कॉर्टिकल स्तंभ: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Group of neurons in the cortex of the brain}}
{{Short description|Group of neurons in the cortex of the brain}}
एक कॉर्टिकल स्तंभ [[न्यूरॉन|तंत्रिका कोशिका]] का एक समूह है जो कॉर्टिकल सतह के लंबवत मस्तिष्क के [[सेरेब्रल कॉर्टेक्स|प्रमस्तिष्क प्रांतस्था]] के माध्यम से एक बेलनाकार संरचना बनाते है।<ref name="Mountcastle1957">{{cite journal |last1=Mountcastle |first1=Vernon |title=बिल्ली के दैहिक संवेदी प्रांतस्था के एकल न्यूरॉन्स के रूपात्मक और स्थलाकृतिक गुण|journal=Journal of Neurophysiology |volume=20 |issue=4 |pages=408–34 |date=July 1957 |doi=10.1152/jn.1957.20.4.408 |pmid=13439410 |doi-access=free }}</ref> संरचना की पहली बार 1957 में माउंटकैसल द्वारा पहचान की गई थी। बाद में उन्होंने [[कॉर्टिकल मिनिकॉलम|प्रांतस्था सूक्ष्मस्तंभ]] को नवप्रावार की मूल इकाइयों के रूप में पहचाना, जिन्हें स्तंभों में व्यवस्थित किया गया था।<ref>{{cite journal |last1=Mountcastle |first1=Vernon |title=नियोकोर्टेक्स का स्तंभकार संगठन|journal=Brain |date=1997 |volume=120 |issue=4 |pages=701–722 |doi=10.1093/brain/120.4.701 |pmid=9153131 |doi-access=free }}</ref> प्रत्येक में समान प्रकार के तंत्रिका कोशिका, अनुयोजकता और पदच्युति गुण होते हैं।<ref name="Bennett2020">{{cite journal |last1=Bennett |first1=Max |title=सेंसरी कॉर्टेक्स में नियोकोर्टिकल माइक्रोक्रिकिट के एकीकृत सिद्धांत पर एक प्रयास|journal=Frontiers in Neural Circuits |date=2020 |volume=14 |page=40 |doi=10.3389/fncir.2020.00040 |pmid=32848632 |pmc=7416357 |doi-access=free }}</ref> स्तंभ को अतिस्तंभ, मैक्रोस्तंभ,<ref name=":0">{{Cite journal|last=Buxhoeveden|first=D. P.|date=2002-05-01|title=तंत्रिका विज्ञान में मिनीकॉलम परिकल्पना|journal=Brain|volume=125|issue=5|pages=935–951|doi=10.1093/brain/awf110|pmid=11960884|issn=0006-8950|doi-access=free}}</ref> कार्यात्मक स्तंभ<ref name=":1">{{Cite journal|last1=Lodato|first1=Simona|last2=Arlotta|first2=Paola|date=2015-11-13|title=स्तनधारी सेरेब्रल कॉर्टेक्स में न्यूरोनल विविधता उत्पन्न करना|journal=Annual Review of Cell and Developmental Biology|volume=31|issue=1|pages=699–720|doi=10.1146/annurev-cellbio-100814-125353|pmc=4778709|pmid=26359774|quote=Functional columns were first defined in the cortex by Mountcastle (1957), who proposed the columnar hypothesis, which states that the cortex is composed of discrete, modular columns of neurons, characterized by a consistent connectivity profile.}}</ref> या कभी-कभी कॉर्टिकल मॉड्यूल भी कहा जाता है।<ref>{{cite book |author1=Kolb, Bryan |author2=Whishaw, Ian Q. |title=मानव न्यूरोसाइकोलॉजी के मूल तत्व|publisher=Worth |location=New York |year=2003 |isbn=978-0-7167-5300-1}}</ref> लघुस्तंभ (सूक्ष्मस्तंभ) के भीतर तंत्रिका कोशिका समान विशेषताओं को कूटबद्ध करते हैं, जबकि अतिस्तंभ एक इकाई को दर्शाते है जिसमें ग्रहणशील क्षेत्र मापदंडों के किसी दिए गए समूहित के लिए मानों का पूरा समूह होता है।<ref name="horton">{{cite journal |vauthors=Horton JC, Adams DL |title=The cortical column: a structure without a function |journal=Philos. Trans. R. Soc. Lond. B Biol. Sci. |volume=360 |issue=1456 |pages=837–862 |year=2005 |pmid=15937015 |doi=10.1098/rstb.2005.1623 |pmc=1569491}}</ref> कॉर्टिकल मॉड्यूल को या तो अतिस्तंभ [[वर्नोन बेंजामिन माउंटकैसल]]|(माउंटकैसल) के पर्याय के रूप में परिभाषित किया गया है या एकाधिक अतिव्यापी अतिस्तंभ के ऊतक कक्ष के रूप में परिभाषित किया गया है।<ref>{{cite journal|pmid=13955384 | volume=165 | issue=3 | title=कैट्स स्ट्रायट कोर्टेक्स में कॉलम का आकार और व्यवस्था|date=Mar 1963 | journal=J Physiol | pages=559–68 | pmc=1359325 | last1 = Hubel | first1 = DH | last2 = Wiesel | first2 = TN | doi=10.1113/jphysiol.1963.sp007079}}</ref>
