ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव: Difference between revisions
(Created page with "ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की...") |
No edit summary |
||
Line 1: | Line 1: | ||
ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की अभिव्यक्ति है कि तनाव प्रेरित पीजोइलेक्ट्रिक ध्रुवीकरण न केवल | ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की अभिव्यक्ति है कि तनाव प्रेरित पीजोइलेक्ट्रिक का ध्रुवीकरण न केवल प्रथम क्रम के पीजोइलेक्ट्रिक गुणांक के गुणकों पर निर्भर करता है और इस प्रकार अपितु दूसरे क्रम के उच्चतर पीजोइलेक्ट्रिक गुणांक गुणकों के गुणनफल पर भी निर्भर करता है। इस विचार को जिंकब्लेन्डे गाओं और इनास अर्धचालकों के लिए वर्ष 2006 में प्रस्तुत किया गया और फिर इसका विस्तार [[जिंक ब्लेंड]] अर्धचालकों तक विस्तारित किया गया था। इस प्रकार इन प्रभावों के लिए प्रत्यक्ष प्रायोगिक प्रमाण प्राप्त करने की कठिनाई को देखते हुए कई प्रकार के विचार आते हैं कि कोई सभी पीज़ोइलेक्ट्रिक गुणांकों की विश्वसनीय की गणना कैसे कर सकता है।<ref>{{cite journal |title=सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी की समीक्षा|first=Max |last=Migliorato |journal=AIP Conference Proceedings|volume=1590 |pages=32–41 |doi=10.1063/1.4870192|display-authors=etal |year=2014 |issue=1 |bibcode=2014AIPC.1590...32M }}</ref> दूसरी ओर इस तथ्य पर व्यापक सहमति है कि गैर-रेखीय प्रभाव बहुत बड़े होते हैं और रैखिक शब्दों के पहले अनुक्रम से तुलनीय होते हैं। इन प्रभावों के अस्तित्व का परोक्ष प्रायोगिक प्रमाण GaN और InN अर्धचालक ऑप्टोइलेक्ट्रॉनिक उपकरणों के संबंध में साहित्य में बताए गए हैं। | ||
दूसरी ओर | |||
==इतिहास== | ==इतिहास== |
Revision as of 15:00, 29 July 2023
ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की अभिव्यक्ति है कि तनाव प्रेरित पीजोइलेक्ट्रिक का ध्रुवीकरण न केवल प्रथम क्रम के पीजोइलेक्ट्रिक गुणांक के गुणकों पर निर्भर करता है और इस प्रकार अपितु दूसरे क्रम के उच्चतर पीजोइलेक्ट्रिक गुणांक गुणकों के गुणनफल पर भी निर्भर करता है। इस विचार को जिंकब्लेन्डे गाओं और इनास अर्धचालकों के लिए वर्ष 2006 में प्रस्तुत किया गया और फिर इसका विस्तार जिंक ब्लेंड अर्धचालकों तक विस्तारित किया गया था। इस प्रकार इन प्रभावों के लिए प्रत्यक्ष प्रायोगिक प्रमाण प्राप्त करने की कठिनाई को देखते हुए कई प्रकार के विचार आते हैं कि कोई सभी पीज़ोइलेक्ट्रिक गुणांकों की विश्वसनीय की गणना कैसे कर सकता है।[1] दूसरी ओर इस तथ्य पर व्यापक सहमति है कि गैर-रेखीय प्रभाव बहुत बड़े होते हैं और रैखिक शब्दों के पहले अनुक्रम से तुलनीय होते हैं। इन प्रभावों के अस्तित्व का परोक्ष प्रायोगिक प्रमाण GaN और InN अर्धचालक ऑप्टोइलेक्ट्रॉनिक उपकरणों के संबंध में साहित्य में बताए गए हैं।
इतिहास
ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव पहली बार 2006 में जी.बेस्टर एट अल द्वारा रिपोर्ट किए गए थे।[2] और एम.ए. द्वारा बेहतर एट अल.,[3] जिंकब्लेंड GaAs और InAs के संबंध में। मौलिक पत्रों में विभिन्न तरीकों का उपयोग किया गया था और जबकि दूसरे (और तीसरे) क्रम पीजोइलेक्ट्रिक गुणांक के प्रभाव को आम तौर पर पहले क्रम, पूरी तरह से एब इनिटियो और जिसे वर्तमान में हैरिसन मॉडल के रूप में जाना जाता है, के बराबर माना जाता था।[4] विशेष रूप से पहले क्रम के गुणांकों के परिमाण के लिए, थोड़ा भिन्न परिणामों की भविष्यवाणी करता हुआ दिखाई दिया।
औपचारिकता
जबकि प्रथम क्रम पीज़ोइलेक्ट्रिक गुणांक ई के रूप के होते हैंij, दूसरे और तीसरे क्रम के गुणांक उच्च रैंक टेंसर के रूप में होते हैं, जिन्हें ई के रूप में व्यक्त किया जाता हैijk और ईijkl. फिर पीजोइलेक्ट्रिक ध्रुवीकरण को क्रमशः पहले, दूसरे और तीसरे क्रम के सन्निकटन के लिए पीजोइलेक्ट्रिक गुणांक और तनाव घटकों के उत्पादों, दो तनाव घटकों के उत्पादों और तीन तनाव घटकों के उत्पादों के संदर्भ में व्यक्त किया जाएगा।
उपलब्ध गैर रेखीय पीजोइलेक्ट्रिक गुणांक
2006 से इस विषय पर कई और लेख प्रकाशित हुए हैं। गैर रेखीय पीज़ोइलेक्ट्रिक गुणांक अब कई अलग-अलग अर्धचालक सामग्रियों और क्रिस्टल संरचनाओं के लिए उपलब्ध हैं:
- जिंकब्लेन्डे GaAs और InAs, स्यूडोमोर्फिक स्ट्रेन के तहत,[5] हैरिसन मॉडल का उपयोग करना
- जिंकब्लेन्डे GaAs और InAs, विकर्ण तनाव घटकों के किसी भी संयोजन के लिए,[6] हैरिसन मॉडल का उपयोग करना
- जिंकब्लेंड संरचना में सभी सामान्य III-V अर्धचालक [7] ab initio का उपयोग करना
- वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,[8] हैरिसन मॉडल का उपयोग करना
- वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,[9] ab initio का उपयोग करना
- वर्टज़ाइट क्रिस्टल संरचना में ZnO,[10] हैरिसन मॉडल का उपयोग करना
- वर्टज़ाइट क्रिस्टल संरचना GaN, InN, AlN और ZnO,[11] ab initio का उपयोग करना
- वर्टज़ाइट क्रिस्टल संरचना GaAs, InAs, GaP और InP,[12] हैरिसन मॉडल का उपयोग करना
प्रयोगात्मक साक्ष्य
विशेष रूप से III-N अर्धचालकों के लिए, गैर रेखीय पीजोइलेक्ट्रिसिटी के प्रभाव पर प्रकाश उत्सर्जक डायोड के संदर्भ में चर्चा की गई थी:
यह भी देखें
- पीज़ोट्रॉनिक्स
- पीजोइलेक्ट्रिसिटी
- प्रकाश उत्सर्जक डायोड
- वर्टज़ाइट क्रिस्टल संरचना
संदर्भ
- ↑ Migliorato, Max; et al. (2014). "सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी की समीक्षा". AIP Conference Proceedings. 1590 (1): 32–41. Bibcode:2014AIPC.1590...32M. doi:10.1063/1.4870192.
- ↑ Bester, Gabriel; X. Wu; D. Vanderbilt; A. Zunger (2006). "जिंक-ब्लेंड सेमीकंडक्टर्स में दूसरे क्रम के पीजोइलेक्ट्रिक प्रभाव का महत्व". Physical Review Letters. 96 (18): 187602. arXiv:cond-mat/0604596. Bibcode:2006PhRvL..96r7602B. doi:10.1103/PhysRevLett.96.187602. PMID 16712396. S2CID 10596640.
- ↑ Migliorato, Max; D. Powell; A.G. Cullis; T. Hammerschmidt; G.P. Srivastava (2006). "Composition and strain dependence of the piezoelectric coefficients in InxGa1−xAs alloys". Physical Review B. 74 (24): 245332. Bibcode:2006PhRvB..74x5332M. doi:10.1103/PhysRevB.74.245332. hdl:11858/00-001M-0000-0011-02EF-0.
