एंटीना (रेडियो): Difference between revisions

From Vigyanwiki
No edit summary
 
(41 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Electrical device}}
{{short description|Electrical device}}
{{Redirect|Antennas|other uses of "antenna"|Antenna (disambiguation)}}
{{Redirect|एंटेना|"एंटीना" के अन्य उपयोग|एंटीना (बहुविकल्पी)}}
{{Infobox electronic component
{{Infobox electronic component
| name              = Antenna
| name              = Antenna
Line 13: Line 13:
| symbol_caption    =
| symbol_caption    =
}}
}}
[[File:Dipole xmting antenna animation 4 408x318x150ms.gif|thumb|upright=1.0|[[ विद्युत क्षेत्र ]] रेखाओं को दिखाते हुए रेडियो तरंगों को विकीर्ण करने वाले अर्ध-तरंग द्विध्रुवीय एंटीना का एनिमेशन। केंद्र में एंटीना दो ऊर्ध्वाधर धातु की छड़ें हैं जो एक [[ रेडियो ट्रांसमीटर ]] से जुड़ी हैं (दिखाया नहीं गया)। ट्रांसमीटर छड़ों पर एक [[ प्रत्यावर्ती धारा ]] लागू करता है, जो उन पर बारी-बारी से धनात्मक आवेश (+) और [[ ऋणात्मक आवेश ]] (-) चार्ज करता है। विद्युत क्षेत्र के लूप ऐन्टेना को छोड़ते हैं और प्रकाश की गति से दूर जाते हैं; ये [[ रेडियो तरंगें ]] हैं। इस एनिमेशन में एक्शन को काफी धीमा दिखाया गया है।]]
[[File:Dipole xmting antenna animation 4 408x318x150ms.gif|thumb|upright=1.0|[[ विद्युत क्षेत्र | विद्युत क्षेत्र]] रेखाओं को दिखाते हुए रेडियो तरंगों को विकीर्ण करने वाले अर्ध-तरंग द्विध्रुवीय एंटीना का एनिमेशन। केंद्र में एंटीना दो ऊर्ध्वाधर धातु की छड़ें हैं जो एक [[ रेडियो ट्रांसमीटर |रेडियो ट्रांसमीटर]] से जुड़ी हैं (दिखाया नहीं गया)। ट्रांसमीटर छड़ों पर एक [[ प्रत्यावर्ती धारा |प्रत्यावर्ती धारा]] लागू करता है, जो उन पर बारी-बारी से धनात्मक आवेश (+) और [[ ऋणात्मक आवेश |ऋणात्मक आवेश]] (-) चार्ज करता है। विद्युत क्षेत्र के लूप ऐन्टेना को छोड़ते हैं और प्रकाश की गति से दूर जाते हैं; ये [[ रेडियो तरंगें |रेडियो तरंगें]] हैं। इस एनिमेशन में एक्शन को काफी धीमा दिखाया गया है।]]
रेडियो इंजीनियरिंग में, एक एंटीना या एरियल अंतरिक्ष के माध्यम से फैलने वाली रेडियो तरंगों और धातु में चलने वाली विद्युत धाराओं के बीच इंटरफ़ेस द्वारा जुड़ा होता है, जिसका उपयोग ट्रांसमीटर या रिसीवर के साथ किया जाता है।।<ref name="Graf">{{cite dictionary |editor-last=Graf |editor-first=Rudolf F. |article=Antenna |dictionary=Modern Dictionary of Electronics |publisher=Newnes |year=1999 |page=29 |url={{Google books |plainurl=yes |id=uah1PkxWeKYC |page=29}} |isbn=978-0750698665}}</ref> [[ ट्रांसमिशन (दूरसंचार) | दूरसंचार]] में, एक [[ रेडियो |रेडियो]] ट्रांसमीटर ऐन्टेना के टर्मिनलों को एक विद्युत प्रवाह की आपूर्ति करता है, और एंटीना विद्युत चुम्बकीय तरंगों के रूप में वर्तमान से ऊर्जा को विकीर्ण करता है। रेडियो में, एक एंटीना अपने टर्मिनलों पर विद्युत प्रवाह उत्पन्न करने के लिए रेडियो तरंग की कुछ शक्ति को रोकता है, जिसे एक रिसीवर पर प्रवर्धित करने के लिए लागू किया जाता है। एंटेना सभी रेडियो उपकरणों के आवश्यक घटक हैं।[2]
'''रेडियो''' अभियान्त्रिकी में, एंटीना या एरियल अंतरिक्ष के माध्यम से फैलने वाली रेडियो तरंगों और धातु में चलने वाली विद्युत धाराओं के बीच इंटरफ़ेस द्वारा जुड़ा होता है, जिसका उपयोग ट्रांसमीटर या रिसीवर के साथ किया जाता है।।<ref name="Graf">{{cite dictionary |editor-last=Graf |editor-first=Rudolf F. |article=Antenna |dictionary=Modern Dictionary of Electronics |publisher=Newnes |year=1999 |page=29 |url={{Google books |plainurl=yes |id=uah1PkxWeKYC |page=29}} |isbn=978-0750698665}}</ref> [[ ट्रांसमिशन (दूरसंचार) |दूरसंचार]] में, एक [[ रेडियो |रेडियो]] ट्रांसमीटर ऐन्टेना के टर्मिनलों को एक विद्युत प्रवाह की आपूर्ति प्रदान करता है, और एंटीना विद्युत चुम्बकीय तरंगों के रूप में धारा से ऊर्जा को विकीर्ण करता है। रेडियो में, एक एंटीना अपने टर्मिनलों पर विद्युत प्रवाह उत्पन्न करने के लिए रेडियो तरंग की कुछ शक्ति को रोकता है, जिसे एक रिसीवर पर प्रवर्धित करने के लिए लागू किया जाता है। एंटीना सभी रेडियो उपकरणों के आवश्यक घटक हैं।[2]