एक कॉर्टिकल स्तंभ [[न्यूरॉन|तंत्रिका कोशिका]] का एक समूह है जो कॉर्टिकल सतह के लंबवत मस्तिष्क के [[सेरेब्रल कॉर्टेक्स|प्रमस्तिष्क प्रांतस्था]] के माध्यम से एक बेलनाकार संरचना बनाते है।<ref name="Mountcastle1957">{{cite journal |last1=Mountcastle |first1=Vernon |title=बिल्ली के दैहिक संवेदी प्रांतस्था के एकल न्यूरॉन्स के रूपात्मक और स्थलाकृतिक गुण|journal=Journal of Neurophysiology |volume=20 |issue=4 |pages=408–34 |date=July 1957 |doi=10.1152/jn.1957.20.4.408 |pmid=13439410 |doi-access=free }}</ref> संरचना की पहली बार 1957 में माउंटकैसल द्वारा पहचान की गई थी। बाद में उन्होंने [[कॉर्टिकल मिनिकॉलम|प्रांतस्था सूक्ष्मस्तंभ]] को नवप्रावार की मूल इकाइयों के रूप में पहचाना, जिन्हें स्तंभों में व्यवस्थित किया गया था।<ref>{{cite journal |last1=Mountcastle |first1=Vernon |title=नियोकोर्टेक्स का स्तंभकार संगठन|journal=Brain |date=1997 |volume=120 |issue=4 |pages=701–722 |doi=10.1093/brain/120.4.701 |pmid=9153131 |doi-access=free }}</ref> प्रत्येक में समान प्रकार के तंत्रिका कोशिका, अनुयोजकता और पदच्युति गुण होते हैं। <ref name="Bennett2020">{{cite journal |last1=Bennett |first1=Max |title=सेंसरी कॉर्टेक्स में नियोकोर्टिकल माइक्रोक्रिकिट के एकीकृत सिद्धांत पर एक प्रयास|journal=Frontiers in Neural Circuits |date=2020 |volume=14 |page=40 |doi=10.3389/fncir.2020.00040 |pmid=32848632 |pmc=7416357 |doi-access=free }}</ref> स्तंभ को अतिस्तंभ, मैक्रोस्तंभ,<ref name=":0">{{Cite journal|last=Buxhoeveden|first=D. P.|date=2002-05-01|title=तंत्रिका विज्ञान में मिनीकॉलम परिकल्पना|journal=Brain|volume=125|issue=5|pages=935–951|doi=10.1093/brain/awf110|pmid=11960884|issn=0006-8950|doi-access=free}}</ref> कार्यात्मक स्तंभ<ref name=":1">{{Cite journal|last1=Lodato|first1=Simona|last2=Arlotta|first2=Paola|date=2015-11-13|title=स्तनधारी सेरेब्रल कॉर्टेक्स में न्यूरोनल विविधता उत्पन्न करना|journal=Annual Review of Cell and Developmental Biology|volume=31|issue=1|pages=699–720|doi=10.1146/annurev-cellbio-100814-125353|pmc=4778709|pmid=26359774|quote=Functional columns were first defined in the cortex by Mountcastle (1957), who proposed the columnar hypothesis, which states that the cortex is composed of discrete, modular columns of neurons, characterized by a consistent connectivity profile.}}</ref> या कभी-कभी कॉर्टिकल मॉड्यूल भी कहा जाता है।<ref>{{cite book |author1=Kolb, Bryan |author2=Whishaw, Ian Q. |title=मानव न्यूरोसाइकोलॉजी के मूल तत्व|publisher=Worth |location=New York |year=2003 |isbn=978-0-7167-5300-1}}</ref> लघुस्तंभ (सूक्ष्मस्तंभ) के भीतर तंत्रिका कोशिका समान विशेषताओं को कूटबद्ध करते हैं, जबकि अतिस्तंभ एक इकाई को दर्शाते है जिसमें ग्रहणशील क्षेत्र मापदंडों के किसी दिए गए समूहित के लिए मानों का पूरा समूह होता है।<ref name="horton">{{cite journal |vauthors=Horton JC, Adams DL |title=The cortical column: a structure without a function |journal=Philos. Trans. R. Soc. Lond. B Biol. Sci. |volume=360 |issue=1456 |pages=837–862 |year=2005 |pmid=15937015 |doi=10.1098/rstb.2005.1623 |pmc=1569491}}</ref> कॉर्टिकल मॉड्यूल को या तो अतिस्तंभ [[वर्नोन बेंजामिन माउंटकैसल]]|(माउंटकैसल) के पर्याय के रूप में परिभाषित किया गया है या एकाधिक अतिव्यापी अतिस्तंभ के ऊतक कक्ष के रूप में परिभाषित किया गया है। <ref>{{cite journal|pmid=13955384 | volume=165 | issue=3 | title=कैट्स स्ट्रायट कोर्टेक्स में कॉलम का आकार और व्यवस्था|date=Mar 1963 | journal=J Physiol | pages=559–68 | pmc=1359325 | last1 = Hubel | first1 = DH | last2 = Wiesel | first2 = TN | doi=10.1113/jphysiol.1963.sp007079}}</ref>


