बहु-एजेंट प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Multi-agent system}}
{{Multi-agent system}}
[[Image:IntelligentAgent-SimpleReflex.png|thumb|right|सिंपल रिफ्लेक्स एजेंट]]
[[Image:IntelligentAgent-SimpleReflex.png|thumb|right|सिंपल रिफ्लेक्स एजेंट]]
[[Image:IntelligentAgent-Learning.png|thumb|right|लर्निंग एजेंट]]एक '''मल्टी-एजेंट सिस्टम''' (एमएएस या सेल्फ-आर्गनाइज्ड सिस्टम) कंप्यूटराइज्ड सिस्टम है जो अनेक इंटरैक्टिंग [[बुद्धिमान एजेंट|इंटेलिजेंस एजेंट]] से बना होता है।<ref name="tro">Hu, J.; Bhowmick, P.; Jang, I.;  Arvin, F.; Lanzon, A., "[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9423979 A Decentralized Cluster Formation Containment Framework for Multirobot Systems]" IEEE Transactions on Robotics, 2021.</ref> इस प्रकार से मल्टी-एजेंट सिस्टम उन समस्याओं को हल कर सकते हैं जिन्हें हल करना किसी व्यक्तिगत एजेंट या [[ अखंड प्रणाली |मोनोलिथिक सिस्टम]] के लिए कठिन या असंभव है।<ref name="tcas">Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., "[https://ieeexplore.ieee.org/abstract/document/9409965 Robust Formation Coordination of Robot Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experiments]" IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.</ref> इसलिए इंटेलिजेंस में वैज्ञानिक पद्धति, फ़ंक्शन (कंप्यूटर विज्ञान), [[कलन विधि|एल्गोरिदमिक खोज]] दृष्टिकोण, एल्गोरिदम या [[सुदृढीकरण सीखना|रिइंफोर्समेंट लर्निंग]] सम्मिलित हो सकता है।<ref name="tvt2">Hu, J.; Bhowmick, P.; Lanzon, A., "[https://ieeexplore.ieee.org/document/9468402 Group Coordinated Control of Networked Mobile Robots with Applications to Object Transportation]" IEEE Transactions on Vehicular Technology, 2021.</ref><ref>{{cite journal|hdl=1874/20827|title=ट्रैफिक लाइट नियंत्रण के लिए मल्टी-एजेंट सुदृढीकरण सीखना|journal=Machine Learning: Proceedings of the Seventeenth International Conference (Icml'2000)|year=2000|pages=1151–1158|last1=Wiering|first1=M. A.}}</ref>
[[Image:IntelligentAgent-Learning.png|thumb|right|लर्निंग एजेंट]]'''मल्टी-एजेंट सिस्टम''' (एमएएस या सेल्फ-आर्गनाइज्ड सिस्टम) कंप्यूटराइज्ड सिस्टम है जो अनेक इंटरैक्टिंग [[बुद्धिमान एजेंट|इंटेलिजेंस एजेंट]] से बना होता है।<ref name="tro">Hu, J.; Bhowmick, P.; Jang, I.;  Arvin, F.; Lanzon, A., "[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9423979 A Decentralized Cluster Formation Containment Framework for Multirobot Systems]" IEEE Transactions on Robotics, 2021.</ref> इस प्रकार से मल्टी-एजेंट सिस्टम उन समस्याओं को हल कर सकते हैं जिन्हें हल करना किसी व्यक्तिगत एजेंट या [[ अखंड प्रणाली |मोनोलिथिक सिस्टम]] के लिए कठिन या असंभव है।<ref name="tcas">Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., "[https://ieeexplore.ieee.org/abstract/document/9409965 Robust Formation Coordination of Robot Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experiments]" IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.</ref> इसलिए इंटेलिजेंस में वैज्ञानिक पद्धति, फ़ंक्शन (कंप्यूटर विज्ञान), [[कलन विधि|एल्गोरिदमिक खोज]] दृष्टिकोण, एल्गोरिदम या [[सुदृढीकरण सीखना|रिइंफोर्समेंट लर्निंग]] सम्मिलित हो सकता है।<ref name="tvt2">Hu, J.; Bhowmick, P.; Lanzon, A., "[https://ieeexplore.ieee.org/document/9468402 Group Coordinated Control of Networked Mobile Robots with Applications to Object Transportation]" IEEE Transactions on Vehicular Technology, 2021.</ref><ref>{{cite journal|hdl=1874/20827|title=ट्रैफिक लाइट नियंत्रण के लिए मल्टी-एजेंट सुदृढीकरण सीखना|journal=Machine Learning: Proceedings of the Seventeenth International Conference (Icml'2000)|year=2000|pages=1151–1158|last1=Wiering|first1=M. A.}}</ref>
अधिक ओवरलैप के अतिरिक्त, मल्टी-एजेंट सिस्टम प्रायः [[एजेंट-आधारित मॉडल]] (एबीएम) के समान नहीं होता है। इस प्रकार से एबीएम का लक्ष्य विशिष्ट व्यावहारिक या इंजीनियरिंग समस्याओं को हल करने के अतिरिक्त , सामान्यतः नेचुरल सिस्टम में सरल नियमों का पालन करने वाले एजेंटों (जिन्हें इंटेलिजेंस होने की आवश्यकता नहीं है) के सामूहिक व्यवहार में व्याख्यात्मक अंतर्दृष्टि की खोज करना है। एबीएम की शब्दावली विज्ञान में और एमएएस की इंजीनियरिंग और टेक्नोलॉजी में अधिक बार उपयोग की जाती है।<ref name="Niazi-Hussain">{{cite journal |first1=Muaz |last1=Niazi |first2=Amir |last2=Hussain |year=2011 |title=Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual Survey |journal=Scientometrics |volume=89 |issue=2 |pages=479–499 |doi=10.1007/s11192-011-0468-9 |url=https://www.researchgate.net/publication/220365334 |format=PDF|arxiv=1708.05872 |s2cid=17934527 }}</ref> ऐसे अनुप्रयोग जहां मल्टी-एजेंट सिस्टम अनुसंधान उचित दृष्टिकोण प्रदान कर सकता है, उनमें ऑनलाइन ट्रेडिंग ,<ref>{{cite journal |first1=Alex |last1=Rogers |first2=E. |last2=David |first3=J. |last3=Schiff |first4=N.R. |last4=Jennings |url=http://eprints.ecs.soton.ac.uk/12716/ |title=ईबे नीलामी में प्रॉक्सी बोली और न्यूनतम बोली वृद्धि के प्रभाव|journal=ACM Transactions on the Web |volume=1 |issue=2 |pages=9–es |year=2007 |doi=10.1145/1255438.1255441 |citeseerx=10.1.1.65.4539 |s2cid=207163424 |access-date=2008-03-18 |archive-date=2010-04-02 |archive-url=https://web.archive.org/web/20100402101304/http://eprints.ecs.soton.ac.uk/12716/ |url-status=dead }}</ref> आपदा प्रतिक्रिया,<ref>{{cite journal |first1=Nathan |last1=Schurr |first2=Janusz |last2=Marecki |first3=Milind |last3=Tambe |first4=Paul |last4=Scerri |first5=Nikhil |last5=Kasinadhuni |first6=J.P. |last6=Lewis |url=http://teamcore.usc.edu/papers/2005/SS105SchurrN.pdf |title=The Future of Disaster Response: Humans Working with Multiagent Teams using DEFACTO |year=2005 |access-date=2012-04-28 |archive-date=2013-06-03 |archive-url=https://web.archive.org/web/20130603165342/http://teamcore.usc.edu/papers/2005/SS105SchurrN.pdf |url-status=dead }}</ref><ref>{{cite journal |last1=Genc|first1=Zulkuf  |url=http://www.gdmc.nl/gi4dmdocs/Gi4DM_2012_Genc.pdf |title=आपदा प्रबंधन के लिए एजेंट-आधारित सूचना अवसंरचना|journal=Intelligent Systems for Crisis Management |pages=349–355 |date=2013|display-authors=etal|doi=10.1007/978-3-642-33218-0_26 |isbn=978-3-642-33217-3 |series=Lecture Notes in Geoinformation and Cartography }}</ref> टारगेट सर्विलांस <ref>{{cite journal |last1=Hu |first1=Junyan |last2=Bhowmick |first2=Parijat|last3=Lanzon |first3=Alexander  |title=निर्देशित ग्राफ़ पर एकाधिक लीडरों के साथ मल्टीएजेंट सिस्टम के लिए वितरित अनुकूली समय-भिन्न समूह गठन ट्रैकिंग|journal=IEEE Transactions on Control of Network Systems |date=2020  |volume=7 |pages=140–150 |doi=10.1109/TCNS.2019.2913619 |s2cid=149609966 |doi-access=free }}</ref> और सामाजिक स्ट्रक्चर मॉडलिंग सम्मिलित है।<ref>{{cite journal |first1=Ron |last1=Sun|author-link1=Ron Sun |first2=Isaac |last2=Naveh |url=http://jasss.soc.surrey.ac.uk/7/3/5.html |title=संज्ञानात्मक रूप से यथार्थवादी एजेंट मॉडल का उपयोग करके संगठनात्मक निर्णय लेने का अनुकरण करना|journal=Journal of Artificial Societies and Social Simulation|date=30 June 2004}}</ref>
अधिक ओवरलैप के अतिरिक्त, मल्टी-एजेंट सिस्टम प्रायः [[एजेंट-आधारित मॉडल]] (एबीएम) के समान नहीं होता है। इस प्रकार से एबीएम का लक्ष्य विशिष्ट व्यावहारिक या इंजीनियरिंग समस्याओं को हल करने के अतिरिक्त , सामान्यतः नेचुरल सिस्टम में सरल नियमों का पालन करने वाले एजेंटों (जिन्हें इंटेलिजेंस होने की आवश्यकता नहीं है) के सामूहिक व्यवहार में व्याख्यात्मक अंतर्दृष्टि की खोज करना है। एबीएम की शब्दावली विज्ञान में और एमएएस की इंजीनियरिंग और टेक्नोलॉजी में अधिक बार उपयोग की जाती है।<ref name="Niazi-Hussain">{{cite journal |first1=Muaz |last1=Niazi |first2=Amir |last2=Hussain |year=2011 |title=Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual Survey |journal=Scientometrics |volume=89 |issue=2 |pages=479–499 |doi=10.1007/s11192-011-0468-9 |url=https://www.researchgate.net/publication/220365334 |format=PDF|arxiv=1708.05872 |s2cid=17934527 }}</ref> ऐसे अनुप्रयोग जहां मल्टी-एजेंट सिस्टम अनुसंधान उचित दृष्टिकोण प्रदान कर सकता है, उनमें ऑनलाइन ट्रेडिंग ,<ref>{{cite journal |first1=Alex |last1=Rogers |first2=E. |last2=David |first3=J. |last3=Schiff |first4=N.R. |last4=Jennings |url=http://eprints.ecs.soton.ac.uk/12716/ |title=ईबे नीलामी में प्रॉक्सी बोली और न्यूनतम बोली वृद्धि के प्रभाव|journal=ACM Transactions on the Web |volume=1 |issue=2 |pages=9–es |year=2007 |doi=10.1145/1255438.1255441 |citeseerx=10.1.1.65.4539 |s2cid=207163424 |access-date=2008-03-18 |archive-date=2010-04-02 |archive-url=https://web.archive.org/web/20100402101304/http://eprints.ecs.soton.ac.uk/12716/ |url-status=dead }}</ref> आपदा प्रतिक्रिया,<ref>{{cite journal |first1=Nathan |last1=Schurr |first2=Janusz |last2=Marecki |first3=Milind |last3=Tambe |first4=Paul |last4=Scerri |first5=Nikhil |last5=Kasinadhuni |first6=J.P. |last6=Lewis |url=http://teamcore.usc.edu/papers/2005/SS105SchurrN.pdf |title=The Future of Disaster Response: Humans Working with Multiagent Teams using DEFACTO |year=2005 |access-date=2012-04-28 |archive-date=2013-06-03 |archive-url=https://web.archive.org/web/20130603165342/http://teamcore.usc.edu/papers/2005/SS105SchurrN.pdf |url-status=dead }}</ref><ref>{{cite journal |last1=Genc|first1=Zulkuf  |url=http://www.gdmc.nl/gi4dmdocs/Gi4DM_2012_Genc.pdf |title=आपदा प्रबंधन के लिए एजेंट-आधारित सूचना अवसंरचना|journal=Intelligent Systems for Crisis Management |pages=349–355 |date=2013|display-authors=etal|doi=10.1007/978-3-642-33218-0_26 |isbn=978-3-642-33217-3 |series=Lecture Notes in Geoinformation and Cartography }}</ref> टारगेट सर्विलांस <ref>{{cite journal |last1=Hu |first1=Junyan |last2=Bhowmick |first2=Parijat|last3=Lanzon |first3=Alexander  |title=निर्देशित ग्राफ़ पर एकाधिक लीडरों के साथ मल्टीएजेंट सिस्टम के लिए वितरित अनुकूली समय-भिन्न समूह गठन ट्रैकिंग|journal=IEEE Transactions on Control of Network Systems |date=2020  |volume=7 |pages=140–150 |doi=10.1109/TCNS.2019.2913619 |s2cid=149609966 |doi-access=free }}</ref> और सामाजिक स्ट्रक्चर मॉडलिंग सम्मिलित है।<ref>{{cite journal |first1=Ron |last1=Sun|author-link1=Ron Sun |first2=Isaac |last2=Naveh |url=http://jasss.soc.surrey.ac.uk/7/3/5.html |title=संज्ञानात्मक रूप से यथार्थवादी एजेंट मॉडल का उपयोग करके संगठनात्मक निर्णय लेने का अनुकरण करना|journal=Journal of Artificial Societies and Social Simulation|date=30 June 2004}}</ref>
== संकल्पना ==
== संकल्पना ==