एक एंटीना [[ कंडक्टर (सामग्री) |चालकता]] संचालित तत्व की ए क सरणी है, जो विद्युत रूप से रिसीवर या ट्रांसमीटर से जुड़ा होता है। एंटेना को सभी क्षैतिज दिशाओं में समान रूप से सर्वदिशात्मक एंटेना में रेडियो तरंगों को प्रसारित और प्राप्त करने के लिए डिज़ाइन किया जा सकता है, या अधिमानतः एक विशेष [[ दिशात्मक एंटीना | दिशात्मक एंटीना]] , या उच्च-लाभ, या "बीम" एंटेना  में ऐसे घटक शामिल हो सकते हैं जो ट्रांसमीटर, [[ परवलयिक एंटीना |परवलयिक एंटीना]], [[ हॉर्न एंटीना | हॉर्न एंटीना]] या [[ निष्क्रिय रेडिएटर | निष्क्रिय रेडिएटर]] से जुड़े नहीं होते हैं, जो रेडियो तरंगों को बीम या अन्य वांछित विकिरण पैटर्न में निर्देशित करने का काम करते हैं। संचारण करते समय मजबूत प्रत्यक्षता और अच्छी दक्षता ऐसे एंटेना के साथ प्राप्त करना कठिन होता है जो आधे तरंग दैर्ध्य से बहुत छोटे होते हैं।
एक एंटीना [[ कंडक्टर (सामग्री) |चालकता]] संचालित तत्व की एक सरणी है, जो विद्युत रूप से ट्रांसमीटर से जुड़ा होता है। एंटीना को सभी क्षैतिज दिशाओं में समान रूप से सर्वदिशात्मक रूप में रेडियो तरंगों को प्रसारित और प्राप्त करने के लिए डिज़ाइन किया जाता है, या अधिमानतः एक विशेष [[ दिशात्मक एंटीना |दिशात्मक एंटीना]] , या उच्च-लाभ, या "बीम" एंटीना में ऐसे घटक सम्मिलित हो सकते हैं जो ट्रांसमीटर, [[ परवलयिक एंटीना |परवलयिक एंटीना]], [[ हॉर्न एंटीना |हॉर्न एंटीना]] या [[ निष्क्रिय रेडिएटर |निष्क्रिय रेडिएटर]] से जुड़े नहीं होते हैं, जो रेडियो तरंगों को बीम या अन्य वांछित विकिरण पैटर्न में निर्देशित करने का काम करते हैं। संचारण करते समय मजबूत प्रत्यक्षता और अच्छी दक्षता ऐसे एंटीना के साथ प्राप्त करना कठिन होता है जो आधे तरंगदैर्ध्य से बहुत छोटे होते हैं।


पहला एंटेना 1888 में जर्मन भौतिक विज्ञानी हेनरिक हर्ट्ज द्वारा जेम्स क्लर्क मैक्सवेल के विद्युत चुम्बकीय सिद्धांत द्वारा तरंगों के अस्तित्व को साबित करने के लिए अपने अग्रणी प्रयोगों के लिए बनाया गया था। हर्ट्ज़ ने संचारणऔर रिसीविंग दोनों के लिए परवलयिक परावर्तकों के केंद्र बिंदु पर द्विध्रुवीय एंटेना रखा था । 1895 से शुरू होकर, गुग्लील्मो मार्कोनी ने लंबी दूरी तय की और वायरलेस टेलीग्राफी के लिए व्यावहारिक एंटेना का विकास शुरू किया, जिसके लिए उन्हें नोबेल पुरस्कार मिला। [4]
पहला एंटीना '''1888''' में जर्मन भौतिक विज्ञानी '''''हेनरिक हर्ट्ज''''' द्वारा जेम्स क्लर्क मैक्सवेल के विद्युत चुम्बकीय सिद्धांत द्वारा तरंगों के अस्तित्व को सिद्ध करने के लिए अपने अग्रणी प्रयोगों के लिए बनाया गया था। हर्ट्ज़ ने संचारण और रिसीविंग दोनों के लिए परवलयिक परावर्तकों के केंद्र बिंदु पर द्विध्रुवीय एंटीना रखा था। 1895 से शुरू होकर, गुग्लील्मो मार्कोनी ने लंबी दूरी तय की और वायरलेस टेलीग्राफी के लिए व्यावहारिक एंटीना का विकास शुरू किया, जिसके लिए उन्हें नोबेल पुरस्कार मिला। [4]
== शब्दावली ==
== शब्दावली ==
[[File:Antenna schematic symbol.svg|thumb|upright=0.5|एंटीना के लिए इलेक्ट्रॉनिक प्रतीक]]
[[File:Antenna schematic symbol.svg|thumb|upright=0.5|एंटीना के लिए इलेक्ट्रॉनिक प्रतीक]]
एंटेना और एरियल शब्द का परस्पर उपयोग किया जाता है। कभी-कभी समकक्ष शब्द "एरियल" का प्रयोग विशेष रूप से एक ऊंचा क्षैतिज तार एंटीना के लिए किया जाता है। वायरलेस उपकरण के सापेक्ष एंटीना शब्द की उत्पत्ति का श्रेय इतालवी रेडियो अग्रणी गुग्लिल्मो मार्कोनी को दिया जाता है। 1895 की गर्मियों में, मार्कोनी ने [[ बोलोग्ना |बोलोग्ना]] के पास अपने पिता की संपत्ति पर अपने वायरलेस सिस्टम का परीक्षण शुरू किया और जल्द ही एक पोल से निलंबित लंबे तार वाले एरियल के साथ प्रयोग करना शुरू कर दिया।<ref name=marconi_nobel>{{cite web |author=Marconi, G. |url=http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-lecture.html |title=Wireless Telegraphic Communication |series=Nobel Lecture |date=11 December 1909 |archive-url=https://web.archive.org/web/20070504161205/http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-lecture.html |archive-date=4 May 2007}}<br/>{{cite book |title=Nobel Lectures |chapter=Physics 1901–1921 |location=Amsterdam |publisher=Elsevier Publishing Company |year=1967 |pages=196–222, 206}}</ref>  
एंटीना और एरियल शब्द का परस्पर उपयोग किया जाता है। कभी-कभी समकक्ष शब्द ''"एरियल"'' का प्रयोग विशेष रूप से एक ऊंचा क्षैतिज तार एंटीना के लिए किया जाता है। वायरलेस उपकरण के सापेक्ष एंटीना शब्द की उत्पत्ति का श्रेय इतालवी रेडियो अग्रणी '''गुग्लिल्मो मार्कोनी''' को दिया जाता है। 1895 की गर्मियों में, मार्कोनी ने [[ बोलोग्ना |बोलोग्ना]] के पास अपने पिता की संपत्ति पर अपने वायरलेस सिस्टम का परीक्षण शुरू किया और जल्द ही एक पोल से निलंबित लंबे तार वाले एरियल के साथ प्रयोग करना शुरू कर दिया।<ref name="marconi_nobel">{{cite web |author=Marconi, G. |url=http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-lecture.html |title=Wireless Telegraphic Communication |series=Nobel Lecture |date=11 December 1909 |archive-url=https://web.archive.org/web/20070504161205/http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-lecture.html |archive-date=4 May 2007}}<br />{{cite book |title=Nobel Lectures |chapter=Physics 1901–1921 |location=Amsterdam |publisher=Elsevier Publishing Company |year=1967 |pages=196–222, 206}}</ref>  


