ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव: Difference between revisions

From Vigyanwiki
No edit summary
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की अभिव्यक्ति है कि स्ट्रेन प्रेरित पीजोइलेक्ट्रिक का ध्रुवीकरण न केवल प्रथम क्रम पाइज़ोइलेक्ट्रिक गुणांक स्ट्रेन टेंसर घटकों का समय निर्धारित करता है। और इस प्रकार अपितु दूसरे क्रम के उच्चतर पीजोइलेक्ट्रिक गुणांक गुणकों के गुणनफल पर भी निर्भर करता है। इस विचार को जिंकब्लेन्डे गाओं और इनास अर्धचालकों के लिए वर्ष 2006 में प्रस्तुत किया गया और फिर इसका विस्तार [[जिंक ब्लेंड]] अर्धचालकों तक विस्तारित किया गया था। इस प्रकार इन प्रभावों के लिए प्रत्यक्ष प्रायोगिक प्रमाण प्राप्त करने की कठिनाई को देखते हुए कई प्रकार के विचार आते हैं कि कोई सभी पीज़ोइलेक्ट्रिक गुणांकों की विश्वसनीय की गणना कैसे कर सकता है।<ref>{{cite journal |title=सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी की समीक्षा|first=Max |last=Migliorato |journal=AIP Conference Proceedings|volume=1590 |pages=32–41 |doi=10.1063/1.4870192|display-authors=etal |year=2014 |issue=1 |bibcode=2014AIPC.1590...32M }}</ref> दूसरी ओर इस तथ्य पर व्यापक सहमति है कि गैर-रेखीय प्रभाव बहुत बड़े होते हैं और रैखिक शब्दों के पहले अनुक्रम से तुलनीय होते हैं। इन प्रभावों के अस्तित्व का परोक्ष प्रायोगिक प्रमाण GaN और InN अर्धचालक ऑप्टोइलेक्ट्रॉनिक उपकरणों के संबंध में साहित्य के रूप में बताए गए हैं।
'''ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव''' इस बात की अभिव्यक्ति करता है कि स्ट्रेन प्रेरित पीजोइलेक्ट्रिक का ध्रुवीकरण न केवल प्रथम क्रम के पाइज़ोइलेक्ट्रिक गुणांक स्ट्रेन टेंसर घटकों के समय पर निर्भर करता है और इस प्रकार दूसरे क्रम के उच्चतर पीजोइलेक्ट्रिक गुणांक गुणकों के गुणनफल पर निर्भर करता है। इस विचार को जिंकब्लेन्डे गाओं और इनास अर्धचालकों के लिए वर्ष 2006 में प्रस्तुत किया गया था और फिर सभी सामान्य रूप से उपयोग किए जाने वाले वर्टज़ाइट और [[जिंक ब्लेंड]] अर्धचालकों तक विस्तारित किया गया था। इस प्रकार इन प्रभावों के लिए प्रत्यक्ष प्रायोगिक साक्ष्य खोजने की कठिनाई को देखते हुए इस बात पर कई प्रकार के भिन्न-भिन्न विचार आते हैं। जैसे कि कोई पीज़ोइलेक्ट्रिक गुणांकों की विश्वसनीय की गणना कैसे कर सकता है।<ref>{{cite journal |title=सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी की समीक्षा|first=Max |last=Migliorato |journal=AIP Conference Proceedings|volume=1590 |pages=32–41 |doi=10.1063/1.4870192|display-authors=etal |year=2014 |issue=1 |bibcode=2014AIPC.1590...32M }}</ref> दूसरी ओर इस घटना पर व्यापक सहमति हुई कि गैर-रेखीय प्रभाव बहुत बड़े रूप में होते हैं और रैखिक शब्दों के प्रथम क्रम से तुलनीय होते हैं। इन प्रभावों के अस्तित्व का परोक्ष प्रायोगिक प्रमाण GaN और InN अर्धचालक ऑप्टोइलेक्ट्रॉनिक उपकरणों के संबंध में साहित्य के रूप में बताए गए हैं।
==इतिहास==
==इतिहास==
ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव पहली बार 2006 में जी.बेस्टर एट अल द्वारा रिपोर्ट किए गए थे।<ref>{{cite journal |title=जिंक-ब्लेंड सेमीकंडक्टर्स में दूसरे क्रम के पीजोइलेक्ट्रिक प्रभाव का महत्व|first=Gabriel |last=Bester |author2=X. Wu |author3=D. Vanderbilt |author4=A. Zunger |journal=Physical Review Letters|volume=96 |issue= 18|pages=187602 |doi=10.1103/PhysRevLett.96.187602 |bibcode=2006PhRvL..96r7602B |pmid=16712396|year=2006 |arxiv=cond-mat/0604596|s2cid=10596640 }}</ref> और एम.ए. द्वारा बेहतर एट अल.,<ref>{{cite journal |title=Composition and strain dependence of the piezoelectric coefficients in InxGa1−xAs alloys|first=Max |last=Migliorato |author2=D. Powell|author3=A.G. Cullis |author4=T. Hammerschmidt|author5=G.P. Srivastava|journal=Physical Review B|volume=74 |issue= 24|pages=245332 |doi=10.1103/PhysRevB.74.245332|year=2006 |bibcode=2006PhRvB..74x5332M |hdl=11858/00-001M-0000-0011-02EF-0|hdl-access=free}}</ref> जिंकब्लेंड [[GaAs]] और [[InAs]] के संबंध में। मौलिक पत्रों में विभिन्न तरीकों का उपयोग किया गया था और जबकि दूसरे (और तीसरे) क्रम पीजोइलेक्ट्रिक गुणांक के प्रभाव को आम तौर पर पहले क्रम, पूरी तरह से एब इनिटियो और जिसे वर्तमान में हैरिसन मॉडल के रूप में जाना जाता है, के बराबर माना जाता था।<ref>{{cite book |title=ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और गुण|first=Walter |last=Harrison|publisher=Dover Publications Inc |location=New York |year=1989}}</ref> विशेष रूप से पहले क्रम के गुणांकों के परिमाण के लिए, थोड़ा भिन्न परिणामों की भविष्यवाणी करता हुआ दिखाई दिया।
ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव पहली बार 2006 में जी.बेस्टर एट अल और एम.ए. मिग्लिओराटो एट अल द्वारा जिंकब्लेंड [[GaAs]] और [[InAs]] के संबंध में रिपोर्ट किए गए थे।<ref>{{cite journal |title=जिंक-ब्लेंड सेमीकंडक्टर्स में दूसरे क्रम के पीजोइलेक्ट्रिक प्रभाव का महत्व|first=Gabriel |last=Bester |author2=X. Wu |author3=D. Vanderbilt |author4=A. Zunger |journal=Physical Review Letters|volume=96 |issue= 18|pages=187602 |doi=10.1103/PhysRevLett.96.187602 |bibcode=2006PhRvL..96r7602B |pmid=16712396|year=2006 |arxiv=cond-mat/0604596|s2cid=10596640 }}</ref> <ref>{{cite journal |title=Composition and strain dependence of the piezoelectric coefficients in InxGa1−xAs alloys|first=Max |last=Migliorato |author2=D. Powell|author3=A.G. Cullis |author4=T. Hammerschmidt|author5=G.P. Srivastava|journal=Physical Review B|volume=74 |issue= 24|pages=245332 |doi=10.1103/PhysRevB.74.245332|year=2006 |bibcode=2006PhRvB..74x5332M |hdl=11858/00-001M-0000-0011-02EF-0|hdl-access=free}}</ref> और इस प्रकार सेमिनल पेपर्स में भिन्न-भिन्न विधियों का उपयोग किया गया था और जबकि दूसरे और तीसरे क्रम के पीजोइलेक्ट्रिक गुणांक के प्रभाव को सामान्यतः पहले क्रम के तुलनीय रूप में मान्यता दी गई थी। इस प्रकार पूरी तरह से एब इनिटियो और वर्तमान में जिसे हैरिसन मॉडल के रूप में जाना जाता है।<ref>{{cite book |title=ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और गुण|first=Walter |last=Harrison|publisher=Dover Publications Inc |location=New York |year=1989}}</ref> इस प्रकार ऐसा प्रतीत होता है कि विशेष रूप से पहले क्रम के गुणांकों के परिमाण के लिए थोड़ा भिन्न परिणामों की भविष्यवाणी की गई है।