पूर्वानुमानित कोडन के लिए कॉर्टिकल स्तंभ को विहित सूक्ष्म परिपथ के रूप में प्रस्तावित किया गया है,<ref>{{cite journal |last1=Bastos |first1=AM |last2=Usrey |first2=WM |last3=Adams |first3=RA |last4=Mangun |first4=GR |last5=Fries |first5=P |last6=Friston |first6=Karl |title=पूर्वानुमानित कोडिंग के लिए कैननिकल माइक्रोक्रिस्किट|journal=Neuron |date=2012 |volume=76 |issue=4 |pages=695–711 |doi=10.1016/j.neuron.2012.10.038 |pmid=23177956 |pmc=3777738 |doi-access=free }}</ref> जिसमें अनुभूति की प्रक्रिया समान सूक्ष्म परिपथ के पदानुक्रम के माध्यम से कार्यान्वित की जाती है।<ref name="Bennett2020" /> इस दोहराव के विकासवादी लाभ ने मानव नवप्रावार को पूर्व 3 मिलियन वर्षों में लगभग 3 गुना आकार में वृद्धि करने की अनुमति दी।<ref name="Bennett2020" />
पूर्वानुमानित कोडन के लिए कॉर्टिकल स्तंभ को विहित सूक्ष्म परिपथ के रूप में प्रस्तावित किया गया है,<ref>{{cite journal |last1=Bastos |first1=AM |last2=Usrey |first2=WM |last3=Adams |first3=RA |last4=Mangun |first4=GR |last5=Fries |first5=P |last6=Friston |first6=Karl |title=पूर्वानुमानित कोडिंग के लिए कैननिकल माइक्रोक्रिस्किट|journal=Neuron |date=2012 |volume=76 |issue=4 |pages=695–711 |doi=10.1016/j.neuron.2012.10.038 |pmid=23177956 |pmc=3777738 |doi-access=free }}</ref> जिसमें अनुभूति की प्रक्रिया समान सूक्ष्म परिपथ के पदानुक्रम के माध्यम से कार्यान्वित की जाती है।<ref name="Bennett2020" /> इस दोहराव के विकासवादी लाभ ने मानव नवप्रावार को पूर्व 3 मिलियन वर्षों में लगभग 3 गुना आकार में वृद्धि करने की अनुमति दी।<ref name="Bennett2020" />
Line 27: Line 27:
कुछ पूर्व अनुमानों का खंडन करते हैं,<ref>{{Cite journal|last1=Powell|first1=T. P.|last2=Hiorns|first2=R. W.|last3=Rockel|first3=A. J.|date=June 1980|title=नियोकॉर्टेक्स की संरचना में बुनियादी एकरूपता।|journal=Brain: A Journal of Neurology|volume=103|issue=2|pages=221–244|doi=10.1093/brain/103.2.221|issn=0006-8950|pmid=6772266}}</ref> मूल शोध का अनुरोध करना बहुत यादृच्छिक है।  
कुछ पूर्व अनुमानों का खंडन करते हैं,<ref>{{Cite journal|last1=Powell|first1=T. P.|last2=Hiorns|first2=R. W.|last3=Rockel|first3=A. J.|date=June 1980|title=नियोकॉर्टेक्स की संरचना में बुनियादी एकरूपता।|journal=Brain: A Journal of Neurology|volume=103|issue=2|pages=221–244|doi=10.1093/brain/103.2.221|issn=0006-8950|pmid=6772266}}</ref> मूल शोध का अनुरोध करना बहुत यादृच्छिक है।  