- ↑ Harrison, Walter (1989). ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और गुण. New York: Dover Publications Inc.
- ↑ Garg, Raman; A. Hüe; V. Haxha; M. A. Migliorato; T. Hammerschmidt; G.P. Srivastava (2009). "तनावपूर्ण III-V अर्धचालकों में पीजोइलेक्ट्रिक क्षेत्रों की ट्यूनेबिलिटी". Appl. Phys. Lett. 95 (4): 041912. Bibcode:2009ApPhL..95d1912G. doi:10.1063/1.3194779.
- ↑ Tse, Geoffrey; J. Pal; U. Monteverde; R. Garg; V. Haxha; M. A. Migliorato; S. Tomic´ (2013). "जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी". J. Appl. Phys. 114 (7): 073515–073515–12. Bibcode:2013JAP...114g3515T. doi:10.1063/1.4818798. S2CID 14023644.
- ↑ A. Beya-Wakata; et al. (2011). "III-V अर्धचालकों में प्रथम और द्वितीय क्रम की पीज़ोइलेक्ट्रिसिटी". Phys. Rev. B. 84 (19): 195207. Bibcode:2011PhRvB..84s5207B. doi:10.1103/PhysRevB.84.195207.
- ↑ Pal, Joydeep; G. Tse; V. Haxha; M.A. Migliorato; S. Tomic´ (2011). "जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी". Phys. Rev. B. 84 (8): 085211. Bibcode:2011PhRvB..84h5211P. doi:10.1103/PhysRevB.84.085211.
- ↑ L. Pedesseau; C. Katan; J. Even (2012). "गैर-सेंट्रोसिमेट्रिक सामग्रियों में इलेक्ट्रोस्ट्रिक्शन और गैर-रेखीय पीजोइलेक्ट्रिसिटी के उलझाव पर" (PDF). Appl. Phys. Lett. 100 (3): 031903. Bibcode:2012ApPhL.100c1903P. doi:10.1063/1.3676666.
- ↑ Al-Zahrani, Hanan; J.Pal; M.A. Migliorato (2013). "वर्टज़ाइट ZnO सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी". Nano Energy. 2 (6): 1214–1217. doi:10.1016/j.nanoen.2013.05.005.
- ↑ Pierre-Yves Prodhomme; Annie Beya-Wakata; Gabriel Bester (2013). "वर्टज़ाइट सेमीकंडक्टर्स में नॉनलाइनियर पीजोइलेक्ट्रिसिटी". Phys. Rev. B. 88 (12): 121304(R). Bibcode:2013PhRvB..88l1304P. doi:10.1103/PhysRevB.88.121304.
- ↑ Al-Zahrani, Hanan; J.Pal; M.A. Migliorato; G. Tse; Dapeng Yu (2015). "III-V कोर-शेल नैनोवायर में पीजोइलेक्ट्रिक फील्ड एन्हांसमेंट". Nano Energy. 14: 382–391. doi:10.1016/j.nanoen.2014.11.046.
- ↑ Crutchley, Benjamin; I. P. Marko; S. J. Sweeney; J. Pal; M.A. Migliorato (2013). "उच्च हाइड्रोस्टैटिक दबाव पर निर्भर तकनीकों का उपयोग करके InGaN-आधारित एलईडी के ऑप्टिकल गुणों की जांच की गई". Physica Status Solidi B. 250 (4): 698–702. Bibcode:2013PSSBR.250..698C. doi:10.1002/pssb.201200514.
- ↑ Pal, Joydeep; M. A. Migliorato; C.-K. Li; Y.-R. Wu; B. G. Crutchley; I. P. Marko; S. J. Sweeney (2000). "स्ट्रेन और पीजोइलेक्ट्रिक फील्ड प्रबंधन के माध्यम से InGaN-आधारित एलईडी की दक्षता में वृद्धि". J. Appl. Phys. 114 (3): 073104. Bibcode:2000JChPh.113..987C. doi:10.1063/1.481879.