==औपचारिकता==
==फॉर्मलिज़म ==
जबकि प्रथम क्रम पीज़ोइलेक्ट्रिक गुणांक ई के रूप के होते हैं<sub>ij</sub>, दूसरे और तीसरे क्रम के गुणांक उच्च रैंक टेंसर के रूप में होते हैं, जिन्हें ई के रूप में व्यक्त किया जाता है<sub>ijk</sub> और <sub>ijkl</sub>. फिर पीजोइलेक्ट्रिक ध्रुवीकरण को क्रमशः पहले, दूसरे और तीसरे क्रम के सन्निकटन के लिए पीजोइलेक्ट्रिक गुणांक और स्ट्रेन घटकों के उत्पादों, दो स्ट्रेन घटकों के उत्पादों और तीन स्ट्रेन घटकों के उत्पादों के संदर्भ में व्यक्त किया जाएगा।
जबकि प्रथम क्रम के पीज़ोइलेक्ट्रिक गुणांक e<sub>ij</sub> के रूप के होते हैं और दूसरे और तीसरे क्रम के गुणांक उच्च रैंक टेंसर के रूप में होते हैं, जिन्हें e<sub>ijk</sub> और e<sub>ijkl</sub> के रूप में व्यक्त किया जाता है और इस प्रकार पीजोइलेक्ट्रिक ध्रुवीकरण को क्रमशः पहले दूसरे और तीसरे क्रम के सन्निकटन के लिए पीजोइलेक्ट्रिक गुणांक और स्ट्रेन घटकों के उत्पादों दो स्ट्रेन घटकों के उत्पादों और तीन स्ट्रेन घटकों के उत्पादों के संदर्भ में व्यक्त किया जाता है।