[[ इटालियन भाषा | इटालियन भाषा]] में एक टेंट पोल को एल 'एंटीना सेंट्रल के रूप में जाना जाता है, और तार वाले पोल को केवल एल' एंटेना कहा जाता है। उस समय तक वायरलेस विकिरण संचारण और अभिग्रहण तत्व को "टर्मिनल" के रूप में जाना जाता था। अपनी प्रमुखता के कारण, मार्कोनी द्वारा एंटेना शब्द का उपयोग वायरलेस शोधकर्ताओं, उत्साही और आम जनता के बीच फैल गया। <nowiki><ref> = slyusar1 ></nowiki>{{cite conference |last=Slyusar |first=Vadym |title=The history of radio engineering's term "antenna" |conference=VIII International Conference on Antenna Theory and Techniques (ICATT’11) |location=Kyiv, Ukraine |date=20–23 September 2011 |pages=83–85 |url=http://www.slyusar.kiev.ua/ICATT_2011_Slyusar1.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224220545/http://www.slyusar.kiev.ua/ICATT_2011_Slyusar1.pdf |archive-date=24 February 2014 |df=dmy-all}}<nowiki></ref></nowiki><ref name="slyusar2">{{cite conference |last=Slyusar |first=Vadym |title=An Italian period on the history of radio engineering's term "antenna" |conference=11th International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012) |location=Lviv-Slavske, Ukraine |date=21–24 February 2012 |page=174 |url=http://www.slyusar.kiev.ua/TCSET2012_1.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224221525/http://www.slyusar.kiev.ua/TCSET2012_1.pdf |archive-date=24 February 2014 |df=dmy-all}}</ref><ref name="slyusar3">{{cite periodical |last=Slyusar |first=Vadym |title=Антенна: история радиотехнического термина |trans-title=The Antenna: A history of radio engineering’s term |language=ru |periodical=ПЕРВАЯ МИЛЯ / Last Mile: Electronics: Science, Technology, Business |issue=6 |date=June 2011 |pages=52–64 |url=http://www.slyusar.kiev.ua/Slusar_3.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224221448/http://www.slyusar.kiev.ua/Slusar_3.pdf |archive-date=2014-02-24 |df=dmy-all}}</ref>  
[[ इटालियन भाषा |इटालियन भाषा]] में एक टेंट पोल को एल 'एंटीना सेंट्रल के रूप में जाना जाता है, और तार वाले पोल को केवल एल' एंटीना कहा जाता है। उस समय तक वायरलेस विकिरण संचारण और अभिग्रहण तत्व को '''''"टर्मिनल"''''' के रूप में जाना जाता था। अपनी प्रमुखता के कारण, मार्कोनी द्वारा एंटीना शब्द का उपयोग वायरलेस शोधकर्ताओं, उत्साही और आम जनता के बीच फैल गया।<ref>{{cite conference |last=Slyusar |first=Vadym |title=The history of radio engineering's term "antenna" |conference=VIII International Conference on Antenna Theory and Techniques (ICATT’11) |location=Kyiv, Ukraine |date=20–23 September 2011 |pages=83–85 |url=http://www.slyusar.kiev.ua/ICATT_2011_Slyusar1.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224220545/http://www.slyusar.kiev.ua/ICATT_2011_Slyusar1.pdf |archive-date=24 February 2014 |df=dmy-all}}</ref><ref name="slyusar2">{{cite conference |last=Slyusar |first=Vadym |title=An Italian period on the history of radio engineering's term "antenna" |conference=11th International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012) |location=Lviv-Slavske, Ukraine |date=21–24 February 2012 |page=174 |url=http://www.slyusar.kiev.ua/TCSET2012_1.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224221525/http://www.slyusar.kiev.ua/TCSET2012_1.pdf |archive-date=24 February 2014 |df=dmy-all}}</ref><ref name="slyusar3">{{cite periodical |last=Slyusar |first=Vadym |title=Антенна: история радиотехнического термина |trans-title=The Antenna: A history of radio engineering’s term |language=ru |periodical=ПЕРВАЯ МИЛЯ / Last Mile: Electronics: Science, Technology, Business |issue=6 |date=June 2011 |pages=52–64 |url=http://www.slyusar.kiev.ua/Slusar_3.pdf |url-status=live |archive-url=https://web.archive.org/web/20140224221448/http://www.slyusar.kiev.ua/Slusar_3.pdf |archive-date=2014-02-24 |df=dmy-all}}</ref>  


एंटीना वास्तविक तौर पर  विद्युतवाही घटकों के अलावा  निर्माण करना, अंतःक्षेत्र आदि को संदर्भित कर सकता है। एंटीना में न केवल निष्क्रिय धातु प्राप्त करने वाले तत्व शामिल हो सकते हैं, बल्कि एकीकृत पूर्व प्रवर्धक या [[ आवृत्ति मिक्सर |आवृत्ति मिक्सर]] मे भी शामिल हो सकता है, विशेष रूप से [[ माइक्रोवेव |सूक्ष्म तरंग]] आवृत्तियों पर शामिल होते है।
एंटीना वास्तविकता में विद्युतवाही घटकों आरएफ के अतिरिक्त समर्थन संरचना, संलग्नक आदि सहित पूरी असेंबली को व्यापक रूप से संदर्भित कर सकता है। एंटीना में न केवल निष्क्रिय धातु प्राप्त करने वाले तत्व सम्मिलित होते हैं, विशेष रूप से [[ माइक्रोवेव |सूक्ष्म तरंग]] आवृत्तियों पर, बल्कि एकीकृत पूर्व प्रवर्धक या [[ आवृत्ति मिक्सर |मिश्रण]] मे भी सम्मिलित होते है।


==अवलोकन==
==अवलोकन==
Line 31: Line 31:


[[File:The Atacama Large Millimeter submillimeter Array (ALMA) by night under the Magellanic Clouds.jpg|thumb|अटाकामा लार्ज मिलीमीटर एरे के एंटेना | अटाकामा लार्ज मिलीमीटर/सबमिलीमीटर एरे।<ref>{{cite news |title=Media Advisory: Apply now to attend the ALMA Observatory inauguration |url=http://www.eso.org/public/announcements/ann12092/ |access-date=4 December 2012 |newspaper=ESO press release |url-status=live |archive-url=https://web.archive.org/web/20121206113315/http://www.eso.org/public/announcements/ann12092/ |archive-date=6 December 2012 |df=dmy-all}}</ref>]]
[[File:The Atacama Large Millimeter submillimeter Array (ALMA) by night under the Magellanic Clouds.jpg|thumb|अटाकामा लार्ज मिलीमीटर एरे के एंटेना | अटाकामा लार्ज मिलीमीटर/सबमिलीमीटर एरे।<ref>{{cite news |title=Media Advisory: Apply now to attend the ALMA Observatory inauguration |url=http://www.eso.org/public/announcements/ann12092/ |access-date=4 December 2012 |newspaper=ESO press release |url-status=live |archive-url=https://web.archive.org/web/20121206113315/http://www.eso.org/public/announcements/ann12092/ |archive-date=6 December 2012 |df=dmy-all}}</ref>]]
किसी भी रेडियो रिसीवर या ट्रांसमीटर द्वारा विद्युत चुम्बकीय क्षेत्र के विद्युत कनेक्शन को जोड़ने के लिए एंटेना की आवश्यकता होती है।<ref>{{cite book |first=Robert S. |last=Elliott |title=Antenna Theory and Design |publisher=Wyle |year=1981 |edition=1st |page=3}}</ref> रेडियो तरंगें विद्युत चुम्बकीय तरंगें हैं जो प्रकाश की गति से हवा के माध्यम से या अंतरिक्ष के माध्यम से संकेतों को बिना किसी संचरण हानि के ले जाती हैं।
किसी भी रेडियो ट्रांसमीटर द्वारा विद्युत चुम्बकीय क्षेत्र के विद्युत संयोजन को जोड़ने के लिए एंटीना की आवश्यकता होती है।<ref>{{cite book |first=Robert S. |last=Elliott |title=Antenna Theory and Design |publisher=Wyle |year=1981 |edition=1st |page=3}}</ref> रेडियो तरंगें विद्युत चुम्बकीय तरंगें हैं जो प्रकाश की गति से हवा के माध्यम से या अंतरिक्ष के माध्यम से संकेतों को बिना किसी संचरण हानि के पहुचाती हैं।