इस प्रकार से मल्टी-एजेंट सिस्टम में एजेंट और उनके बायोफिजिकल वातावरण सम्मिलित होते हैं। सामान्यतः मल्टी-एजेंट सिस्टम अनुसंधान [[सॉफ्टवेयर एजेंट|सॉफ्टवेयर एजेंटों]] को संदर्भित करता है। चूंकि, मल्टी-एजेंट सिस्टम में एजेंट समान रूप से रोबोट, ह्यूमन्स या ह्यूमन्स टीम भी हो सकते हैं। एक मल्टी-एजेंट सिस्टम में संयुक्त ह्यूमन्स-एजेंट टीमें सम्मिलित हो सकती हैं।
इस प्रकार से मल्टी-एजेंट सिस्टम में एजेंट और उनके बायोफिजिकल वातावरण सम्मिलित होते हैं। सामान्यतः मल्टी-एजेंट सिस्टम अनुसंधान [[सॉफ्टवेयर एजेंट|सॉफ्टवेयर एजेंटों]] को संदर्भित करता है। चूंकि, मल्टी-एजेंट सिस्टम में एजेंट समान रूप से रोबोट, ह्यूमन्स या ह्यूमन्स टीम भी हो सकते हैं। मल्टी-एजेंट सिस्टम में संयुक्त ह्यूमन्स-एजेंट टीमें सम्मिलित हो सकती हैं।