==उपलब्ध गैर रेखीय पीजोइलेक्ट्रिक गुणांक ==
==उपलब्ध गैर रेखीय पीजोइलेक्ट्रिक गुणांक ==
2006 से इस विषय पर कई और लेख प्रकाशित हुए हैं। गैर रेखीय पीज़ोइलेक्ट्रिक गुणांक अब कई अलग-अलग अर्धचालक सामग्रियों और क्रिस्टल संरचनाओं के लिए उपलब्ध हैं:
2006 से इस विषय पर कई और लेख प्रकाशित हुए हैं। इस प्रकार गैर रेखीय पीज़ोइलेक्ट्रिक गुणांक अब कई भिन्न-भिन्न अर्धचालक पदार्थ और क्रिस्टल संरचनाओं के लिए उपलब्ध हैं
* जिंकब्लेन्डे GaAs और InAs, स्यूडोमोर्फिक स्ट्रेन के तहत,<ref>{{cite journal |title=तनावपूर्ण III-V अर्धचालकों में पीजोइलेक्ट्रिक क्षेत्रों की ट्यूनेबिलिटी|first=Raman |last=Garg|author2=A. Hüe|author3= V. Haxha|author4= M. A. Migliorato |author5=T. Hammerschmidt|author6=G.P. Srivastava|journal=Appl. Phys. Lett.|volume=95 |issue= 4|pages=041912 |doi=10.1063/1.3194779|year=2009 |bibcode=2009ApPhL..95d1912G }}</ref> हैरिसन मॉडल का उपयोग करना
* जिंकब्लेन्डे GaAs और InAs, स्यूडोमोर्फिक स्ट्रेन के अनुसार,<ref>{{cite journal |title=तनावपूर्ण III-V अर्धचालकों में पीजोइलेक्ट्रिक क्षेत्रों की ट्यूनेबिलिटी|first=Raman |last=Garg|author2=A. Hüe|author3= V. Haxha|author4= M. A. Migliorato |author5=T. Hammerschmidt|author6=G.P. Srivastava|journal=Appl. Phys. Lett.|volume=95 |issue= 4|pages=041912 |doi=10.1063/1.3194779|year=2009 |bibcode=2009ApPhL..95d1912G }}</ref> हैरिसन मॉडल का उपयोग करता है।
* जिंकब्लेन्डे GaAs और InAs, विकर्ण स्ट्रेन घटकों के किसी भी संयोजन के लिए,<ref>{{cite journal |title=जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी|first=Geoffrey |last=Tse|author2=J. Pal|author3= U. Monteverde|author4= R. Garg|author5=V. Haxha|author6=M. A. Migliorato|author7= S. Tomic´ |journal=J. Appl. Phys.|volume=114 |issue= 7|pages=073515–073515–12 |doi=10.1063/1.4818798|year=2013 |bibcode=2013JAP...114g3515T |s2cid=14023644 |url=https://www.research.manchester.ac.uk/portal/en/publications/nonlinear-piezoelectricity-in-zinc-blende-gaas-and-inas-semiconductors(edcc28e2-b3d8-4204-aabf-c57660f533fc).html }}</ref> हैरिसन मॉडल का उपयोग करना
* जिंकब्लेन्डे GaAs और InAs, विकर्ण स्ट्रेन घटकों के किसी भी संयोजन के लिए,<ref>{{cite journal |title=जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी|first=Geoffrey |last=Tse|author2=J. Pal|author3= U. Monteverde|author4= R. Garg|author5=V. Haxha|author6=M. A. Migliorato|author7= S. Tomic´ |journal=J. Appl. Phys.|volume=114 |issue= 7|pages=073515–073515–12 |doi=10.1063/1.4818798|year=2013 |bibcode=2013JAP...114g3515T |s2cid=14023644 |url=https://www.research.manchester.ac.uk/portal/en/publications/nonlinear-piezoelectricity-in-zinc-blende-gaas-and-inas-semiconductors(edcc28e2-b3d8-4204-aabf-c57660f533fc).html }}</ref> हैरिसन मॉडल का उपयोग करता है।
* जिंकब्लेंड संरचना में सभी सामान्य III-V अर्धचालक <ref>{{cite journal |title=III-V अर्धचालकों में प्रथम और द्वितीय क्रम की पीज़ोइलेक्ट्रिसिटी|author1=A. Beya-Wakata|journal=Phys. Rev. B|volume=84 |issue= 19|pages= 195207|doi=10.1103/PhysRevB.84.195207|display-authors=etal|year=2011|bibcode=2011PhRvB..84s5207B}}</ref> ab initio का उपयोग करना
* जिंकब्लेंड संरचना में सभी सामान्य III-V अर्धचालक <ref>{{cite journal |title=III-V अर्धचालकों में प्रथम और द्वितीय क्रम की पीज़ोइलेक्ट्रिसिटी|author1=A. Beya-Wakata|journal=Phys. Rev. B|volume=84 |issue= 19|pages= 195207|doi=10.1103/PhysRevB.84.195207|display-authors=etal|year=2011|bibcode=2011PhRvB..84s5207B}}</ref> ab initio का उपयोग करता है।
* [[वर्टज़ाइट क्रिस्टल संरचना]] में [[GaN]], AlN, [[InN]],<ref>{{cite journal |title=जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी|first=Joydeep|last=Pal|author2=G. Tse|author3= V. Haxha|author4= M.A. Migliorato|author5=S. Tomic´ |journal=Phys. Rev. B|volume=84 |issue= 8|pages= 085211|doi=10.1103/PhysRevB.84.085211|year=2011|bibcode=2011PhRvB..84h5211P}}</ref> हैरिसन मॉडल का उपयोग करना