[[File:Car radio antenna extended portrait.jpeg|thumb|150px|left|एक ऑटोमोबाइल का व्हिप एंटीना, एक सर्वदिशात्मक एंटीना का एक सामान्य उदाहरण।]]
[[File:Car radio antenna extended portrait.jpeg|thumb|150px|left|एक ऑटोमोबाइल का व्हिप एंटीना, एक सर्वदिशात्मक एंटीना का एक सामान्य उदाहरण।]]
एंटेना को सर्वदिशात्मक रूप में वर्गीकृत किया जा सकता है,जहां सभी क्षैतिज दिशाओं में समान रूप से विकिरण करने वाली ऊर्जा, या दिशात्मक, रेडियो तरंगें कुछ दिशाओं में केंद्रित होती हैं। [[ बीम एंटीना ]] एकदिशीय है, जिसे दूसरे स्टेशन की दिशा में अधिकतम प्रतिक्रिया के लिए डिज़ाइन किया गया है, जबकि कई अन्य एंटेना का उद्देश्य विभिन्न दिशाओं में स्टेशनों को समायोजित करना है, चूंकि एंटेना [[ पारस्परिकता (विद्युत चुंबकत्व) |पारस्परिकता विद्युत चुंबकत्व]] का पालन करते हैं, वही विकिरण पैटर्न प्रसारण के साथ-साथ रेडियो तरंगों मे भी लागू होते है। एक काल्पनिक एंटीना जो सभी ऊर्ध्वाधर और सभी क्षैतिज कोणों में समान रूप से विकिरण करता है, एक [[ आइसोट्रोपिक रेडिएटर |समदैशिक विकिरक]] कहलाता है, हालांकि ये व्यवहार में मौजूद नहीं हो सकते हैं और न ही वे विशेष रूप से वांछित होंगे। अधिकांश स्थलीय संचार, क्षैतिज दिशा के पक्ष में आकाश या जमीन की ओर विकिरण को कम करता है, एक द्विध्रुवीय एंटीना उन्मुख क्षैतिज रूप से परिचालक की दिशा में कोई ऊर्जा नहीं भेजता है - इसे एंटीना नल कहा जाता है - लेकिन अधिकांश अन्य दिशाओं में प्रयोग करने योग्य होते है। ऐसे कई द्विध्रुवीय तत्वों को एक क्षैतिज दिशा के पक्ष में यागी-उड़ा जैसे एंटीना सरणी में जोड़ा जा सकता है, इस प्रकार इसे बीम एंटीना कहा जाता है।
एंटीना को सर्वदिशात्मक रूप में वर्गीकृत किया जाता है, जहां सभी क्षैतिज दिशाओं में लगभग समान रूप से ऊर्जा विकीर्ण करता है, या दिशात्मक होता है, जहां रेडियो तरंगें किसी दिशाओं में केंद्रित होती हैं। एक [[ बीम एंटीना |बीम एंटीना]] एकदिशीय होती है, जिसे दूसरे प्रक्षेपण स्थल की अधिकतम प्रतिक्रिया के लिए तैयार किया जाता है, जबकि कई अन्य एंटीना का उद्देश्य विभिन्न दिशाओं में स्टेशनों को समायोजित करना है, चूंकि एंटीना [[ पारस्परिकता (विद्युत चुंबकत्व) |पारस्परिकता विद्युत चुंबकत्व]] का पालन करते हैं, वही विकिरण आकृति प्रसारण के साथ-साथ रेडियो तरंगों मे भी लागू होते है। एक काल्पनिक एंटीना जो सभी ऊर्ध्वाधर और सभी क्षैतिज कोणों में समान रूप से विकिरण करता है, एक [[ आइसोट्रोपिक रेडिएटर |समदैशिक विकिरक]] कहलाता है, चूंकि ये व्यवहार में उपलब्ध नहीं हो सकते हैं और न ही वे विशेष रूप से वांछित होंते है। अधिकांश स्थलीय संचार, क्षैतिज दिशा के पक्ष में आकाश या जमीन की ओर विकिरण को कम करता है, एक द्विध्रुवीय एंटीना उन्मुख क्षैतिज रूप से परिचालक की दिशा में कोई ऊर्जा नहीं भेजता है - इसे नल एंटीना कहा जाता है - लेकिन अधिकांश अन्य दिशाओं में प्रयोग करने योग्य होते है। ऐसे कई द्विध्रुवीय तत्वों को एक क्षैतिज दिशा के पक्ष में यागी-उड़ा जैसे एंटीना सरणी में जोड़ा जा सकता है, इस प्रकार इसे बीम एंटीना कहा जाता है।


द्विध्रुवीय एंटीना, जो कि अधिकांश एंटीना डिजाइनों का आधार है, इसके दो टर्मिनलों पर समान लेकिन विपरीत वोल्टेज और धाराएं लागू होती हैं। लंबवत एंटीना [[ मोनोपोल एंटीना | एकध्रुव एंटीना]] है, जो जमीन के संबंध में संतुलित नहीं है। जमीन या कोई बड़ी प्रवाहकीय सतह एक द्विध्रुवीय परिचालक की भूमिका निभाती है। चूंकि एकध्रुव एंटेना एक प्रवाहकीय सतह पर निर्भर करते हैं, इसलिए उन्हें पृथ्वी की सतह पर अनुमान लगाने के लिए उन्हें समतल ज़मीन के साथ लगाया जाता है।
द्विध्रुवीय एंटीना, जो कि अधिकांश एंटीना डिजाइनों का आधार है, इसके दो टर्मिनलों पर समान लेकिन विपरीत वोल्टेज और धाराएं लागू होती हैं। लंबवत एंटीना [[ मोनोपोल एंटीना |एकध्रुव एंटीना]] है, जो की जमीन या कोई बड़ी प्रवाहकीय सतह एक द्विध्रुवीय परिचालक की भूमिका निभाती है। चूंकि एकध्रुव एंटीना एक प्रवाहकीय सतह पर निर्भर रहते हैं, इसलिए उन्हें पृथ्वी की सतह पर अनुमान लगाने के लिए उन्हें समतल ज़मीन के साथ लगाया जाता है।