अतः एजेंटों को सरल से सम्मिश्र तक के प्रकारों में विभाजित किया जा सकता है। श्रेणियों में सम्मिलित हैं:
अतः एजेंटों को सरल से सम्मिश्र तक के प्रकारों में विभाजित किया जा सकता है। श्रेणियों में सम्मिलित हैं:
Line 23: Line 23:
=== विशेषताएँ ===
=== विशेषताएँ ===


इस प्रकार से एक मल्टी-एजेंट सिस्टम में एजेंटों की अनेक महत्वपूर्ण विशेषताएं होती हैं:<ref>{{cite book |first=Michael |last=Wooldridge |title=मल्टीएजेंट सिस्टम का परिचय|publisher=[[John Wiley & Sons]] |year=2002 |pages=366 |isbn=978-0-471-49691-5}}</ref>
इस प्रकार से मल्टी-एजेंट सिस्टम में एजेंटों की अनेक महत्वपूर्ण विशेषताएं होती हैं:<ref>{{cite book |first=Michael |last=Wooldridge |title=मल्टीएजेंट सिस्टम का परिचय|publisher=[[John Wiley & Sons]] |year=2002 |pages=366 |isbn=978-0-471-49691-5}}</ref>
* स्वायत्तता: एजेंट कम से कम आंशिक रूप से स्वतंत्र, आत्म-जागरूक, [[स्वायत्त एजेंट|ऑटोनोमस एजेंट]]
* स्वायत्तता: एजेंट कम से कम आंशिक रूप से स्वतंत्र, आत्म-जागरूक, [[स्वायत्त एजेंट|ऑटोनोमस एजेंट]]
* स्थानीय विचार: किसी भी एजेंट के पास पूर्ण वैश्विक दृष्टिकोण नहीं होता है, या किसी एजेंट के लिए इस तरह के ज्ञान का लाभ उठाने के लिए सिस्टम अधिक सम्मिश्र है
* स्थानीय विचार: किसी भी एजेंट के पास पूर्ण वैश्विक दृष्टिकोण नहीं होता है, या किसी एजेंट के लिए इस तरह के ज्ञान का लाभ उठाने के लिए सिस्टम अधिक सम्मिश्र है
Line 29: Line 29:
=== सेल्फ-आर्गनाइज्ड और सेल्फ-डायरेक्शन ===
=== सेल्फ-आर्गनाइज्ड और सेल्फ-डायरेक्शन ===


मल्टी-एजेंट प्रणालियाँ सेल्फ-आर्गनाइज्ड के साथ-साथ स्व-दिशा और अन्य [[नियंत्रण सिद्धांत|कण्ट्रोल परादिगम्स]] और संबंधित सम्मिश्र व्यवहार प्रकट कर सकती हैं, तब भी जब उनके सभी एजेंटों की व्यक्तिगत स्ट्रेटेजीज सरल है। जब एजेंट सिस्टम के कम्युनिकेशन प्रोटोकॉल की बाधाओं के अन्दर किसी भी एग्रीड लैंग्वेज का उपयोग करके ज्ञान साझा कर सकते हैं, तो दृष्टिकोण सामान्य सुधार का कारण बन सकता है। उदाहरण [[KQML|नॉलेज क्वेरी मैनिपुलेशन लैंग्वेज]] (केक्यूएमएल ) या [[ एजेंट संचार भाषा |एजेंट कम्युनिकेशन लैंग्वेज]] (एसीएल) हैं।
मल्टी-एजेंट सिस्टम सेल्फ-आर्गनाइज्ड के साथ-साथ स्व-दिशा और अन्य [[नियंत्रण सिद्धांत|कण्ट्रोल परादिगम्स]] और संबंधित सम्मिश्र व्यवहार प्रकट कर सकती हैं, तब भी जब उनके सभी एजेंटों की व्यक्तिगत स्ट्रेटेजीज सरल है। जब एजेंट सिस्टम के कम्युनिकेशन प्रोटोकॉल की बाधाओं के अन्दर किसी भी एग्रीड लैंग्वेज का उपयोग करके ज्ञान साझा कर सकते हैं, तो दृष्टिकोण सामान्य सुधार का कारण बन सकता है। उदाहरण [[KQML|नॉलेज क्वेरी मैनिपुलेशन लैंग्वेज]] (केक्यूएमएल ) या [[ एजेंट संचार भाषा |एजेंट कम्युनिकेशन लैंग्वेज]] (एसीएल) हैं।


=== सिस्टम प्रतिमान ===
=== सिस्टम प्रतिमान ===


अनेक एमएएस को कंप्यूटर सिमुलेशन में प्रयुक्त किया जाता है, जो सिस्टम को अलग-अलग समय चरणों के माध्यम से आगे बढ़ाता है। एमएएस घटक सामान्यतः भारित अनुरोध आव्यूह का उपयोग करके कम्युनिकेशन करते हैं, उदाहरण के लिए।<syntaxhighlight>
अनेक एमएएस को कंप्यूटर सिमुलेशन में प्रयुक्त किया जाता है, जो सिस्टम को अलग-अलग समय चरणों के माध्यम से आगे बढ़ाता है। एमएएस कॉम्पोनेन्ट सामान्यतः भारित अनुरोध आव्यूह का उपयोग करके कम्युनिकेशन करते हैं, उदाहरण के लिए।<syntaxhighlight>
  Speed-VERY_IMPORTANT: min=45 mph,  
  Speed-VERY_IMPORTANT: min=45 mph,  
  Path length-MEDIUM_IMPORTANCE: max=60 expectedMax=40,  
  Path length-MEDIUM_IMPORTANCE: max=60 expectedMax=40,  
Line 45: Line 45:
</syntaxhighlight>चुनौती-प्रतिक्रिया-अनुबंध योजना एमएएस सिस्टम में समान है, जहां
</syntaxhighlight>चुनौती-प्रतिक्रिया-अनुबंध योजना एमएएस सिस्टम में समान है, जहां
* सर्वप्रथम कौन कर सकता है? प्रश्न वितरित है.
* सर्वप्रथम कौन कर सकता है? प्रश्न वितरित है.
* केवल संबंधित घटक ही प्रतिक्रिया देते हैं: मैं इस वैल्यू पर कर सकता हूं।
* केवल संबंधित कॉम्पोनेन्ट ही प्रतिक्रिया देते हैं: मैं इस वैल्यू पर कर सकता हूं।
* अंत में, अनुबंध स्थापित किया जाता है, सामान्यतः पक्षों के मध्य अनेक छोटे कम्युनिकेशन चरणों में,
* अंत में, अनुबंध स्थापित किया जाता है, सामान्यतः पक्षों के मध्य अनेक छोटे कम्युनिकेशन चरणों में,
अन्य घटकों, विकसित अनुबंधों और घटक एल्गोरिदम के प्रतिबंध सेटों पर भी विचार करना है।
अन्य कॉम्पोनेन्टों, विकसित अनुबंधों और कॉम्पोनेन्ट एल्गोरिदम के प्रतिबंध सेटों पर भी विचार करना है।


इस प्रकार से एमएएस के साथ सामान्यतः उपयोग किया जाने वाला अन्य प्रतिमान [[फेरोमोन]] है, जहां घटक अन्य चारो-और के घटकों के लिए जानकारी देते हैं। ये फेरोमोन समय के साथ वाष्पित/केंद्रित हो सकते हैं, अर्थात उनका मान घट (या बढ़) सकता है।
इस प्रकार से एमएएस के साथ सामान्यतः उपयोग किया जाने वाला अन्य प्रतिमान [[फेरोमोन]] है, जहां कॉम्पोनेन्ट अन्य चारो-और के कॉम्पोनेन्टों के लिए जानकारी देते हैं। ये फेरोमोन समय के साथ वाष्पित/केंद्रित हो सकते हैं, अर्थात उनका मान घट (या बढ़) सकता है।