* [[वर्टज़ाइट क्रिस्टल संरचना]] में [[GaN]], AlN, [[InN]],<ref>{{cite journal |title=जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी|first=Joydeep|last=Pal|author2=G. Tse|author3= V. Haxha|author4= M.A. Migliorato|author5=S. Tomic´ |journal=Phys. Rev. B|volume=84 |issue= 8|pages= 085211|doi=10.1103/PhysRevB.84.085211|year=2011|bibcode=2011PhRvB..84h5211P}}</ref> हैरिसन मॉडल का उपयोग करता है।
* वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,<ref>{{cite journal |title=गैर-सेंट्रोसिमेट्रिक सामग्रियों में इलेक्ट्रोस्ट्रिक्शन और गैर-रेखीय पीजोइलेक्ट्रिसिटी के उलझाव पर|author1=L. Pedesseau|author2=C. Katan|author3= J. Even|journal=Appl. Phys. Lett.|volume=100 |issue= 3|pages=031903 |doi=10.1063/1.3676666|year=2012|bibcode=2012ApPhL.100c1903P|url=https://hal.archives-ouvertes.fr/hal-00664196/file/ApplPhysLett_100_031903.pdf}}</ref> ab initio का उपयोग करना
* वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,<ref>{{cite journal |title=गैर-सेंट्रोसिमेट्रिक सामग्रियों में इलेक्ट्रोस्ट्रिक्शन और गैर-रेखीय पीजोइलेक्ट्रिसिटी के उलझाव पर|author1=L. Pedesseau|author2=C. Katan|author3= J. Even|journal=Appl. Phys. Lett.|volume=100 |issue= 3|pages=031903 |doi=10.1063/1.3676666|year=2012|bibcode=2012ApPhL.100c1903P|url=https://hal.archives-ouvertes.fr/hal-00664196/file/ApplPhysLett_100_031903.pdf}}</ref> ab initio का उपयोग करता है।
* वर्टज़ाइट क्रिस्टल संरचना में [[ZnO]],<ref>{{cite journal |title=वर्टज़ाइट ZnO सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी|first=Hanan|last=Al-Zahrani| author2=J.Pal|author3= M.A. Migliorato|journal=Nano Energy|volume=2 |issue= 6|pages=1214–1217 |doi=10.1016/j.nanoen.2013.05.005|year=2013|url=http://www.manchester.ac.uk/escholar/uk-ac-man-scw:196143}}</ref> हैरिसन मॉडल का उपयोग करना
* वर्टज़ाइट क्रिस्टल संरचना में [[ZnO]],<ref>{{cite journal |title=वर्टज़ाइट ZnO सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी|first=Hanan|last=Al-Zahrani| author2=J.Pal|author3= M.A. Migliorato|journal=Nano Energy|volume=2 |issue= 6|pages=1214–1217 |doi=10.1016/j.nanoen.2013.05.005|year=2013|url=http://www.manchester.ac.uk/escholar/uk-ac-man-scw:196143}}</ref> हैरिसन मॉडल का उपयोग करता है।
* वर्टज़ाइट क्रिस्टल संरचना GaN, InN, AlN और ZnO,<ref>{{cite journal |title=वर्टज़ाइट सेमीकंडक्टर्स में नॉनलाइनियर पीजोइलेक्ट्रिसिटी|author1=Pierre-Yves Prodhomme |author2= Annie Beya-Wakata |author3=Gabriel Bester|journal=Phys. Rev. B|volume=88 |issue=  12|pages= 121304(R)|doi=10.1103/PhysRevB.88.121304|year=2013 |bibcode=2013PhRvB..88l1304P }}</ref> ab initio का उपयोग करना
* वर्टज़ाइट क्रिस्टल संरचना GaN, InN, AlN और ZnO,<ref>{{cite journal |title=वर्टज़ाइट सेमीकंडक्टर्स में नॉनलाइनियर पीजोइलेक्ट्रिसिटी|author1=Pierre-Yves Prodhomme |author2= Annie Beya-Wakata |author3=Gabriel Bester|journal=Phys. Rev. B|volume=88 |issue=  12|pages= 121304(R)|doi=10.1103/PhysRevB.88.121304|year=2013 |bibcode=2013PhRvB..88l1304P }}</ref> ab initio का उपयोग करता है।
* वर्टज़ाइट क्रिस्टल संरचना GaAs, InAs, GaP और InP,<ref>{{cite journal |title=III-V कोर-शेल नैनोवायर में पीजोइलेक्ट्रिक फील्ड एन्हांसमेंट|first=Hanan|last=Al-Zahrani| author2=J.Pal|author3= M.A. Migliorato| author4= G. Tse|author5= Dapeng Yu|journal=Nano Energy|volume= 14|pages= 382–391|doi=10.1016/j.nanoen.2014.11.046|year=2015|doi-access=free}}</ref> हैरिसन मॉडल का उपयोग करना
* वर्टज़ाइट क्रिस्टल संरचना GaAs, InAs, GaP और InP,<ref>{{cite journal |title=III-V कोर-शेल नैनोवायर में पीजोइलेक्ट्रिक फील्ड एन्हांसमेंट|first=Hanan|last=Al-Zahrani| author2=J.Pal|author3= M.A. Migliorato| author4= G. Tse|author5= Dapeng Yu|journal=Nano Energy|volume= 14|pages= 382–391|doi=10.1016/j.nanoen.2014.11.046|year=2015|doi-access=free}}</ref> हैरिसन मॉडल का उपयोग करता है।