[[File:Felder um Dipol.jpg|thumb|150px|left|विद्युत क्षेत्र का आरेख (<span style= color:blue; >'blue'</span>) और [[ चुंबकीय क्षेत्र ]] (<span style= color:red; >'red'</span>) जो एक द्विध्रुवीय एंटेना द्वारा विकिरणित होते हैं ( 'ब्लैक' रॉड्स) संचारके दौरान।]]
[[File:Felder um Dipol.jpg|thumb|150px|left|विद्युत क्षेत्र का आरेख (<span style= color:blue; >'blue'</span>) और [[ चुंबकीय क्षेत्र |चुंबकीय क्षेत्र]] (<span style= color:red; >'red'</span>) जो एक द्विध्रुवीय एंटीना द्वारा विकिरणित होते हैं ( 'ब्लैक' रॉड्स) संचारके दौरान।]]
अधिक जटिल एंटेना, एंटीना की प्रत्यक्षता को बढ़ाते हैं। एंटीना संरचना में अतिरिक्त तत्व, जिन्हें सीधे रिसीवर या ट्रांसमीटर से जोड़ने की आवश्यकता नहीं होती है, इसकी दिशात्मकता को बढ़ाते हैं। [[ एंटीना लाभ |ऐंटिना लब्धि]] अंतरिक्ष के एक ठोस कोण में विकिरणित शक्ति की एकाग्रता का वर्णन करता है।   "लाभ" के साथ तुलना करके जिसका अर्थ है शक्ति में शुद्ध वृद्धि करता है, इसके विपरीत, एंटीना लाभ के लिए, वांछित दिशा में बढ़ी हुई शक्ति अवांछित दिशाओं में कम की गई शक्ति की कीमत पर होती है। प्रवर्धको के विपरीत, एंटेना विद्युत रूप से "निष्क्रिय विकिरक " उपकरण होते हैं जो कुल शक्ति का संरक्षण करते हैं, और बिजली स्रोत ट्रांसमीटर से वितरित कुल शक्ति में कोई वृद्धि नहीं होती है, केवल उस निश्चित कुल का बेहतर वितरण होता है।
अधिक जटिल एंटीना, इसकी प्रत्यक्षता को बढ़ाते हैं। एंटीना संरचना में अतिरिक्त तत्व, जिन्हें सीधे ट्रांसमीटर से जोड़ने की आवश्यकता नहीं होती है, ये इसकी दिशात्मकता को बढ़ाते हैं। ऐन्टेना लब्धि अंतरिक्ष के एक विशेष ठोस कोण में विकिरणित शक्ति की एकाग्रता का वर्णन करता है। प्रवर्धक "लाभ" के साथ तुलना करके शक्ति में शुद्ध वृद्धि करता है, इसके विपरीत, एंटीना लाभ के लिए, वांछित दिशा में बढ़ी हुई शक्ति अवांछित दिशाओं में कम की गई शक्ति की कीमत पर होती है। प्रवर्धको के विपरीत, एंटीना विद्युत रूप से "निष्क्रिय विकिरक" उपकरण होते हैं जो कुल शक्ति का संरक्षण करते हैं, और बिजली स्रोत ट्रांसमीटर से वितरित कुल शक्ति में कोई वृद्धि नहीं होती है, केवल उस निश्चित कुल का बेहतर वितरण होता है।


एक चरणबद्ध सरणी में दो या दो से अधिक सरल एंटेना होते हैं जो एक विद्युत नेटवर्क के माध्यम से एक साथ जुड़े होते हैं। इसमें अक्सर एक निश्चित रिक्ति के साथ कई समानांतर द्विध्रुवीय एंटेना शामिल होते हैं। नेटवर्क द्वारा शुरू किए गए सापेक्ष चरण के आधार पर, द्विध्रुवीय एंटेना का एक ही संयोजन "ब्रॉडसाइड एरे" (तत्वों को जोड़ने वाली लाइन के लिए दिशात्मक सामान्य) या "एंड-फायर एरे" (लाइन के साथ दिशात्मक) के रूप में काम कर सकता है। एंटीना सरणियाँ किसी भी बुनियादी (सर्वदिशात्मक या कमजोर दिशात्मक) एंटीना प्रकार को नियोजित कर सकती हैं, जैसे कि द्विध्रुवीय, लूप या स्लॉट एंटेना, ये तत्व अक्सर समान होते हैं।
एक चरणबद्ध सरणी में दो या दो से अधिक सरल एंटीना होते हैं जो विद्युत नेटवर्क के माध्यम से एक साथ जुड़े होते हैं। इसमें अधिकांशतः एक निश्चित दूरी के साथ कई समानांतर द्विध्रुवीय एंटीना सम्मिलित होते हैं। नेटवर्क द्वारा पेश किए गए सापेक्ष चरण के आधार पर, द्विध्रुवीय एंटेना का एक ही संयोजन "ब्रॉडसाइड सरणी" या "अंत-अग्नि सरणी" के रूप में काम कर सकता है। एंटीना सरणियाँ किसी भी मूल (सर्वदिशात्मक या कमजोर दिशात्मक) एंटीना प्रकार को नियोजित कर सकती हैं, जैसे कि द्विध्रुवीय, लूप या स्लॉट एंटेना। ये तत्व प्रायः समान होते हैं।


लॉग-आवधिक और आवृत्ति-स्वतंत्र एंटेना [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) ]] की एक विस्तृत श्रृंखला पर परिचालन करने के लिए [[ स्व-समानता ]] को नियोजित करते हैं। सबसे परिचित उदाहरण लॉग-आवधिक एंटेना है| लॉग-आवधिक द्विध्रुवीय सरणी जिसे एंटीना सरणी में प्रगतिशील लंबाई के साथ जुड़े द्विध्रुवीय तत्वों की संख्या (आमतौर पर 10 से 20) के रूप में देखा जा सकता है बल्कि इसे दिशात्मक बनाते हैं; यह विशेष रूप से टेलीविजन रिसेप्शन के लिए रूफटॉप एंटेना के रूप में उपयोग करता है। दूसरी ओर, एक यागी-उड़ा एंटीना या बस यागी, कुछ हद तक समान दिखने के साथ, विद्युत कनेक्शन के साथ केवल एक द्विध्रुवीय तत्व होता है; अन्य निष्क्रिय रेडिएटर अत्यधिक दिशात्मक एंटीना  विद्युत चुम्बकीय क्षेत्र के साथ बैंडविड्थ संकीर्ण इन्टरनेट एवं कप्यूटर के मध्य डाटा भेजने की एक सीमा के साथ बातचीत करते हैं ।
लॉग आवर्ती ऐन्टेना और आवृत्ति अनाश्रित ऐन्टेना'','' बैंडविथ की एक विस्तृत श्रृंखला पर परिचालन करने के लिए स्व-समानता को नियोजित करते हैं। सबसे परिचित उदाहरण लॉग-आवर्ती द्विध्रुव सरणी है, जिसे एक एंडफायर सरणी में प्रगतिशील लंबाई के साथ जुड़े हुए द्विध्रुव तत्वों की संख्या (विशिष्ट रूप से 10 से 20) के रूप में देखा जा सकता है, जो इसे दिशात्मक बनाता है; यह विशेष रूप से टेलीविजन अधिग्रहण के लिए रूफटॉप एंटीना के रूप में उपयोग करता है। दूसरी ओर, एक यागी-उड़ा एंटीना, कुछ हद तक समान दिखने के साथ विद्युत संयोजन के साथ केवल एक द्विध्रुवीय तत्व होता है; अन्य परजीवी तत्व उच्च दिशात्मक ऐन्टेना प्राप्त करने के लिए विद्युत चुम्बकीय क्षेत्र के साथ कप्यूटर के मध्य डाटा भेजने की एक सीमा के साथ कार्य करते हैं ।