=== गुण ===
=== गुण ===
Line 55: Line 55:
एमएएस बिना किसी हस्तक्षेप के अपनी समस्याओं का सबसे उचित समाधान खोजते हैं। यहां भौतिक घटनाओं के साथ उच्च समानता है, जैसे कि ऊर्जा न्यूनीकरण, जहां भौतिक वस्तुएं भौतिक रूप से बाधित संसार के अन्दर सबसे कम संभव ऊर्जा तक पहुंचने की प्रवृत्ति रखती हैं। उदाहरण के लिए: सुबह किसी महानगर में प्रवेश करने वाली अनेक कारें शाम को उसी महानगर से निकलने के लिए उपलब्ध होती है।
एमएएस बिना किसी हस्तक्षेप के अपनी समस्याओं का सबसे उचित समाधान खोजते हैं। यहां भौतिक घटनाओं के साथ उच्च समानता है, जैसे कि ऊर्जा न्यूनीकरण, जहां भौतिक वस्तुएं भौतिक रूप से बाधित संसार के अन्दर सबसे कम संभव ऊर्जा तक पहुंचने की प्रवृत्ति रखती हैं। उदाहरण के लिए: सुबह किसी महानगर में प्रवेश करने वाली अनेक कारें शाम को उसी महानगर से निकलने के लिए उपलब्ध होती है।


सिस्टम मुख्य रूप से घटकों की अतिरेक के कारण दोषों के प्रसार को रोकते हैं, स्वयं ठीक हो जाते हैं और दोष सहिष्णु होते हैं।
सिस्टम मुख्य रूप से कॉम्पोनेन्टों की अतिरेक के कारण दोषों के प्रसार को रोकते हैं, स्वयं ठीक हो जाते हैं और दोष सहिष्णु होते हैं।


== अनुसंधान ==
== अनुसंधान ==
Line 61: Line 61:
इस प्रकार से मल्टी-एजेंट सिस्टम का अध्ययन एकल-एजेंट और मल्टीपल-एजेंट सिस्टम दोनों के लिए परिष्कृत आर्टिफीसियल बुद्धिमत्ता समस्या-समाधान और नियंत्रण आर्किटेक्चर के विकास और विश्लेषण से संबंधित है।<ref>{{cite web |url=http://mas.cs.umass.edu/ |title=मल्टी-एजेंट सिस्टम लैब|publisher=[[University of Massachusetts Amherst]] |access-date=Oct 16, 2009}}</ref> अतः अनुसंधान के विषयों में सम्मिलित हैं:
इस प्रकार से मल्टी-एजेंट सिस्टम का अध्ययन एकल-एजेंट और मल्टीपल-एजेंट सिस्टम दोनों के लिए परिष्कृत आर्टिफीसियल बुद्धिमत्ता समस्या-समाधान और नियंत्रण आर्किटेक्चर के विकास और विश्लेषण से संबंधित है।<ref>{{cite web |url=http://mas.cs.umass.edu/ |title=मल्टी-एजेंट सिस्टम लैब|publisher=[[University of Massachusetts Amherst]] |access-date=Oct 16, 2009}}</ref> अतः अनुसंधान के विषयों में सम्मिलित हैं:
* एजेंट-उन्मुख सॉफ्टवेयर इंजीनियरिंग
* एजेंट-उन्मुख सॉफ्टवेयर इंजीनियरिंग
* विश्वास, इच्छाएँ और इरादे ([[बीडीआई सॉफ्टवेयर एजेंट]])
* विश्वास, इच्छाएँ और उदेश्य  ([[बीडीआई सॉफ्टवेयर एजेंट]])
* [[सर्वसम्मति की गतिशीलता]]
* [[सर्वसम्मति की गतिशीलता]]
* [[वितरित बाधा अनुकूलन]] (डीसीओपी)
* [[वितरित बाधा अनुकूलन]] (डीसीओपी)
Line 87: Line 87:
इसके अतिरिक्त , विपरीत और मल्टी-एजेंट सिस्टम आर्टिफिशियल इंटेलिजेंस (एमएएआई) का उपयोग समाजों को अनुकरण करने के लिए किया जाता है, जिसका उद्देश्य जलवायु, ऊर्जा, महामारी विज्ञान, संघर्ष प्रबंधन, बाल दुर्व्यवहार, .... के क्षेत्रों में सहायक होता है।<ref name="newscientist.com">{{Cite web|url=https://www.newscientist.com/article/mg24332500-800-ai-can-predict-your-future-behaviour-with-powerful-new-simulations/|title=AI शक्तिशाली नए सिमुलेशन के साथ आपके भविष्य के व्यवहार की भविष्यवाणी कर सकता है|website=New Scientist}}</ref> मल्टी-एजेंट सिस्टम मॉडल का उपयोग करने पर काम करने वाले कुछ आर्गेनाइजेशनों में सेंटर फॉर मॉडलिंग सोशल सिस्टम्स, सेंटर फॉर रिसर्च इन सोशल सिमुलेशन, सेंटर फॉर पॉलिसी मॉडलिंग, सोसाइटी फॉर मॉडलिंग एंड सिमुलेशन इंटरनेशनल सम्मिलित हैं।<ref name="newscientist.com"/>  
इसके अतिरिक्त , विपरीत और मल्टी-एजेंट सिस्टम आर्टिफिशियल इंटेलिजेंस (एमएएआई) का उपयोग समाजों को अनुकरण करने के लिए किया जाता है, जिसका उद्देश्य जलवायु, ऊर्जा, महामारी विज्ञान, संघर्ष प्रबंधन, बाल दुर्व्यवहार, .... के क्षेत्रों में सहायक होता है।<ref name="newscientist.com">{{Cite web|url=https://www.newscientist.com/article/mg24332500-800-ai-can-predict-your-future-behaviour-with-powerful-new-simulations/|title=AI शक्तिशाली नए सिमुलेशन के साथ आपके भविष्य के व्यवहार की भविष्यवाणी कर सकता है|website=New Scientist}}</ref> मल्टी-एजेंट सिस्टम मॉडल का उपयोग करने पर काम करने वाले कुछ आर्गेनाइजेशनों में सेंटर फॉर मॉडलिंग सोशल सिस्टम्स, सेंटर फॉर रिसर्च इन सोशल सिमुलेशन, सेंटर फॉर पॉलिसी मॉडलिंग, सोसाइटी फॉर मॉडलिंग एंड सिमुलेशन इंटरनेशनल सम्मिलित हैं।<ref name="newscientist.com"/>  


अतः नियंत्रित स्वायत्त वाहनों के साथ वाहन यातायात को भीड़ की गतिशीलता को सम्मिलित करते हुए एक मल्टी-एजेंट सिस्टम के रूप में मॉडलिंग किया जा सकता है।<ref name="Gong">{{cite journal |last1=Gong |first1=Xiaoqian |last2=Herty |first2=Michael |last3=Piccoli |first3=Benedetto |last4=Visconti |first4=Giuseppe |title=Crowd Dynamics: Modeling and Control of Multiagent Systems |journal=Annual Review of Control, Robotics, and Autonomous Systems |date=3 May 2023 |volume=6 |issue=1 |pages=261–282 |doi=10.1146/annurev-control-060822-123629 |url=https://www.annualreviews.org/doi/full/10.1146/annurev-control-060822-123629 |access-date=4 May 2023 |language=en |issn=2573-5144}}</ref>
अतः नियंत्रित स्वायत्त वाहनों के साथ वाहन यातायात को भीड़ की गतिशीलता को सम्मिलित करते हुए मल्टी-एजेंट सिस्टम के रूप में मॉडलिंग किया जा सकता है।<ref name="Gong">{{cite journal |last1=Gong |first1=Xiaoqian |last2=Herty |first2=Michael |last3=Piccoli |first3=Benedetto |last4=Visconti |first4=Giuseppe |title=Crowd Dynamics: Modeling and Control of Multiagent Systems |journal=Annual Review of Control, Robotics, and Autonomous Systems |date=3 May 2023 |volume=6 |issue=1 |pages=261–282 |doi=10.1146/annurev-control-060822-123629 |url=https://www.annualreviews.org/doi/full/10.1146/annurev-control-060822-123629 |access-date=4 May 2023 |language=en |issn=2573-5144}}</ref>