==प्रयोगात्मक साक्ष्य==
==प्रयोगात्मक साक्ष्य==
विशेष रूप से [[III-N]] अर्धचालकों के लिए, गैर रेखीय [[पीजोइलेक्ट्रिसिटी]] के प्रभाव पर [[प्रकाश उत्सर्जक डायोड]] के संदर्भ में चर्चा की गई थी:
विशेष रूप से [[III-N]] अर्धचालकों के लिए [[प्रकाश उत्सर्जक डायोड]] के संदर्भ में गैर रेखीय पीज़ोइलेक्ट्रिसिटी के प्रभाव पर चर्चा की गई थी
*बाहरी दबाव का प्रभाव <ref>{{cite journal |title=उच्च हाइड्रोस्टैटिक दबाव पर निर्भर तकनीकों का उपयोग करके InGaN-आधारित एलईडी के ऑप्टिकल गुणों की जांच की गई|first=Benjamin|last=Crutchley|author2= I. P. Marko|author3= S. J. Sweeney|author4= J. Pal |author5= M.A. Migliorato|journal=Physica Status Solidi B|volume=250 |issue= 4|pages=698–702 |doi=10.1002/pssb.201200514|year=2013|bibcode=2013PSSBR.250..698C}}</ref>
*बाहरी दबाव का प्रभाव <ref>{{cite journal |title=उच्च हाइड्रोस्टैटिक दबाव पर निर्भर तकनीकों का उपयोग करके InGaN-आधारित एलईडी के ऑप्टिकल गुणों की जांच की गई|first=Benjamin|last=Crutchley|author2= I. P. Marko|author3= S. J. Sweeney|author4= J. Pal |author5= M.A. Migliorato|journal=Physica Status Solidi B|volume=250 |issue= 4|pages=698–702 |doi=10.1002/pssb.201200514|year=2013|bibcode=2013PSSBR.250..698C}}</ref>
* कार्यक्षमता में वृद्धि <ref>{{cite journal |title=स्ट्रेन और पीजोइलेक्ट्रिक फील्ड प्रबंधन के माध्यम से InGaN-आधारित एलईडी की दक्षता में वृद्धि|first=Joydeep |last=Pal|author2=M. A. Migliorato|author3= C.-K. Li|author4= Y.-R. Wu|author5=B. G. Crutchley|author6=I. P. Marko|author7= S. J. Sweeney |journal=J. Appl. Phys.|volume=114 |issue= 3|pages=073104 |doi=10.1063/1.481879|year=2000 |bibcode=2000JChPh.113..987C }}</ref>
* कार्यक्षमता में वृद्धि<ref>{{cite journal |title=स्ट्रेन और पीजोइलेक्ट्रिक फील्ड प्रबंधन के माध्यम से InGaN-आधारित एलईडी की दक्षता में वृद्धि|first=Joydeep |last=Pal|author2=M. A. Migliorato|author3= C.-K. Li|author4= Y.-R. Wu|author5=B. G. Crutchley|author6=I. P. Marko|author7= S. J. Sweeney |journal=J. Appl. Phys.|volume=114 |issue= 3|pages=073104 |doi=10.1063/1.481879|year=2000 |bibcode=2000JChPh.113..987C }}</ref>
 