<रेफरी नाम = राकिक 12099–12100 >{{Cite journal|last=Rakic|first=Pasko|date=2008-08-26|title=भ्रमित कॉर्टिकल स्तंभ|journal=Proceedings of the National Academy of Sciences|volume=105|issue=34|pages=12099–12100|doi=10.1073/pnas.0807271105|issn=0027-8424|pmid=18715998|pmc=2527871|bibcode=2008PNAS..10512099R|doi-access=free}<nowiki></ref></nowiki>
लेखक एक समान नवप्रावार का प्रस्ताव करते हैं, और कोशिका संख्याओं की गणना करने के लिए निश्चित चौड़ाई और लंबाई का चयन करते हैं। बाद के शोधों ने बताया कि वस्तुतः नवप्रावार अन्य प्रजातियों के लिए एक समान नहीं है, और नौ उच्चतम स्तनपायी प्रजातियों का अध्ययन करते हुए उन्होंने पाया कि "प्रमस्तिष्क प्रांतस्था सतह के 1 मिमी <sup>2</sup> के नीचे तंत्रिका की संख्या ... प्रजातियों में तीन गुना भिन्न होती है।" नवप्रावार प्रजातियों में एक समान नहीं है। एक स्तंभ के भीतर तंत्रिका कोशिका की वास्तविक संख्या परिवर्तनशील है, और मस्तिष्क क्षेत्रों पर निर्भर करती है और इस प्रकार स्तंभ का कार्य होता है।  
 
