||
:<math>H = -J{\sum}_{\langle i,j \rangle}\mathbf{s}_i \cdot \mathbf{s}_j</math> | :<math>H = -J{\sum}_{\langle i,j \rangle}\mathbf{s}_i \cdot \mathbf{s}_j</math> | ||
जहां योग | जहां योग प्रतिवैस स्पाइन के सभी जोड़े <math>\langle i, j \rangle</math> पर चलता है और <math>\cdot</math> मानक यूक्लिडियन आंतरिक उत्पाद को दर्शाता है। n-वेक्टर मॉडल के विशेष स्तिथियाँ हैं: | ||
:<math>n=0</math>: आत्म परिहार चलना<ref>{{cite journal|last=de Gennes|first=P. G.|title=विल्सन विधि द्वारा निकाली गई अपवर्जित आयतन समस्या के प्रतिपादक|journal=Phys. Lett. A|year=1972|volume=38|issue=5|pages=339–340|doi=10.1016/0375-9601(72)90149-1|bibcode=1972PhLA...38..339D}}</ref><ref>{{cite journal|last1=Gaspari|first1=George|last2=Rudnick|first2=Joseph|title=n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory|journal=Phys. Rev. B|year=1986|volume=33|issue=5|pages=3295–3305|doi=10.1103/PhysRevB.33.3295|pmid=9938709|bibcode=1986PhRvB..33.3295G}}</ref> | :<math>n=0</math>: आत्म परिहार चलना <ref>{{cite journal|last=de Gennes|first=P. G.|title=विल्सन विधि द्वारा निकाली गई अपवर्जित आयतन समस्या के प्रतिपादक|journal=Phys. Lett. A|year=1972|volume=38|issue=5|pages=339–340|doi=10.1016/0375-9601(72)90149-1|bibcode=1972PhLA...38..339D}}</ref><ref>{{cite journal|last1=Gaspari|first1=George|last2=Rudnick|first2=Joseph|title=n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory|journal=Phys. Rev. B|year=1986|volume=33|issue=5|pages=3295–3305|doi=10.1103/PhysRevB.33.3295|pmid=9938709|bibcode=1986PhRvB..33.3295G}}</ref> | ||
:<math>n=1</math>: | :<math>n=1</math>: आइसिंग निदर्श | ||
:<math>n=2</math>: एक्सवाई मॉडल | :<math>n=2</math>: एक्सवाई मॉडल | ||
:<math>n=3</math>: | :<math>n=3</math>: प्राचीन हाइजेनबर्ग मॉडल | ||
:<math>n=4</math>: [[मानक मॉडल]] के हिग्स क्षेत्र के लिए [[खिलौना मॉडल]] | :<math>n=4</math>: [[मानक मॉडल]] के हिग्स क्षेत्र के लिए [[खिलौना मॉडल]] | ||
n-वेक्टर मॉडल का वर्णन करने और हल करने के लिए उपयोग की जाने वाली सामान्य गणितीय औपचारिकता और [[पॉट्स मॉडल]] पर लेख में कुछ सामान्यीकरण विकसित किए गए हैं। | |||
== सातत्य सीमा == | == सातत्य सीमा == | ||
सातत्य सीमा को [[सिग्मा मॉडल]] समझा जा सकता है। इसे उत्पाद के संदर्भ में हैमिल्टनियन लिखकर आसानी से प्राप्त किया जा सकता है | सातत्य सीमा को [[सिग्मा मॉडल]] समझा जा सकता है। इसे उत्पाद के संदर्भ में हैमिल्टनियन लिखकर आसानी से प्राप्त किया जा सकता है | ||
:<math>-\tfrac{1}{2}(\mathbf{s}_i - \mathbf{s}_j) \cdot (\mathbf{s}_i - \mathbf{s}_j) = \mathbf{s}_i \cdot \mathbf{s}_j - 1</math> | :<math>-\tfrac{1}{2}(\mathbf{s}_i - \mathbf{s}_j) \cdot (\mathbf{s}_i - \mathbf{s}_j) = \mathbf{s}_i \cdot \mathbf{s}_j - 1</math> | ||
जहाँ <math>\mathbf{s}_i \cdot \mathbf{s}_i=1</math> थोक चुम्बकन अवधि है। इस शब्द को ऊर्जा में जोड़े गए एक समग्र स्थिर कारक के रूप में छोड़ते हुए, न्यूटन के [[परिमित अंतर]] को परिभाषित करके सीमा प्राप्त की जाती है | |||
:<math>\delta_h[\mathbf{s}](i,j)=\frac{\mathbf{s}_i - \mathbf{s}_j}{h}</math> | :<math>\delta_h[\mathbf{s}](i,j)=\frac{\mathbf{s}_i - \mathbf{s}_j}{h}</math> | ||
प्रतिवैस जाली स्थानों <math>i,j</math> पर प्राप्त की जाती है। तब <math>\delta_h[\mathbf{s}]\to\nabla_\mu\mathbf{s}</math> सीमा <math>h\to 0</math> में, जहां <math>\nabla_\mu</math> <math>(i,j)\to\mu</math> दिशा में अनुप्रवण है। इस प्रकार, सीमा में, | |||
:<math>-\mathbf{s}_i\cdot \mathbf{s}_j\to \tfrac{1}{2}\nabla_\mu\mathbf{s} \cdot \nabla_\mu\mathbf{s}</math> | :<math>-\mathbf{s}_i\cdot \mathbf{s}_j\to \tfrac{1}{2}\nabla_\mu\mathbf{s} \cdot \nabla_\mu\mathbf{s}</math> | ||