इस प्रकार से हॉलरबैक एट अल. स्वतंत्र एजेंटों पर आधारित वाहन-अंडर-टेस्ट और सूक्ष्म यातायात सिमुलेशन के डिजिटल ट्विन के माध्यम से स्वचालित ड्राइविंग सिस्टम के विकास और सत्यापन के लिए एजेंट-आधारित दृष्टिकोण के अनुप्रयोग पर विचार किया गया है ।<ref>{{cite journal |last1=Hallerbach |first1=S. |last2=Xia |first2=Y. |last3=Eberle |first3=U. |last4=Koester |first4=F. |title=सहकारी और स्वचालित वाहनों के लिए महत्वपूर्ण परिदृश्यों की सिमुलेशन-आधारित पहचान|journal=SAE International Journal of Connected and Automated Vehicles |volume=1 |issue=2 |page=93 |date=2018 |publisher=SAE International |doi=10.4271/2018-01-1066 |url=https://www.researchgate.net/publication/324194968}}</ref> किन्तु [[वेमो]] ने [[ स्व-चालित कार |ड्राइविंग कार]] के लिए एल्गोरिदम का परीक्षण करने के लिए मल्टी-एजेंट सिमुलेशन वातावरण कारक्राफ्ट बनाया है।<ref>{{cite news |last1=Madrigal |first1=Story by Alexis C. |title=सेल्फ-ड्राइविंग कारों के प्रशिक्षण के लिए वेमो की गुप्त दुनिया के अंदर|url=https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/ |access-date=14 August 2020 |work=The Atlantic}}</ref><ref>{{cite journal |last1=Connors |first1=J. |last2=Graham |first2=S. |last3=Mailloux |first3=L. |title=वाहन-से-वाहन अनुप्रयोगों के लिए साइबर सिंथेटिक मॉडलिंग|journal=In International Conference on Cyber Warfare and Security |date=2018 |page=594-XI |publisher=Academic Conferences International Limited}}</ref> यह ह्यूमन्स चालकों, पैदल चलने वालों और स्वचालित वाहनों के मध्य यातायात इंटरैक्शन का अनुकरण करता है। वास्तविक ह्यूमन्स व्यवहार के आंकड़ों के आधार पर आर्टिफीसियल एजेंटों द्वारा लोगों के व्यवहार को सिमुलेटेड किया जाता है।
इस प्रकार से हॉलरबैक एट अल. स्वतंत्र एजेंटों पर आधारित वाहन-अंडर-टेस्ट और सूक्ष्म यातायात सिमुलेशन के डिजिटल ट्विन के माध्यम से स्वचालित ड्राइविंग सिस्टम के विकास और सत्यापन के लिए एजेंट-आधारित दृष्टिकोण के अनुप्रयोग पर विचार किया गया है ।<ref>{{cite journal |last1=Hallerbach |first1=S. |last2=Xia |first2=Y. |last3=Eberle |first3=U. |last4=Koester |first4=F. |title=सहकारी और स्वचालित वाहनों के लिए महत्वपूर्ण परिदृश्यों की सिमुलेशन-आधारित पहचान|journal=SAE International Journal of Connected and Automated Vehicles |volume=1 |issue=2 |page=93 |date=2018 |publisher=SAE International |doi=10.4271/2018-01-1066 |url=https://www.researchgate.net/publication/324194968}}</ref> किन्तु [[वेमो]] ने [[ स्व-चालित कार |ड्राइविंग कार]] के लिए एल्गोरिदम का परीक्षण करने के लिए मल्टी-एजेंट सिमुलेशन वातावरण कारक्राफ्ट बनाया है।<ref>{{cite news |last1=Madrigal |first1=Story by Alexis C. |title=सेल्फ-ड्राइविंग कारों के प्रशिक्षण के लिए वेमो की गुप्त दुनिया के अंदर|url=https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/ |access-date=14 August 2020 |work=The Atlantic}}</ref><ref>{{cite journal |last1=Connors |first1=J. |last2=Graham |first2=S. |last3=Mailloux |first3=L. |title=वाहन-से-वाहन अनुप्रयोगों के लिए साइबर सिंथेटिक मॉडलिंग|journal=In International Conference on Cyber Warfare and Security |date=2018 |page=594-XI |publisher=Academic Conferences International Limited}}</ref> यह ह्यूमन्स चालकों, पैदल चलने वालों और स्वचालित वाहनों के मध्य यातायात इंटरैक्शन का अनुकरण करता है। वास्तविक ह्यूमन्स व्यवहार के आंकड़ों के आधार पर आर्टिफीसियल एजेंटों द्वारा लोगों के व्यवहार को सिमुलेटेड किया जाता है।
Line 152: Line 152:
* {{cite book |first=Maria |last=Fasli |title=Agent-technology for E-commerce |publisher=[[John Wiley & Sons]] |year=2007 |pages=480 |isbn=978-0-470-03030-1}}
* {{cite book |first=Maria |last=Fasli |title=Agent-technology for E-commerce |publisher=[[John Wiley & Sons]] |year=2007 |pages=480 |isbn=978-0-470-03030-1}}
* Cao, Longbing, Gorodetsky, Vladimir, Mitkas, Pericles A. (2009). [http://www2.computer.org/portal/web/csdl/doi/10.1109/MIS.2009.45 Agent Mining: The Synergy of Agents and Data Mining], IEEE Intelligent Systems, vol. 24, no. 3, 64-72.
* Cao, Longbing, Gorodetsky, Vladimir, Mitkas, Pericles A. (2009). [http://www2.computer.org/portal/web/csdl/doi/10.1109/MIS.2009.45 Agent Mining: The Synergy of Agents and Data Mining], IEEE Intelligent Systems, vol. 24, no. 3, 64-72.
{{Systems}}
{{Informatics}}
{{DEFAULTSORT:Multi-Agent System}}[[Category: मल्टी-एजेंट सिस्टम| मल्टी-एजेंट सिस्टम]] [[Category: प्रबंधन सिद्धांत]]  
{{DEFAULTSORT:Multi-Agent System}}[[Category: मल्टी-एजेंट सिस्टम| मल्टी-एजेंट सिस्टम]] [[Category: प्रबंधन सिद्धांत]]  


Line 161: Line 158:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:20, 26 November 2023

सिंपल रिफ्लेक्स एजेंट
लर्निंग एजेंट

मल्टी-एजेंट सिस्टम (एमएएस या सेल्फ-आर्गनाइज्ड सिस्टम) कंप्यूटराइज्ड सिस्टम है जो अनेक इंटरैक्टिंग इंटेलिजेंस एजेंट से बना होता है।[1] इस प्रकार से मल्टी-एजेंट सिस्टम उन समस्याओं को हल कर सकते हैं जिन्हें हल करना किसी व्यक्तिगत एजेंट या मोनोलिथिक सिस्टम के लिए कठिन या असंभव है।[2] इसलिए इंटेलिजेंस में वैज्ञानिक पद्धति, फ़ंक्शन (कंप्यूटर विज्ञान), एल्गोरिदमिक खोज दृष्टिकोण, एल्गोरिदम या रिइंफोर्समेंट लर्निंग सम्मिलित हो सकता है।[3][4]