लेखक एक समान नवप्रावार का प्रस्ताव करते हैं, और कोशिका संख्याओं की गणना करने के लिए निश्चित चौड़ाई और लंबाई का चयन करते हैं। बाद के शोधों ने बताया कि वस्तुतः नवप्रावार अन्य प्रजातियों के लिए एक समान नहीं है,  
 
रेफरी>{{Cite journal|last1=Lent|first1=Roberto|last2=Kaas|first2=Jon H.|last3=Wong|first3=Peiyan|last4=Collins|first4=Christine E.|last5=Herculano-Houzel|first5=Suzana|date=2008-08-26|title=प्रमस्तिष्क प्रांतस्था की बुनियादी असमानता|journal=Proceedings of the National Academy of Sciences|volume=105|issue=34|pages=12593–12598|doi=10.1073/pnas.0805417105|issn=0027-8424|pmid=18689685|pmc=2527956|doi-access=free}<nowiki></ref></nowiki> और नौ उच्चतम स्तनपायी प्रजातियों का अध्ययन करते हुए उन्होंने पाया कि "प्रमस्तिष्क प्रांतस्था सतह के 1 मिमी <sup>2</sup> के नीचे तंत्रिका की संख्या ... प्रजातियों में तीन गुना भिन्न होती है।" नवप्रावार प्रजातियों में एक समान नहीं है। <रेफरी नाम = राकिक 12099–12100 /><ref>{{Cite journal|last1=Lent|first1=Roberto|last2=Azevedo|first2=Frederico A. C.|last3=Andrade‐Moraes|first3=Carlos H.|last4=Pinto|first4=Ana V. O.|date=2012|title=How many neurons do you have? Some dogmas of quantitative neuroscience under revision|journal=European Journal of Neuroscience|volume=35|issue=1|pages=1–9|doi=10.1111/j.1460-9568.2011.07923.x|pmid=22151227|s2cid=20365568|issn=1460-9568}}</ref><ref>{{Cite journal|title=Chapter 7 - Cortical Columns|pages=109–129|last=Molnár|first=Z.|date=January 2013|journal=Neural Circuit Development and Function in the Brain|doi=10.1016/B978-0-12-397267-5.00137-0|isbn=9780123972675 }}</ref> एक स्तंभ के भीतर तंत्रिका कोशिका की वास्तविक संख्या परिवर्तनशील है, और मस्तिष्क क्षेत्रों पर निर्भर करती है और इस प्रकार स्तंभ का कार्य होता है।


== यह भी देखें ==
== यह भी देखें ==
Line 62: Line 58:
}} Summarizes what is known and corrects some misconceptions.
}} Summarizes what is known and corrects some misconceptions.


{{DEFAULTSORT:Cortical Column}}[[Category: तंत्रिका सर्किट]]
{{DEFAULTSORT:Cortical Column}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Cortical Column]]
[[Category:Created On 12/05/2023]]
[[Category:Created On 12/05/2023|Cortical Column]]
[[Category:Lua-based templates|Cortical Column]]
[[Category:Machine Translated Page|Cortical Column]]
[[Category:Pages with script errors|Cortical Column]]
[[Category:Templates Vigyan Ready|Cortical Column]]
[[Category:Templates that add a tracking category|Cortical Column]]
[[Category:Templates that generate short descriptions|Cortical Column]]
[[Category:Templates using TemplateData|Cortical Column]]
[[Category:तंत्रिका सर्किट|Cortical Column]]

Latest revision as of 12:42, 14 November 2023

एक कॉर्टिकल स्तंभ तंत्रिका कोशिका का एक समूह है जो कॉर्टिकल सतह के लंबवत मस्तिष्क के प्रमस्तिष्क प्रांतस्था के माध्यम से एक बेलनाकार संरचना बनाते है।[1] संरचना की पहली बार 1957 में माउंटकैसल द्वारा पहचान की गई थी। बाद में उन्होंने प्रांतस्था सूक्ष्मस्तंभ को नवप्रावार की मूल इकाइयों के रूप में पहचाना, जिन्हें स्तंभों में व्यवस्थित किया गया था।[2] प्रत्येक में समान प्रकार के तंत्रिका कोशिका, अनुयोजकता और पदच्युति गुण होते हैं। [3] स्तंभ को अतिस्तंभ, मैक्रोस्तंभ,[4] कार्यात्मक स्तंभ[5] या कभी-कभी कॉर्टिकल मॉड्यूल भी कहा जाता है।[6] लघुस्तंभ (सूक्ष्मस्तंभ) के भीतर तंत्रिका कोशिका समान विशेषताओं को कूटबद्ध करते हैं, जबकि अतिस्तंभ एक इकाई को दर्शाते है जिसमें ग्रहणशील क्षेत्र मापदंडों के किसी दिए गए समूहित के लिए मानों का पूरा समूह होता है।[7] कॉर्टिकल मॉड्यूल को या तो अतिस्तंभ वर्नोन बेंजामिन माउंटकैसल|(माउंटकैसल) के पर्याय के रूप में परिभाषित किया गया है या एकाधिक अतिव्यापी अतिस्तंभ के ऊतक कक्ष के रूप में परिभाषित किया गया है। [8]