 
==यह भी देखें==
==यह भी देखें==
{{div col}}
{{div col}}
* [[पीज़ोट्रॉनिक्स]]
* [[पीज़ोट्रॉनिक्स]]
* पीजोइलेक्ट्रिसिटी
* दाब विद्युत
* प्रकाश उत्सर्जक डायोड
* प्रकाश उत्सर्जक डायोड
* वर्टज़ाइट क्रिस्टल संरचना
* वर्टज़ाइट क्रिस्टल संरचना
Line 40: Line 38:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 09:10, 9 November 2023

ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव इस बात की अभिव्यक्ति करता है कि स्ट्रेन प्रेरित पीजोइलेक्ट्रिक का ध्रुवीकरण न केवल प्रथम क्रम के पाइज़ोइलेक्ट्रिक गुणांक स्ट्रेन टेंसर घटकों के समय पर निर्भर करता है और इस प्रकार दूसरे क्रम के उच्चतर पीजोइलेक्ट्रिक गुणांक गुणकों के गुणनफल पर निर्भर करता है। इस विचार को जिंकब्लेन्डे गाओं और इनास अर्धचालकों के लिए वर्ष 2006 में प्रस्तुत किया गया था और फिर सभी सामान्य रूप से उपयोग किए जाने वाले वर्टज़ाइट और जिंक ब्लेंड अर्धचालकों तक विस्तारित किया गया था। इस प्रकार इन प्रभावों के लिए प्रत्यक्ष प्रायोगिक साक्ष्य खोजने की कठिनाई को देखते हुए इस बात पर कई प्रकार के भिन्न-भिन्न विचार आते हैं। जैसे कि कोई पीज़ोइलेक्ट्रिक गुणांकों की विश्वसनीय की गणना कैसे कर सकता है।[1] दूसरी ओर इस घटना पर व्यापक सहमति हुई कि गैर-रेखीय प्रभाव बहुत बड़े रूप में होते हैं और रैखिक शब्दों के प्रथम क्रम से तुलनीय होते हैं। इन प्रभावों के अस्तित्व का परोक्ष प्रायोगिक प्रमाण GaN और InN अर्धचालक ऑप्टोइलेक्ट्रॉनिक उपकरणों के संबंध में साहित्य के रूप में बताए गए हैं।