अधिक ओवरलैप के अतिरिक्त, मल्टी-एजेंट सिस्टम प्रायः एजेंट-आधारित मॉडल (एबीएम) के समान नहीं होता है। इस प्रकार से एबीएम का लक्ष्य विशिष्ट व्यावहारिक या इंजीनियरिंग समस्याओं को हल करने के अतिरिक्त , सामान्यतः नेचुरल सिस्टम में सरल नियमों का पालन करने वाले एजेंटों (जिन्हें इंटेलिजेंस होने की आवश्यकता नहीं है) के सामूहिक व्यवहार में व्याख्यात्मक अंतर्दृष्टि की खोज करना है। एबीएम की शब्दावली विज्ञान में और एमएएस की इंजीनियरिंग और टेक्नोलॉजी में अधिक बार उपयोग की जाती है।[5] ऐसे अनुप्रयोग जहां मल्टी-एजेंट सिस्टम अनुसंधान उचित दृष्टिकोण प्रदान कर सकता है, उनमें ऑनलाइन ट्रेडिंग ,[6] आपदा प्रतिक्रिया,[7][8] टारगेट सर्विलांस [9] और सामाजिक स्ट्रक्चर मॉडलिंग सम्मिलित है।[10]

संकल्पना

इस प्रकार से मल्टी-एजेंट सिस्टम में एजेंट और उनके बायोफिजिकल वातावरण सम्मिलित होते हैं। सामान्यतः मल्टी-एजेंट सिस्टम अनुसंधान सॉफ्टवेयर एजेंटों को संदर्भित करता है। चूंकि, मल्टी-एजेंट सिस्टम में एजेंट समान रूप से रोबोट, ह्यूमन्स या ह्यूमन्स टीम भी हो सकते हैं। मल्टी-एजेंट सिस्टम में संयुक्त ह्यूमन्स-एजेंट टीमें सम्मिलित हो सकती हैं।

अतः एजेंटों को सरल से सम्मिश्र तक के प्रकारों में विभाजित किया जा सकता है। श्रेणियों में सम्मिलित हैं:

  • निष्क्रिय एजेंट[11] या बिना लक्ष्य वाला एजेंट (जैसे किसी साधारण सिमुलेशन में बाधा, सेब या कुंजी)
  • सक्रिय एजेंट[11] सरल लक्ष्यों के साथ (जैसे झुंड में पक्षी, या लोटका-वोल्टेरा में वोल्फ-शीप प्रेय-प्रिडेटर-प्रेय-प्रिडेटरी मॉडल)
  • संज्ञानात्मक एजेंट (सम्मिश्र गणना)

एजेंट वातावरण को इसमें विभाजित किया जा सकता है:

  • आभासी
  • पृथक
  • निरंतर

एजेंट वातावरण को पहुंच जैसे गुणों के अनुसार भी व्यवस्थित किया जा सकता है (क्या पर्यावरण के बारे में पूर्ण जानकारी एकत्रित करना संभव है), नियतिवाद (क्या कोई कार्रवाई निश्चित प्रभाव का कारण बनती है), गतिशीलता (कितनी संस्थाएं इस समय पर्यावरण को प्रभावित करती हैं), विसंगति (क्या पर्यावरण में संभावित कार्यों की संख्या सीमित है), प्रासंगिकता (क्या निश्चित समय अवधि में एजेंट की गतिविधियां अन्य अवधियों को प्रभावित करती हैं),[12] और आयामीता (क्या स्थानिक विशेषताएँ पर्यावरण के महत्वपूर्ण कारक हैं और एजेंट अपने निर्णय लेने में स्थान पर विचार करता है)।[13] और एजेंट की क्रियाएँ को सामान्यतः उपयुक्त मिडलवेयर के माध्यम से मध्यस्थ किया जाता है। यह मिडलवेयर मल्टी-एजेंट सिस्टम के लिए प्रथम श्रेणी का डिज़ाइन एब्स्ट्रैक्शन प्रदान करता है, जो संसाधन पहुंच और एजेंट समन्वय को नियंत्रित करने के साधन प्रदान करता है।[14]


विशेषताएँ

इस प्रकार से मल्टी-एजेंट सिस्टम में एजेंटों की अनेक महत्वपूर्ण विशेषताएं होती हैं:[15]

  • स्वायत्तता: एजेंट कम से कम आंशिक रूप से स्वतंत्र, आत्म-जागरूक, ऑटोनोमस एजेंट
  • स्थानीय विचार: किसी भी एजेंट के पास पूर्ण वैश्विक दृष्टिकोण नहीं होता है, या किसी एजेंट के लिए इस तरह के ज्ञान का लाभ उठाने के लिए सिस्टम अधिक सम्मिश्र है
  • विकेंद्रीकरण: किसी भी एजेंट को नियंत्रण के रूप में नामित नहीं किया गया है (या सिस्टम को प्रभावी रूप से मोनोलिथिक सिस्टम में परिवर्तित कर दिया गया है)[16]

सेल्फ-आर्गनाइज्ड और सेल्फ-डायरेक्शन

मल्टी-एजेंट सिस्टम सेल्फ-आर्गनाइज्ड के साथ-साथ स्व-दिशा और अन्य कण्ट्रोल परादिगम्स और संबंधित सम्मिश्र व्यवहार प्रकट कर सकती हैं, तब भी जब उनके सभी एजेंटों की व्यक्तिगत स्ट्रेटेजीज सरल है। जब एजेंट सिस्टम के कम्युनिकेशन प्रोटोकॉल की बाधाओं के अन्दर किसी भी एग्रीड लैंग्वेज का उपयोग करके ज्ञान साझा कर सकते हैं, तो दृष्टिकोण सामान्य सुधार का कारण बन सकता है। उदाहरण नॉलेज क्वेरी मैनिपुलेशन लैंग्वेज (केक्यूएमएल ) या एजेंट कम्युनिकेशन लैंग्वेज (एसीएल) हैं।

सिस्टम प्रतिमान

अनेक एमएएस को कंप्यूटर सिमुलेशन में प्रयुक्त किया जाता है, जो सिस्टम को अलग-अलग समय चरणों के माध्यम से आगे बढ़ाता है। एमएएस कॉम्पोनेन्ट सामान्यतः भारित अनुरोध आव्यूह का उपयोग करके कम्युनिकेशन करते हैं, उदाहरण के लिए।

 Speed-VERY_IMPORTANT: min=45 mph, 
 Path length-MEDIUM_IMPORTANCE: max=60 expectedMax=40, 
 Max-Weight-UNIMPORTANT 
 Contract Priority-REGULAR

इस प्रकार से और भारित प्रतिक्रिया आव्यूह , उदाहरण है.

Speed-min:50 but only if weather sunny, 
 Path length:25 for sunny / 46 for rainy
 Contract Priority-REGULAR
 note – ambulance will override this priority and you'll have to wait

चुनौती-प्रतिक्रिया-अनुबंध योजना एमएएस सिस्टम में समान है, जहां

  • सर्वप्रथम कौन कर सकता है? प्रश्न वितरित है.
  • केवल संबंधित कॉम्पोनेन्ट ही प्रतिक्रिया देते हैं: मैं इस वैल्यू पर कर सकता हूं।
  • अंत में, अनुबंध स्थापित किया जाता है, सामान्यतः पक्षों के मध्य अनेक छोटे कम्युनिकेशन चरणों में,

अन्य कॉम्पोनेन्टों, विकसित अनुबंधों और कॉम्पोनेन्ट एल्गोरिदम के प्रतिबंध सेटों पर भी विचार करना है।

इस प्रकार से एमएएस के साथ सामान्यतः उपयोग किया जाने वाला अन्य प्रतिमान फेरोमोन है, जहां कॉम्पोनेन्ट अन्य चारो-और के कॉम्पोनेन्टों के लिए जानकारी देते हैं। ये फेरोमोन समय के साथ वाष्पित/केंद्रित हो सकते हैं, अर्थात उनका मान घट (या बढ़) सकता है।