परवलयिक परावर्तक या हॉर्न एंटीना जैसे एपर्चर एंटेना का उपयोग करके और भी अधिक दिशात्मकता प्राप्त की जा सकती है। चूंकि ऐन्टेना में उच्च प्रत्यक्षता तरंग दैर्ध्य की तुलना में इसके बड़े होने पर निर्भर करती है, उच्च दिशात्मक एंटेना (इस प्रकार उच्च एंटीना लाभ के साथ) उच्च आवृत्तियों पर अधिक व्यावहारिक हो जाते हैं।
परवलयिक परावर्तक या हॉर्न एंटीना जैसे द्वारक ऐन्टेना का उपयोग करके और भी अधिक दिशात्मकता प्राप्त की जा सकती है। चूंकि ऐन्टेना में उच्च दिशात्मकता तरंग दैर्ध्य की तुलना में इसके बड़े होने पर निर्भर करती है, उच्च दिशात्मक एंटेना (इस प्रकार उच्च एंटीना लाभ के साथ) उच्च आवृत्तियों (यूएचएफ और ऊपर) पर अधिक व्यावहारिक हो जाते हैं।


कम आवृत्तियों पर (जैसे एएम प्रसारण), दिशात्मकता प्राप्त करने के लिए ऊर्ध्वाधर टावरों की सरणियों का उपयोग किया जाता है<ref>{{cite book |first=Carl |last=Smith |year=1969 |title=Standard Broadcast Antenna Systems |page=2-1212 |location=Cleveland, Ohio |publisher=Smith Electronics}}</ref> और वे भूमि के बड़े क्षेत्रों पर कब्जा कर अधिग्रहण के लिए, एक लंबे [[ पेय एंटीना ]] में महत्वपूर्ण प्रत्यक्षता हो सकती है। गैर दिशात्मक पोर्टेबल उपयोग के लिए, एक छोटा ऊर्ध्वाधर एंटीना या छोटा चुंबकीय लूप एंटीना अच्छी तरह से काम करता है, मुख्य डिजाइन चुनौती [[ प्रतिबाधा मिलान ]] की है। एक ऊर्ध्वाधर एंटीना के साथ [[ विद्युत प्रतिक्रिया ]] को रद्द करने के लिए एंटीना के आधार पर एक लोडिंग कॉइल नियोजित किया जा सकता है; इस उद्देश्य के लिए चुंबकीय लूप एंटीना को समानांतर संधारित्र  के साथ समायोजित किया जाता है।
कम आवृत्तियों पर जैसे (एएम) प्रसारण, दिशात्मकता प्राप्त करने के लिए ऊर्ध्वाधर टावरों की सरणियों का उपयोग किया जाता है<ref>{{cite book |first=Carl |last=Smith |year=1969 |title=Standard Broadcast Antenna Systems |page=2-1212 |location=Cleveland, Ohio |publisher=Smith Electronics}}</ref> अधिग्रहण के लिए एक लंबे [[ पेय एंटीना |बैवरेज ऐंटिना]] में महत्वपूर्ण दिशात्मकता हो सकती है। गैर दिशात्मक पोर्टेबल उपयोग के लिए, एक छोटा ऊर्ध्वाधर एंटीना या छोटा चुंबकीय लूप एंटीना अच्छी तरह से काम करता है, जिसमें मुख्य डिजाइन चुनौती प्रतिबाधा मिलान की होती है। एक लंबवत एंटीना के साथ एंटीना के आधार पर एक लोडिंग कॉइल को प्रतिबाधा के प्रतिक्रियाशील घटक को रद्द करने के लिए नियोजित किया जा सकता है; इस उद्देश्य के लिए छोटे लूप एंटेना को समानांतर कैपेसिटर के साथ ट्यून किया जाता है।


एक एंटीना लीड-इन [[ संचरण लाइन ]], या [[ फीड लाइन ]] है, जो एंटीना को ट्रांसमीटर से जोड़ती है। "[[ एंटीना फ़ीड | ऐन्टेना प्रभरण]]" एंटीना को ट्रांसमीटर से जोड़ने वाले सभी घटकों को संदर्भित कर सकता है, जैसे संचारलाइन के अलावा एक प्रतिबाधा मिलान नेटवर्क के साथ एक तथाकथित "एपर्चर एंटीना" में, जैसे कि एक सींग या परवलयिक डिश, "फ़ीड" एक बुनियादी विकिरण वाले एंटीना को भी संदर्भित कर सकता है जो प्रतिबिंबित तत्वों की पूरी प्रणाली में एम्बेडेड होता है जिसे उस एंटीना प्रणाली में एक सक्रिय तत्व माना जा सकता है। एक प्रवाहकीय संचारलाइन के स्थान पर एक सूक्ष्म तरंग एंटीना को सीधे वेवगाइड से भी फीड किया जा सकता है।
एक एंटीना लीड-इन [[ संचरण लाइन |संचरण लाइन]] , या [[ फीड लाइन |फीड लाइन]] है, जो एंटीना को ट्रांसमीटर से जोड़ती है। "[[ एंटीना फ़ीड |एंटीना फ़ीड]]" एंटीना को ट्रांसमीटर से जोड़ने वाले सभी घटकों को संदर्भित कर सकता है, जैसे संचारलाइन के अतिरिक्त एक प्रतिबाधा मिलान नेटवर्क के साथ "एपर्चर एंटीना" में, जैसे कि एक परवलयिक डिश, "फ़ीड" एक बुनियादी विकिरण वाले एंटीना को भी संदर्भित कर सकता है, जो प्रतिबिंबित तत्वों की पूरी प्रणाली में अंतः स्थापित होता है जिसे उस एंटीना प्रणाली में एक सक्रिय तत्व माना जा सकता है। एक प्रवाहकीय संचारलाइन के स्थान पर एक सूक्ष्म तरंग एंटीना को सीधे वेवगाइड से भी फीड किया जा सकता है।