जिसे क्षेत्र की गतिज ऊर्जा के रूप में पहचाना जा सकता | जिसे क्षेत्र सिग्मा मॉडल में <math>\mathbf{s}</math> की गतिज ऊर्जा के रूप में पहचाना जा सकता है। स्पाइन <math>\mathbf{s}</math> के लिए अभी भी दो संभावनाएं हैं: इसे या तो घुमावों के असतत सम्मुच्चय (पॉट्स मॉडल) से लिया जाता है या इसे गोले <math>S^{n-1}</math> पर एक बिंदु के रूप में लिया जाता है ; वह <math>\mathbf{s}</math> इकाई लंबाई का एक सतत-मूल्यवान वेक्टर है। बाद के स्तिथियाँ में, इसे <math>O(n)</math> के रूप में जाना जाता है। गैर रेखीय सिग्मा मॉडल, [[रोटेशन समूह|क्रमावर्तन समूह]] के रूप में <math>O(n)</math> के [[ isometric |सममितीय]] का समूह <math>S^{n-1}</math> है, और स्पष्ट रुप से, <math>S^{n-1}</math> समतल नहीं है, यानी एक [[क्षेत्र (भौतिकी)]] नहीं है। | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: | [[Category:All stub articles]] | ||
[[Category:Computational physics stubs]] | |||
[[Category:Created On 17/04/2023]] | [[Category:Created On 17/04/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with ignored display titles]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Statistical mechanics stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Theoretical physics stubs]] | |||
[[Category:जालीदार मॉडल]] |
Latest revision as of 16:41, 6 November 2023
सांख्यिकीय यांत्रिकी में, एन-वेक्टर मॉडल या O(n) मॉडल एक पारदर्शी जालक पर स्पाइन (भौतिकी) को परस्पर क्रिया करने की एक सरल प्रणाली है। इसे एच. यूजीन स्टेनली द्वारा आइसिंग मॉडल, एक्सवाई मॉडल और शास्त्रीय हाइजेनबर्ग मॉडल के सामान्यीकरण के रूप में विकसित किया गया था।[1] n-वेक्टर मॉडल में, n-घटक इकाई-लंबाई शास्त्रीय स्पाइन (भौतिकी) एक d-आयामी जाली के शीर्ष पर रखा गया है। n-वेक्टर मॉडल का हैमिल्टनियन यांत्रिकी द्वारा दिया गया है:
जहां योग प्रतिवैस स्पाइन के सभी जोड़े पर चलता है और मानक यूक्लिडियन आंतरिक उत्पाद को दर्शाता है। n-वेक्टर मॉडल के विशेष स्तिथियाँ हैं:
- : आत्म परिहार चलना [2][3]
- : आइसिंग निदर्श
- : एक्सवाई मॉडल
- : प्राचीन हाइजेनबर्ग मॉडल
- : मानक मॉडल के हिग्स क्षेत्र के लिए खिलौना मॉडल
n-वेक्टर मॉडल का वर्णन करने और हल करने के लिए उपयोग की जाने वाली सामान्य गणितीय औपचारिकता और पॉट्स मॉडल पर लेख में कुछ सामान्यीकरण विकसित किए गए हैं।
सातत्य सीमा
सातत्य सीमा को सिग्मा मॉडल समझा जा सकता है। इसे उत्पाद के संदर्भ में हैमिल्टनियन लिखकर आसानी से प्राप्त किया जा सकता है
जहाँ थोक चुम्बकन अवधि है। इस शब्द को ऊर्जा में जोड़े गए एक समग्र स्थिर कारक के रूप में छोड़ते हुए, न्यूटन के परिमित अंतर को परिभाषित करके सीमा प्राप्त की जाती है
प्रतिवैस जाली स्थानों पर प्राप्त की जाती है। तब सीमा में, जहां दिशा में अनुप्रवण है। इस प्रकार, सीमा में,
जिसे क्षेत्र सिग्मा मॉडल में की गतिज ऊर्जा के रूप में पहचाना जा सकता है। स्पाइन के लिए अभी भी दो संभावनाएं हैं: इसे या तो घुमावों के असतत सम्मुच्चय (पॉट्स मॉडल) से लिया जाता है या इसे गोले पर एक बिंदु के रूप में लिया जाता है ; वह इकाई लंबाई का एक सतत-मूल्यवान वेक्टर है। बाद के स्तिथियाँ में, इसे के रूप में जाना जाता है। गैर रेखीय सिग्मा मॉडल, क्रमावर्तन समूह के रूप में के सममितीय का समूह है, और स्पष्ट रुप से, समतल नहीं है, यानी एक क्षेत्र (भौतिकी) नहीं है।
संदर्भ
- ↑ Stanley, H. E. (1968). "स्पिन के आयाम पर महत्वपूर्ण गुणों की निर्भरता". Phys. Rev. Lett. 20 (12): 589–592. Bibcode:1968PhRvL..20..589S. doi:10.1103/PhysRevLett.20.589.
- ↑ de Gennes, P. G. (1972). "विल्सन विधि द्वारा निकाली गई अपवर्जित आयतन समस्या के प्रतिपादक". Phys. Lett. A. 38 (5): 339–340. Bibcode:1972PhLA...38..339D. doi:10.1016/0375-9601(72)90149-1.
- ↑ Gaspari, George; Rudnick, Joseph (1986). "n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory". Phys. Rev. B. 33 (5): 3295–3305. Bibcode:1986PhRvB..33.3295G. doi:10.1103/PhysRevB.33.3295. PMID 9938709.