गुण

एमएएस बिना किसी हस्तक्षेप के अपनी समस्याओं का सबसे उचित समाधान खोजते हैं। यहां भौतिक घटनाओं के साथ उच्च समानता है, जैसे कि ऊर्जा न्यूनीकरण, जहां भौतिक वस्तुएं भौतिक रूप से बाधित संसार के अन्दर सबसे कम संभव ऊर्जा तक पहुंचने की प्रवृत्ति रखती हैं। उदाहरण के लिए: सुबह किसी महानगर में प्रवेश करने वाली अनेक कारें शाम को उसी महानगर से निकलने के लिए उपलब्ध होती है।

सिस्टम मुख्य रूप से कॉम्पोनेन्टों की अतिरेक के कारण दोषों के प्रसार को रोकते हैं, स्वयं ठीक हो जाते हैं और दोष सहिष्णु होते हैं।

अनुसंधान

इस प्रकार से मल्टी-एजेंट सिस्टम का अध्ययन एकल-एजेंट और मल्टीपल-एजेंट सिस्टम दोनों के लिए परिष्कृत आर्टिफीसियल बुद्धिमत्ता समस्या-समाधान और नियंत्रण आर्किटेक्चर के विकास और विश्लेषण से संबंधित है।[17] अतः अनुसंधान के विषयों में सम्मिलित हैं:

फ्रेमवर्क

इस प्रकार के फ्रेमवर्क उभरे हैं जो सामान्य मानकों को प्रयुक्त करते हैं (जैसे कि इंटेलिजेंट फिजिकल एजेंटों के लिए फाउंडेशन और ओएमजी एमएएसआईएफ)[22] मानक) ये फ़्रेमवर्क उदा. जावा एजेंट डेवलपमेंट फ्रेमवर्क, सेव टाइम और एमएएस विकास के मानकीकरण में सहायता करना है।[23]

चूंकि वर्तमान में, एफआईपीए या एमएएसआईएफ की ओर से कोई मानक सक्रिय रूप से बनाए नहीं रखा गया है। औद्योगिक संदर्भ में सॉफ्टवेयर एजेंटों के आगे विकास के प्रयास औद्योगिक एजेंटों पर आईईईई आईईएस तकनीकी समिति में किए जाते हैं।[24]

अनुप्रयोग

एमएएस को न केवल अकादमिक अनुसंधान में, किन्तु उद्योग में भी प्रयुक्त किया गया है।[25] अतः एमएएस को वास्तविक संसार में कंप्यूटर गेम जैसे ग्राफिकल अनुप्रयोगों में प्रयुक्त किया जाता है। फिल्मों में एजेंट सिस्टम का उपयोग किया गया है।[26] और स्वचालित और गतिशील लोड संतुलन, उच्च स्केलेबिलिटी और सेल्फ-हीलिंग नेटवर्क प्राप्त करने के लिए नेटवर्किंग और मोबाइल तकनीकी में इसके उपयोग की व्यापक रूप से पैरवी की जाती है। इनका उपयोग कोरडीनेटेड डिफेन्स सिस्टम के लिए किया जा रहा है।

अन्य अनुप्रयोगों[27] में परिवहन,[28] लॉजिस्टिक्स,[29] ग्राफिक्स, विनिर्माण, विद्युत सिस्टम,[30] स्मार्टग्रिड[31] और जीआईएस सिस्टम सम्मिलित है।

इसके अतिरिक्त , विपरीत और मल्टी-एजेंट सिस्टम आर्टिफिशियल इंटेलिजेंस (एमएएआई) का उपयोग समाजों को अनुकरण करने के लिए किया जाता है, जिसका उद्देश्य जलवायु, ऊर्जा, महामारी विज्ञान, संघर्ष प्रबंधन, बाल दुर्व्यवहार, .... के क्षेत्रों में सहायक होता है।[32] मल्टी-एजेंट सिस्टम मॉडल का उपयोग करने पर काम करने वाले कुछ आर्गेनाइजेशनों में सेंटर फॉर मॉडलिंग सोशल सिस्टम्स, सेंटर फॉर रिसर्च इन सोशल सिमुलेशन, सेंटर फॉर पॉलिसी मॉडलिंग, सोसाइटी फॉर मॉडलिंग एंड सिमुलेशन इंटरनेशनल सम्मिलित हैं।[32]

अतः नियंत्रित स्वायत्त वाहनों के साथ वाहन यातायात को भीड़ की गतिशीलता को सम्मिलित करते हुए मल्टी-एजेंट सिस्टम के रूप में मॉडलिंग किया जा सकता है।[33]

इस प्रकार से हॉलरबैक एट अल. स्वतंत्र एजेंटों पर आधारित वाहन-अंडर-टेस्ट और सूक्ष्म यातायात सिमुलेशन के डिजिटल ट्विन के माध्यम से स्वचालित ड्राइविंग सिस्टम के विकास और सत्यापन के लिए एजेंट-आधारित दृष्टिकोण के अनुप्रयोग पर विचार किया गया है ।[34] किन्तु वेमो ने ड्राइविंग कार के लिए एल्गोरिदम का परीक्षण करने के लिए मल्टी-एजेंट सिमुलेशन वातावरण कारक्राफ्ट बनाया है।[35][36] यह ह्यूमन्स चालकों, पैदल चलने वालों और स्वचालित वाहनों के मध्य यातायात इंटरैक्शन का अनुकरण करता है। वास्तविक ह्यूमन्स व्यवहार के आंकड़ों के आधार पर आर्टिफीसियल एजेंटों द्वारा लोगों के व्यवहार को सिमुलेटेड किया जाता है।