इतिहास

ध्रुवीय अर्धचालकों में गैर रेखीय पीज़ोइलेक्ट्रिक प्रभाव पहली बार 2006 में जी.बेस्टर एट अल और एम.ए. मिग्लिओराटो एट अल द्वारा जिंकब्लेंड GaAs और InAs के संबंध में रिपोर्ट किए गए थे।[2] [3] और इस प्रकार सेमिनल पेपर्स में भिन्न-भिन्न विधियों का उपयोग किया गया था और जबकि दूसरे और तीसरे क्रम के पीजोइलेक्ट्रिक गुणांक के प्रभाव को सामान्यतः पहले क्रम के तुलनीय रूप में मान्यता दी गई थी। इस प्रकार पूरी तरह से एब इनिटियो और वर्तमान में जिसे हैरिसन मॉडल के रूप में जाना जाता है।[4] इस प्रकार ऐसा प्रतीत होता है कि विशेष रूप से पहले क्रम के गुणांकों के परिमाण के लिए थोड़ा भिन्न परिणामों की भविष्यवाणी की गई है।

फॉर्मलिज़म

जबकि प्रथम क्रम के पीज़ोइलेक्ट्रिक गुणांक eij के रूप के होते हैं और दूसरे और तीसरे क्रम के गुणांक उच्च रैंक टेंसर के रूप में होते हैं, जिन्हें eijk और eijkl के रूप में व्यक्त किया जाता है और इस प्रकार पीजोइलेक्ट्रिक ध्रुवीकरण को क्रमशः पहले दूसरे और तीसरे क्रम के सन्निकटन के लिए पीजोइलेक्ट्रिक गुणांक और स्ट्रेन घटकों के उत्पादों दो स्ट्रेन घटकों के उत्पादों और तीन स्ट्रेन घटकों के उत्पादों के संदर्भ में व्यक्त किया जाता है।

उपलब्ध गैर रेखीय पीजोइलेक्ट्रिक गुणांक

2006 से इस विषय पर कई और लेख प्रकाशित हुए हैं। इस प्रकार गैर रेखीय पीज़ोइलेक्ट्रिक गुणांक अब कई भिन्न-भिन्न अर्धचालक पदार्थ और क्रिस्टल संरचनाओं के लिए उपलब्ध हैं

  • जिंकब्लेन्डे GaAs और InAs, स्यूडोमोर्फिक स्ट्रेन के अनुसार,[5] हैरिसन मॉडल का उपयोग करता है।
  • जिंकब्लेन्डे GaAs और InAs, विकर्ण स्ट्रेन घटकों के किसी भी संयोजन के लिए,[6] हैरिसन मॉडल का उपयोग करता है।
  • जिंकब्लेंड संरचना में सभी सामान्य III-V अर्धचालक [7] ab initio का उपयोग करता है।
  • वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,[8] हैरिसन मॉडल का उपयोग करता है।
  • वर्टज़ाइट क्रिस्टल संरचना में GaN, AlN, InN,[9] ab initio का उपयोग करता है।
  • वर्टज़ाइट क्रिस्टल संरचना में ZnO,[10] हैरिसन मॉडल का उपयोग करता है।
  • वर्टज़ाइट क्रिस्टल संरचना GaN, InN, AlN और ZnO,[11] ab initio का उपयोग करता है।
  • वर्टज़ाइट क्रिस्टल संरचना GaAs, InAs, GaP और InP,[12] हैरिसन मॉडल का उपयोग करता है।

प्रयोगात्मक साक्ष्य

विशेष रूप से III-N अर्धचालकों के लिए प्रकाश उत्सर्जक डायोड के संदर्भ में गैर रेखीय पीज़ोइलेक्ट्रिसिटी के प्रभाव पर चर्चा की गई थी

  • बाहरी दबाव का प्रभाव [13]
  • कार्यक्षमता में वृद्धि[14]