पूर्वानुमानित कोडन के लिए कॉर्टिकल स्तंभ को विहित सूक्ष्म परिपथ के रूप में प्रस्तावित किया गया है,[9] जिसमें अनुभूति की प्रक्रिया समान सूक्ष्म परिपथ के पदानुक्रम के माध्यम से कार्यान्वित की जाती है।[3] इस दोहराव के विकासवादी लाभ ने मानव नवप्रावार को पूर्व 3 मिलियन वर्षों में लगभग 3 गुना आकार में वृद्धि करने की अनुमति दी।[3]

रैट कंपन कॉर्टेक्स में पांच कॉर्टिकल स्तंभ का 3डी पुनर्निर्माण

स्तंभकार परिकल्पना में कहा गया है कि कॉर्टेक्स तंत्रिका कोशिका के असतत, मॉड्यूलर स्तंभों से बना है, जो सुसंगत अनुयोजकता रूपरेखा की विशेषता है।[5] सूचना के कॉर्टिकल प्रसंस्करण की व्याख्या करने के लिए स्तंभकार संगठन परिकल्पना वर्तमान में सबसे व्यापक रूप से अपनाई गई है।[10]


स्तनधारी प्रमस्तिष्क प्रांतस्था

स्तनधारी प्रमस्तिष्क प्रांतस्था, सफेद पदार्थ को घेरने वाला ग्रे पदार्थ, परतों से बना होता है। मानव वल्कुट 2 से 3 मिमी के बीच मोटा होता है।[11] अधिकांश स्तनधारियों में परतों की संख्या समान होती है, परन्तु पूरे प्रांतस्था में भिन्न होती है। नवप्रावार में 6 परतों को पहचाना जा सकता है, यद्यपि कई क्षेत्रों में एक या एक से अधिक परतों की कमी होती है, कुछ परतें द्वीपसमूह और पैलियोपैलियम में स्थित होती हैं।[12]


स्तंभकार कार्यात्मक संगठन

मूल रूप से वर्नोन माउंटकैसल द्वारा तैयार किए गए स्तंभकार कार्यात्मक संगठन,[1] सुझाव देता है कि क्षैतिज रूप से एक दूसरे से 0.5 मिमी (500 माइक्रोन) से अधिक के तंत्रिका कोशिका में अतिव्यापी संवेदी ग्रहणशील क्षेत्र नहीं होते हैं, और अन्य प्रयोग समान परिणाम देते हैं: 200–800 माइक्रोन।[4][13][14] विभिन्न अनुमान बताते हैं कि अतिस्तंभ में 50 से 100 कॉर्टिकल सूक्ष्मस्तंभ होते हैं, जिनमें से प्रत्येक में लगभग 80 तंत्रिका कोशिका होते हैं। उनकी भूमिका को 'सूचना प्रसंस्करण की कार्यात्मक इकाइयों' के रूप में सबसे ठीक रूप समझा जा सकता है।

एक महत्वपूर्ण अंतर यह है कि स्तंभकार संगठन परिभाषा के अनुसार कार्यात्मक है, और प्रमस्तिष्क प्रांतस्था की स्थानीय अनुयोजकता को दर्शाते है। कॉर्टेक्स की मोटाई के भीतर ऊपर और नीचे के संपर्क उन संपर्कों की तुलना में बहुत अधिक सघन होते हैं जो एक ओर से दूसरे तक फैले होते हैं।

हबल और विज़ल अध्ययन

डेविड एच. हबेल और टॉर्स्टन वीज़ल ने दृष्टि में अपने स्वयं के अध्ययन के साथ केन्द्रपश्‍च कर्णक में माउंटकैसल की खोजों का अनुसरण किया। खोजों का एक भाग जिसके परिणामस्वरूप उन्हें 1981 का नोबेल पुरस्कार मिला[15] यह था कि दृश्य कोर्टेक्स में कॉर्टिकल स्तंभ भी थे, और यह कि निकटवर्ती स्तंभ भी फलन में उन पंक्तियों के उन्मुखीकरण के संदर्भ में संबंधित थे जो अधिकतम निर्वहन को उत्पन्न करते थे। हबेल और विज़ेल ने कॉर्टिकल संगठन पर पर्यावरणीय परिवर्तनों के प्रभाव को प्रदर्शित करने वाले कार्य के साथ अपने स्वयं के अध्ययन का अनुसरण किया, और इन कार्यों के कुल योग के परिणामस्वरूप उन्हें नोबेल पुरस्कार मिला।