[[File:6 sector site in CDMA.jpg|thumb|150px|left|[[ सेलफोन ]] [[ सेलुलर बेस स्टेशन ]] एंटेना]]
[[File:6 sector site in CDMA.jpg|thumb|150px|left|[[ सेलफोन | सेलफोन]] [[ सेलुलर बेस स्टेशन |सेलुलर बेस स्टेशन]] एंटीना]]
एक प्रतितोलन ऐन्टेना, या [[ समतल ज़मीन ]], प्रवाहकीय सामग्री की एक संरचना है जो जमीन के लिए स्थानापन्न करती है। यह प्राकृतिक जमीन से जुड़ा या अछूता हो सकता है। एक एकध्रुव एंटीना में, यह प्राकृतिक जमीन के कार्य में सहायता करता है, खासकर जहां प्राकृतिक जमीन की विशेषताओं की विविधताएं या सीमाएं इसके उचित कार्य में हस्तक्षेप करती हैं। ऐसी संरचना आम तौर पर असंतुलित संचारलाइन के रिटर्न कनेक्शन से जुड़ी होती है जैसे कि समाक्षीय केबल की ढाल जुड़ी होती है।
एक एंटीना प्रतिरूप, या या ग्राउंड प्लेन, प्रवाहकीय सामग्री की एक संरचना है, जो जमीन के लिए सुधार या स्थानापन्न करती है। एक मोनोपोल एंटीना में, यह प्राकृतिक जमीन के कार्य में सहायता करता है, विशेष रूप से जहां प्राकृतिक जमीन की विशेषताओं की विविधताएं या सीमाएं इसके उचित कार्य में हस्तक्षेप करती हैं। ऐसी संरचना सामान्यतः एक असंतुलित ट्रांसमिशन लाइन जैसे समाक्षीय केबल के रिटर्न कनेक्शन से जुड़ी होती है।


कुछ द्वारक ऐन्टेना में एक विद्युत चुम्बकीय तरंग अपवर्तक एक घटक है जो इसके आकार और स्थिति के कारण विद्युत चुम्बकीय तरंग के कुछ हिस्सों को चुनिंदा रूप से अग्रिम करने के लिए कार्य करता है। दूसरी तरफ अपवर्तक, सापेक्ष तरंग की स्थानिक विशेषताओं को बदल देता है। उदाहरण के लिए, यह तरंग को फोकस में ला सकता है या अन्य तरीकों से तरंगाग्र को बदल सकता है, आमतौर पर एंटीना सिस्टम की सक्रियता को अधिकतम करने के लिए होता है। यह एक [[ ऑप्टिकल लेंस | प्रकाशीय लेन्स]] के बराबर रेडियो है।
कुछ द्वारक ऐन्टेना में एक विद्युत चुम्बकीय तरंग अपवर्तक एक घटक है जो इसके आकार और स्थिति के कारण विद्युत चुम्बकीय तरंग के कुछ हिस्सों को चुनिंदा रूप से अग्रिम करने के लिए कार्य करता है। दूसरी तरफ के सापेक्ष तरंग की स्थानिक विशेषताओं को बदल देता है। उदाहरण के लिए, यह तरंग को फोकस में ला सकता है या अन्य तरीकों से तरंगाग्र को बदल सकता है, यह एक ऑप्टिकल लेंस का रेडियो समकक्ष है जो सामान्यतः एंटीना सिस्टम की सक्रियता को अधिकतम करने के लिए होता है।  


एक [[ एंटीना ट्यूनर ]] एक निष्क्रिय नेटवर्क है जोआमतौर पर [[ अधिष्ठापन |अधिष्ठापन]] और [[ समाई |समाई]] परिपथ तत्वों का एक संयोजन है जो एंटीना और ट्रांसमीटर के बीच प्रतिबाधा मिलान के लिए उपयोग किया जाता है। इसका उपयोग संचारलाइन के [[ स्थायी तरंग अनुपात |स्थायी तरंग अनुपात]] को कम करके, और इसके इष्टतम संचालन के लिए आवश्यक मानक प्रतिरोधक प्रतिबाधा के साथ ट्रांसमीटर को प्रस्तुत करने के लिए फ़ीड लाइन पर नुकसान को कम करने के लिए किया जाता है। भरण बिंदु मे स्थानों का चयन किया जाता है, और एंटीना ट्यूनर घटकों के समान विद्युत रूप से एंटीना तत्वों को प्रतिबाधा मिलान में सुधार के लिए एंटीना संरचना में ही शामिल किया जाता है।
एक [[ एंटीना ट्यूनर |युग्मन नेटवर्क]] एक निष्क्रिय नेटवर्क है जो सामान्यतः पर [[ अधिष्ठापन |अधिष्ठापन]] और कैपेसिटिव परिपथ तत्वों का एक संयोजन है जो एंटीना और ट्रांसमीटर के बीच प्रतिबाधा मिलान के लिए उपयोग किया जाता है। इसका उपयोग संचारलाइन के [[ स्थायी तरंग अनुपात |स्थायी तरंग अनुपात]] को कम करके, और इसके इष्टतम संचालन के लिए आवश्यक मानक प्रतिरोधक प्रतिबाधा के साथ ट्रांसमीटर को प्रस्तुत करने के लिए फ़ीड लाइन पर नुकसान को कम करने के लिए किया जाता है। फ़ीड बिंदु स्थानों का चयन किया जाता है, और एंटीना ट्यूनर घटकों के समान विद्युत रूप से एंटीना तत्वों को प्रतिबाधा मिलान में सुधार के लिए एंटीना संरचना में ही सम्मिलित किया जाता है।


== पारस्परिकता ==
== पारस्परिकता ==
{{main|Reciprocity (electromagnetism)}}
{{main|पारस्परिकता (विद्युत चुंबकत्व)}}
एंटेना की यह मूलभूत संपत्ति है जो कि अगले खंड में वर्णित एंटीना की विद्युत विशेषताओं, जैसे लाभ, विकिरण पैटर्न, प्रतिबाधा, बैंडविड्थ, गुंजयमान आवृत्ति और ध्रुवीकरण, के समान हैं चाहे एंटीना संचारण कर रहा हो या प्राप्त कर रहा हो। [11] [12।<ref name="Lonngren">{{cite book |last1=Lonngren |first1=Karl Erik |first2=Sava V. |last2=Savov |first3=Randy J. |last3=Jost |title=Fundamentals of Electomagnetics With Matlab |edition=2nd |publisher=SciTech Publishing |year=2007 |page=451 |url={{Google books |plainurl=yes |id=nIgNr5-VMY4C |page=471}} |isbn=978-1891121586}}</ref><ref name="Stutzman">{{cite book |last1=Stutzman |first1=Warren L. |first2=Gary A. |last2=Thiele |title=Antenna Theory and Design |edition=3rd |publisher=John Wiley & Sons |year=2012 |pages=560–564 |url={{Google books |plainurl=yes |id=xhZRA1K57wIC |page=RA1-PA564}} |isbn=978-0470576649}}</ref> उदाहरण के लिए, अधिग्रहण  के लिए उपयोग किए जाने पर एंटीना का "प्राप्त पैटर्न" (दिशा के कार्य के रूप में संवेदनशीलता) एंटीना के विकिरण पैटर्न के समान होता है जब इसे संचालित किया जाता है और विकिरक के रूप में कार्य करता है। यह  वैद्युतचुंबकिकी  के पारस्परिकता प्रमेय का परिणाम है।।<ref name="Stutzman" />  इसलिए, एंटीना गुणों की चर्चा में आमतौर पर शब्दावली प्राप्त करने और प्रसारित करने के बीच कोई भेद नहीं किया जाता है, और एंटीना को या तो संचारण या प्राप्त करने के रूप में देखा जा सकता है, जो भी अधिक सुविधाजनक होता।