यह भी देखें

संदर्भ

  1. Hu, J.; Bhowmick, P.; Jang, I.; Arvin, F.; Lanzon, A., "A Decentralized Cluster Formation Containment Framework for Multirobot Systems" IEEE Transactions on Robotics, 2021.
  2. Hu, J.; Turgut, A.; Lennox, B.; Arvin, F., "Robust Formation Coordination of Robot Swarms with Nonlinear Dynamics and Unknown Disturbances: Design and Experiments" IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.
  3. Hu, J.; Bhowmick, P.; Lanzon, A., "Group Coordinated Control of Networked Mobile Robots with Applications to Object Transportation" IEEE Transactions on Vehicular Technology, 2021.
  4. Wiering, M. A. (2000). "ट्रैफिक लाइट नियंत्रण के लिए मल्टी-एजेंट सुदृढीकरण सीखना". Machine Learning: Proceedings of the Seventeenth International Conference (Icml'2000): 1151–1158. hdl:1874/20827.
  5. Niazi, Muaz; Hussain, Amir (2011). "Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual Survey" (PDF). Scientometrics. 89 (2): 479–499. arXiv:1708.05872. doi:10.1007/s11192-011-0468-9. S2CID 17934527.
  6. Rogers, Alex; David, E.; Schiff, J.; Jennings, N.R. (2007). "ईबे नीलामी में प्रॉक्सी बोली और न्यूनतम बोली वृद्धि के प्रभाव". ACM Transactions on the Web. 1 (2): 9–es. CiteSeerX 10.1.1.65.4539. doi:10.1145/1255438.1255441. S2CID 207163424. Archived from the original on 2010-04-02. Retrieved 2008-03-18.
  7. Schurr, Nathan; Marecki, Janusz; Tambe, Milind; Scerri, Paul; Kasinadhuni, Nikhil; Lewis, J.P. (2005). "The Future of Disaster Response: Humans Working with Multiagent Teams using DEFACTO" (PDF). Archived from the original (PDF) on 2013-06-03. Retrieved 2012-04-28. {{cite journal}}: Cite journal requires |journal= (help)
  8. Genc, Zulkuf; et al. (2013). "आपदा प्रबंधन के लिए एजेंट-आधारित सूचना अवसंरचना" (PDF). Intelligent Systems for Crisis Management. Lecture Notes in Geoinformation and Cartography: 349–355. doi:10.1007/978-3-642-33218-0_26. ISBN 978-3-642-33217-3.
  9. Hu, Junyan; Bhowmick, Parijat; Lanzon, Alexander (2020). "निर्देशित ग्राफ़ पर एकाधिक लीडरों के साथ मल्टीएजेंट सिस्टम के लिए वितरित अनुकूली समय-भिन्न समूह गठन ट्रैकिंग". IEEE Transactions on Control of Network Systems. 7: 140–150. doi:10.1109/TCNS.2019.2913619. S2CID 149609966.
  10. Sun, Ron; Naveh, Isaac (30 June 2004). "संज्ञानात्मक रूप से यथार्थवादी एजेंट मॉडल का उपयोग करके संगठनात्मक निर्णय लेने का अनुकरण करना". Journal of Artificial Societies and Social Simulation.
  11. 11.0 11.1 Kubera, Yoann; Mathieu, Philippe; Picault, Sébastien (2010), "Everything can be Agent!" (PDF), Proceedings of the Ninth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'2010): 1547–1548
  12. Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
  13. Salamon, Tomas (2011). एजेंट-आधारित मॉडल का डिज़ाइन. Repin: Bruckner Publishing. p. 22. ISBN 978-80-904661-1-1.
  14. Weyns, Danny; Omicini, Amdrea; Odell, James (2007). "मल्टीएजेंट सिस्टम में प्रथम श्रेणी के अमूर्त के रूप में पर्यावरण". Autonomous Agents and Multi-Agent Systems. 14 (1): 5–30. CiteSeerX 10.1.1.154.4480. doi:10.1007/s10458-006-0012-0. S2CID 13347050.
  15. Wooldridge, Michael (2002). मल्टीएजेंट सिस्टम का परिचय. John Wiley & Sons. p. 366. ISBN 978-0-471-49691-5.
  16. Panait, Liviu; Luke, Sean (2005). "Cooperative Multi-Agent Learning: The State of the Art" (PDF). Autonomous Agents and Multi-Agent Systems. 11 (3): 387–434. CiteSeerX 10.1.1.307.6671. doi:10.1007/s10458-005-2631-2. S2CID 19706.
  17. "मल्टी-एजेंट सिस्टम लैब". University of Massachusetts Amherst. Retrieved Oct 16, 2009.
  18. Albrecht, Stefano; Stone, Peter (2017), "Multiagent Learning: Foundations and Recent Trends. Tutorial", IJCAI-17 conference (PDF)
  19. Cucker, Felipe; Steve Smale (2007). "उद्भव का गणित" (PDF). Japanese Journal of Mathematics. 2: 197–227. doi:10.1007/s11537-007-0647-x. S2CID 2637067. Retrieved 2008-06-09.
  20. Shen, Jackie (Jianhong) (2008). "Cucker–Smale Flocking under Hierarchical Leadership". SIAM J. Appl. Math. 68 (3): 694–719. arXiv:q-bio/0610048. doi:10.1137/060673254. S2CID 14655317. Retrieved 2008-06-09.
  21. Ahmed, S.; Karsiti, M.N. (2007), "A testbed for control schemes using multi agent nonholonomic robots", 2007 IEEE International Conference on Electro/Information Technology, p. 459, doi:10.1109/EIT.2007.4374547, ISBN 978-1-4244-0940-2, S2CID 2734931
  22. "OMG Document – orbos/97-10-05 (Update of Revised MAF Submission)". www.omg.org. Retrieved 2019-02-19.
  23. Ahmed, Salman; Karsiti, Mohd N.; Agustiawan, Herman (2007). "फीडबैक नियंत्रण का उपयोग करके सहयोगी रोबोटों के लिए एक विकास ढांचा". CiteSeerX 10.1.1.98.879. {{cite journal}}: Cite journal requires |journal= (help)
  24. "औद्योगिक एजेंटों पर आईईईई आईईएस तकनीकी समिति (टीसी-आईए)". tcia.ieee-ies.org. Retrieved 2019-02-19.
  25. Leitão, Paulo; Karnouskos, Stamatis (2015-03-26). Industrial agents : emerging applications of software agents in industry. Leitão, Paulo,, Karnouskos, Stamatis. Amsterdam, Netherlands. ISBN 978-0128003411. OCLC 905853947.{{cite book}}: CS1 maint: location missing publisher (link)
  26. "फ़िल्म शोकेस". MASSIVE. Retrieved 28 April 2012.
  27. Leitao, Paulo; Karnouskos, Stamatis; Ribeiro, Luis; Lee, Jay; Strasser, Thomas; Colombo, Armando W. (2016). "Smart Agents in Industrial Cyber–Physical Systems". Proceedings of the IEEE. 104 (5): 1086–1101. doi:10.1109/JPROC.2016.2521931. ISSN 0018-9219. S2CID 579475.
  28. Xiao-Feng Xie, S. Smith, G. Barlow. Schedule-driven coordination for real-time traffic network control. International Conference on Automated Planning and Scheduling (ICAPS), São Paulo, Brazil, 2012: 323–331.
  29. Máhr, T. S.; Srour, J.; De Weerdt, M.; Zuidwijk, R. (2010). "Can agents measure up? A comparative study of an agent-based and on-line optimization approach for a drayage problem with uncertainty". Transportation Research Part C: Emerging Technologies. 18: 99–119. CiteSeerX 10.1.1.153.770. doi:10.1016/j.trc.2009.04.018.
  30. "मल्टी-एजेंट सिस्टम का उपयोग कर बाजार सहभागियों के निवेश की गतिशीलता को ध्यान में रखते हुए जनरेशन विस्तार योजना - आईईईई सम्मेलन प्रकाशन". 2019-12-17. doi:10.1109/SGC.2018.8777904. S2CID 199058301. {{cite journal}}: Cite journal requires |journal= (help)
  31. "स्मार्ट ग्रिड में मल्टी-एरिया पावर सिस्टम के लिए वितरित मल्टी-एजेंट सिस्टम-आधारित लोड फ़्रीक्वेंसी नियंत्रण - आईईईई जर्नल और पत्रिका". 2019-12-17. doi:10.1109/TIE.2017.2668983. S2CID 31816181. {{cite journal}}: Cite journal requires |journal= (help)
  32. 32.0 32.1 "AI शक्तिशाली नए सिमुलेशन के साथ आपके भविष्य के व्यवहार की भविष्यवाणी कर सकता है". New Scientist.
  33. Gong, Xiaoqian; Herty, Michael; Piccoli, Benedetto; Visconti, Giuseppe (3 May 2023). "Crowd Dynamics: Modeling and Control of Multiagent Systems". Annual Review of Control, Robotics, and Autonomous Systems (in English). 6 (1): 261–282. doi:10.1146/annurev-control-060822-123629. ISSN 2573-5144. Retrieved 4 May 2023.
  34. Hallerbach, S.; Xia, Y.; Eberle, U.; Koester, F. (2018). "सहकारी और स्वचालित वाहनों के लिए महत्वपूर्ण परिदृश्यों की सिमुलेशन-आधारित पहचान". SAE International Journal of Connected and Automated Vehicles. SAE International. 1 (2): 93. doi:10.4271/2018-01-1066.
  35. Madrigal, Story by Alexis C. "सेल्फ-ड्राइविंग कारों के प्रशिक्षण के लिए वेमो की गुप्त दुनिया के अंदर". The Atlantic. Retrieved 14 August 2020.
  36. Connors, J.; Graham, S.; Mailloux, L. (2018). "वाहन-से-वाहन अनुप्रयोगों के लिए साइबर सिंथेटिक मॉडलिंग". In International Conference on Cyber Warfare and Security. Academic Conferences International Limited: 594-XI.


अग्रिम पठन