कॉर्टिकल स्तंभ की संख्या

मानव नवप्रावार में लगभग 200 मिलियन (2×108) कॉर्टिकल सूक्ष्मस्तंभ हैं,[16] जिनमें से प्रत्येक में लगभग 110 तंत्रिका कोशिका हैं, और नवप्रावार में 21-26 बिलियन (2.1×1010–2.6×1010) तंत्रिका कोशिका के अनुमान हैं। कॉर्टिकल स्तंभ प्रति 50 से 100 कॉर्टिकल सूक्ष्मस्तंभ के साथ मानव में 2-4 मिलियन (2×106–4×106) कॉर्टिकल स्तंभ होंगे। यदि स्तंभ अतिव्यापी हो सकते हैं, तो अधिक हो सकते है, जैसा कि त्सुनोडा एट अल द्वारा सुझाया गया है।[17] जेफ हॉकिंग्स का अनुरोध है कि उनकी कंपनी नुमेंटा द्वारा किए गए शोध के आधार पर, मानव नवप्रावार में मात्र 150,000 स्तंभ हैं।[18]

ऐसे अनुरोध हैं कि छोटे-स्तंभ में 400 से अधिक प्रमुख कोशिका हो सकती हैं,[19] परन्तु यह स्पष्ट नहीं है कि इसमें तंत्रिबंध कोशिकाएं सम्मिलित हैं या नहीं।

कुछ पूर्व अनुमानों का खंडन करते हैं,[20] मूल शोध का अनुरोध करना बहुत यादृच्छिक है।