यह भी देखें

संदर्भ

  1. Migliorato, Max; et al. (2014). "सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी की समीक्षा". AIP Conference Proceedings. 1590 (1): 32–41. Bibcode:2014AIPC.1590...32M. doi:10.1063/1.4870192.
  2. Bester, Gabriel; X. Wu; D. Vanderbilt; A. Zunger (2006). "जिंक-ब्लेंड सेमीकंडक्टर्स में दूसरे क्रम के पीजोइलेक्ट्रिक प्रभाव का महत्व". Physical Review Letters. 96 (18): 187602. arXiv:cond-mat/0604596. Bibcode:2006PhRvL..96r7602B. doi:10.1103/PhysRevLett.96.187602. PMID 16712396. S2CID 10596640.
  3. Migliorato, Max; D. Powell; A.G. Cullis; T. Hammerschmidt; G.P. Srivastava (2006). "Composition and strain dependence of the piezoelectric coefficients in InxGa1−xAs alloys". Physical Review B. 74 (24): 245332. Bibcode:2006PhRvB..74x5332M. doi:10.1103/PhysRevB.74.245332. hdl:11858/00-001M-0000-0011-02EF-0.
  4. Harrison, Walter (1989). ठोस पदार्थों की इलेक्ट्रॉनिक संरचना और गुण. New York: Dover Publications Inc.
  5. Garg, Raman; A. Hüe; V. Haxha; M. A. Migliorato; T. Hammerschmidt; G.P. Srivastava (2009). "तनावपूर्ण III-V अर्धचालकों में पीजोइलेक्ट्रिक क्षेत्रों की ट्यूनेबिलिटी". Appl. Phys. Lett. 95 (4): 041912. Bibcode:2009ApPhL..95d1912G. doi:10.1063/1.3194779.
  6. Tse, Geoffrey; J. Pal; U. Monteverde; R. Garg; V. Haxha; M. A. Migliorato; S. Tomic´ (2013). "जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी". J. Appl. Phys. 114 (7): 073515–073515–12. Bibcode:2013JAP...114g3515T. doi:10.1063/1.4818798. S2CID 14023644.
  7. A. Beya-Wakata; et al. (2011). "III-V अर्धचालकों में प्रथम और द्वितीय क्रम की पीज़ोइलेक्ट्रिसिटी". Phys. Rev. B. 84 (19): 195207. Bibcode:2011PhRvB..84s5207B. doi:10.1103/PhysRevB.84.195207.
  8. Pal, Joydeep; G. Tse; V. Haxha; M.A. Migliorato; S. Tomic´ (2011). "जिंक ब्लेंड GaAs और InAs सेमीकंडक्टर्स में नॉन-लीनियर पीजोइलेक्ट्रिसिटी". Phys. Rev. B. 84 (8): 085211. Bibcode:2011PhRvB..84h5211P. doi:10.1103/PhysRevB.84.085211.
  9. L. Pedesseau; C. Katan; J. Even (2012). "गैर-सेंट्रोसिमेट्रिक सामग्रियों में इलेक्ट्रोस्ट्रिक्शन और गैर-रेखीय पीजोइलेक्ट्रिसिटी के उलझाव पर" (PDF). Appl. Phys. Lett. 100 (3): 031903. Bibcode:2012ApPhL.100c1903P. doi:10.1063/1.3676666.
  10. Al-Zahrani, Hanan; J.Pal; M.A. Migliorato (2013). "वर्टज़ाइट ZnO सेमीकंडक्टर्स में नॉन लीनियर पीजोइलेक्ट्रिसिटी". Nano Energy. 2 (6): 1214–1217. doi:10.1016/j.nanoen.2013.05.005.
  11. Pierre-Yves Prodhomme; Annie Beya-Wakata; Gabriel Bester (2013). "वर्टज़ाइट सेमीकंडक्टर्स में नॉनलाइनियर पीजोइलेक्ट्रिसिटी". Phys. Rev. B. 88 (12): 121304(R). Bibcode:2013PhRvB..88l1304P. doi:10.1103/PhysRevB.88.121304.
  12. Al-Zahrani, Hanan; J.Pal; M.A. Migliorato; G. Tse; Dapeng Yu (2015). "III-V कोर-शेल नैनोवायर में पीजोइलेक्ट्रिक फील्ड एन्हांसमेंट". Nano Energy. 14: 382–391. doi:10.1016/j.nanoen.2014.11.046.
  13. Crutchley, Benjamin; I. P. Marko; S. J. Sweeney; J. Pal; M.A. Migliorato (2013). "उच्च हाइड्रोस्टैटिक दबाव पर निर्भर तकनीकों का उपयोग करके InGaN-आधारित एलईडी के ऑप्टिकल गुणों की जांच की गई". Physica Status Solidi B. 250 (4): 698–702. Bibcode:2013PSSBR.250..698C. doi:10.1002/pssb.201200514.
  14. Pal, Joydeep; M. A. Migliorato; C.-K. Li; Y.-R. Wu; B. G. Crutchley; I. P. Marko; S. J. Sweeney (2000). "स्ट्रेन और पीजोइलेक्ट्रिक फील्ड प्रबंधन के माध्यम से InGaN-आधारित एलईडी की दक्षता में वृद्धि". J. Appl. Phys. 114 (3): 073104. Bibcode:2000JChPh.113..987C. doi:10.1063/1.481879.