लेखक एक समान नवप्रावार का प्रस्ताव करते हैं, और कोशिका संख्याओं की गणना करने के लिए निश्चित चौड़ाई और लंबाई का चयन करते हैं। बाद के शोधों ने बताया कि वस्तुतः नवप्रावार अन्य प्रजातियों के लिए एक समान नहीं है, और नौ उच्चतम स्तनपायी प्रजातियों का अध्ययन करते हुए उन्होंने पाया कि "प्रमस्तिष्क प्रांतस्था सतह के 1 मिमी 2 के नीचे तंत्रिका की संख्या ... प्रजातियों में तीन गुना भिन्न होती है।" नवप्रावार प्रजातियों में एक समान नहीं है। एक स्तंभ के भीतर तंत्रिका कोशिका की वास्तविक संख्या परिवर्तनशील है, और मस्तिष्क क्षेत्रों पर निर्भर करती है और इस प्रकार स्तंभ का कार्य होता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Mountcastle, Vernon (July 1957). "बिल्ली के दैहिक संवेदी प्रांतस्था के एकल न्यूरॉन्स के रूपात्मक और स्थलाकृतिक गुण". Journal of Neurophysiology. 20 (4): 408–34. doi:10.1152/jn.1957.20.4.408. PMID 13439410.
  2. Mountcastle, Vernon (1997). "नियोकोर्टेक्स का स्तंभकार संगठन". Brain. 120 (4): 701–722. doi:10.1093/brain/120.4.701. PMID 9153131.
  3. 3.0 3.1 3.2 Bennett, Max (2020). "सेंसरी कॉर्टेक्स में नियोकोर्टिकल माइक्रोक्रिकिट के एकीकृत सिद्धांत पर एक प्रयास". Frontiers in Neural Circuits. 14: 40. doi:10.3389/fncir.2020.00040. PMC 7416357. PMID 32848632.
  4. 4.0 4.1 Buxhoeveden, D. P. (2002-05-01). "तंत्रिका विज्ञान में मिनीकॉलम परिकल्पना". Brain. 125 (5): 935–951. doi:10.1093/brain/awf110. ISSN 0006-8950. PMID 11960884.
  5. 5.0 5.1 Lodato, Simona; Arlotta, Paola (2015-11-13). "स्तनधारी सेरेब्रल कॉर्टेक्स में न्यूरोनल विविधता उत्पन्न करना". Annual Review of Cell and Developmental Biology. 31 (1): 699–720. doi:10.1146/annurev-cellbio-100814-125353. PMC 4778709. PMID 26359774. Functional columns were first defined in the cortex by Mountcastle (1957), who proposed the columnar hypothesis, which states that the cortex is composed of discrete, modular columns of neurons, characterized by a consistent connectivity profile.
  6. Kolb, Bryan; Whishaw, Ian Q. (2003). मानव न्यूरोसाइकोलॉजी के मूल तत्व. New York: Worth. ISBN 978-0-7167-5300-1.
  7. Horton JC, Adams DL (2005). "The cortical column: a structure without a function". Philos. Trans. R. Soc. Lond. B Biol. Sci. 360 (1456): 837–862. doi:10.1098/rstb.2005.1623. PMC 1569491. PMID 15937015.
  8. Hubel, DH; Wiesel, TN (Mar 1963). "कैट्स स्ट्रायट कोर्टेक्स में कॉलम का आकार और व्यवस्था". J Physiol. 165 (3): 559–68. doi:10.1113/jphysiol.1963.sp007079. PMC 1359325. PMID 13955384.
  9. Bastos, AM; Usrey, WM; Adams, RA; Mangun, GR; Fries, P; Friston, Karl (2012). "पूर्वानुमानित कोडिंग के लिए कैननिकल माइक्रोक्रिस्किट". Neuron. 76 (4): 695–711. doi:10.1016/j.neuron.2012.10.038. PMC 3777738. PMID 23177956.
  10. Defelipe, Javier (2012). "नियोकोर्टिकल कॉलम". Frontiers in Neuroanatomy. 6: 5. doi:10.3389/fnana.2012.00022. PMC 3278674. PMID 22347848.
  11. Saladin, Kenneth (2011). मानव शरीर रचना विज्ञान (3rd ed.). McGraw-Hill. p. 416. ISBN 9780071222075.
  12. R Nieuwenhuys; HJ Donkelaar; C Nicholson; WJAJ Smeets; H Wicht (1998). कशेरुकियों का केंद्रीय तंत्रिका तंत्र. Berlin [u.a.]: Springer. ISBN 978-3540560135.
  13. Hubel DH, Wiesel TN, Stryker MP (September 1977). "Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique". Nature. 269 (5626): 328–30. Bibcode:1977Natur.269..328H. doi:10.1038/269328a0. PMID 409953. S2CID 4246375.
  14. Leise EM (1990). "Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates" (PDF). Brain Research. Brain Research Reviews. 15 (1): 1–23. doi:10.1016/0165-0173(90)90009-d. PMID 2194614. S2CID 4996690.
  15. "The Nobel Prize in Medicine 1981". Retrieved 2008-04-13.
  16. Krueger, James M.; et al. (2008). "न्यूरोनल असेंबली की मूलभूत संपत्ति के रूप में सो जाओ". Nature Reviews Neuroscience. 9 (12): 910–919. doi:10.1038/nrn2521. PMC 2586424. PMID 18985047.
  17. Kazushige Tsunoda; Yukako Yamane; Makoto Nishizaki; Manabu Tanifuji (August 2001). "फीचर कॉलम के संयोजन से जटिल वस्तुओं को मकाक इन्फेरोटेम्पोरल कॉर्टेक्स में दर्शाया गया है". Nat. Neurosci. 4 (8): 832–838. doi:10.1038/90547. PMID 11477430. S2CID 14714957.
  18. Hawkins, Jeff (2021). A Thousand Brains: A New Theory of Intelligence. Basic Books. ISBN 978-1541675810. Retrieved 23 January 2023.
  19. O. David, in Brain Mapping (2015). "Acquisition Methods, Methods and Modeling". In Arthur W. Toga (ed.). Brain Mapping – An Encyclopedic Reference. ISBN 9780123973160.
  20. Powell, T. P.; Hiorns, R. W.; Rockel, A. J. (June 1980). "नियोकॉर्टेक्स की संरचना में बुनियादी एकरूपता।". Brain: A Journal of Neurology. 103 (2): 221–244. doi:10.1093/brain/103.2.221. ISSN 0006-8950. PMID 6772266.


बाहरी संबंध