उपरोक्त पारस्परिकता संपत्ति के लिए एक आवश्यक शर्त यह है कि ऐन्टेना और  संचारमाध्यम में सामग्री रैखिक और पारस्परिक होती हैं। पारस्परिक या द्विपक्षीय का अर्थ है कि सामग्री की एक दिशा में विद्युत प्रवाह या चुंबकीय क्षेत्र के लिए समान प्रतिक्रिया होती है, जैसा कि विपरीत दिशा में क्षेत्र या धारा के लिए होता है।। एंटेना में उपयोग की जाने वाली अधिकांश सामग्रियां इन शर्तों को पूरा करती हैं, लेकिन कुछ सूक्ष्म तरंग एंटेना उच्च-तकनीकी घटकों का उपयोग करते हैं जैसे कि पृथक्कारक और सर्क्युलेटर्स, जो फेराइट जैसी गैर-पारस्परिक सामग्रियों से बने होते हहैं।<ref name="Lonngren" /><ref name="Stutzman" /> इनका उपयोग एंटीना को संचारण की तुलना में प्राप्त करने पर एक अलग व्यवहार देने के लिए किया जा सकता है,<ref name="Lonngren" />जो [[ राडार ]] जैसे अनुप्रयोगों में उपयोगी हो सकता है।
एंटीना की यह मूलभूत संपत्ति है जो कि अगले खंड में वर्णित एंटीना की विद्युत विशेषताओं, जैसे लाभ, विकिरण पैटर्न, प्रतिबाधा, बैंडविड्थ, दोलित्र आवृत्ति और ध्रुवीकरण, के समान हैं चाहे एंटीना संचारण कर रहा हो या प्राप्त कर रहा हो। [11] [12।<ref name="Lonngren">{{cite book |last1=Lonngren |first1=Karl Erik |first2=Sava V. |last2=Savov |first3=Randy J. |last3=Jost |title=Fundamentals of Electomagnetics With Matlab |edition=2nd |publisher=SciTech Publishing |year=2007 |page=451 |url={{Google books |plainurl=yes |id=nIgNr5-VMY4C |page=471}} |isbn=978-1891121586}}</ref><ref name="Stutzman">{{cite book |last1=Stutzman |first1=Warren L. |first2=Gary A. |last2=Thiele |title=Antenna Theory and Design |edition=3rd |publisher=John Wiley & Sons |year=2012 |pages=560–564 |url={{Google books |plainurl=yes |id=xhZRA1K57wIC |page=RA1-PA564}} |isbn=978-0470576649}}</ref> उदाहरण के लिए, अधिग्रहण के लिए उपयोग किए जाने पर एंटीना का "रिसीविंग पैटर्न" (दिशा के कार्य के रूप में संवेदनशीलता) ऐन्टेना के विकिरण पैटर्न के समान होता है जब यह संचालित होता है और रेडिएटर के रूप में कार्य करता है। यह वैद्युत चुंबकिकी के पारस्परिकता प्रमेय का परिणाम है।।<ref name="Stutzman" /> इसलिए, एंटीना गुणों की चर्चा में सामान्यतः शब्दावली प्राप्त करने और प्रसारित करने के बीच कोई भेद नहीं किया जाता है, और एंटीना को संचारण या प्राप्त करने के रूप में देखा जा सकता है, जो भी अधिक सुविधाजनक होता।


== अनुनादी ऐंटेना ==
उपरोक्त पारस्परिकता संपत्ति के लिए एक आवश्यक शर्त यह है कि ऐन्टेना और संचार माध्यम में सामग्री रैखिक और पारस्परिक होती हैं। पारस्परिक या द्विपक्षीय का अर्थ है कि सामग्री की एक दिशा में विद्युत प्रवाह या चुंबकीय क्षेत्र के लिए समान प्रतिक्रिया होती है, जैसा कि विपरीत दिशा में क्षेत्र या धारा के लिए होता है।। एंटीना में उपयोग की जाने वाली अधिकांश सामग्रियां इन शर्तों को पूरा करती हैं, लेकिन कुछ सूक्ष्म तरंग एंटीना उच्च-तकनीकी घटकों का उपयोग करते हैं जैसे कि पृथक्कारक और सर्क्युलेटर्स, जो फेराइट जैसी गैर-पारस्परिक सामग्रियों से बने होते हैं।<ref name="Lonngren" /><ref name="Stutzman" /> इनका उपयोग एंटीना को संचारण की तुलना में प्राप्त करने पर एक अलग व्यवहार देने के लिए किया जा सकता है,<ref name="Lonngren" /> जो [[ राडार |राडार]] जैसे अनुप्रयोगों में उपयोगी हो सकता है।
अधिकांश एंटीना डिजाइन अनुनाद सिद्धांत पर आधारित होते हैं। यह चलती इलेक्ट्रॉनों के व्यवहार पर निर्भर करता है, जो उन सतहों को प्रतिबिंबित करता है जहां ढांकता हुआ निरंतर परिवर्तन होता है, जिस तरह से  प्रकाशीय गुणों में परिवर्तन होने पर प्रकाश प्रतिबिंबित होता है। इन डिजाइनों में, परावर्तक सतह एक चालकता के अंत से बनाई जाती है, आमतौर पर एक पतली धातु के तार या रॉड, जो कि सबसे सरल मामले में एक छोर पर एक फीड पॉइंट होता है जहां यह  संचारलाइन से जुड़ा होता है। चालकता, या तत्व, वांछित संकेत के विद्युत क्षेत्र के साथ गठबंधन किया जाता है, सामान्य रूप से इसका अर्थ है कि यह एंटीना से स्रोत (या प्रसारण एंटीना के मामले में रिसीवर) की रेखा से लंबवत है।


रेडियो सिग्नल का विद्युत घटक चालकता में वोल्टेज को प्रेरित करता है। यह एक विद्युत प्रवाह को संकेत के तात्कालिक क्षेत्र की दिशा में बहने का कारण बनता है। जब परिणामी धारा चालकता के अंत तक पहुँचती है, तो यह परावर्तित हो जाती है, जो कि चरण में 180-डिग्री परिवर्तन के बराबर है। यदि चालकता है {{frac|1|4}} लंबे तरंग दैर्ध्य के, फ़ीड बिंदु से धारा 90 डिग्री चरण परिवर्तन से गुजरेगी तब तक यह चालकता के अंत तक नहीं पहुंचती है, 180 डिग्री से परावर्तित होती है, और फिर वापस यात्रा करते समय एक और 90 डिग्री परावर्तित होती है। इसका मतलब है कि इसमें कुल 360 डिग्री चरण परिवर्तन हुआ है, इसे मूल सिग्नल पर वापस कर दिया गया है। इस प्रकार तत्व में करंट उस पल में स्रोत से बनाए जा रहे करंट में जुड़ जाता है। यह प्रक्रिया चालकता में एक [[ खड़ी लहर | खड़ी लहर]] बनाती है, जिसमें फीड पर अधिकतम करंट होता है।{{sfn|Hall|1991|p=25}}
== दोलित्र ऐंटेना ==
अधिकांश एंटीना डिजाइन दोलित्र सिद्धांत पर आधारित होते हैं। यह इलेक्ट्रॉनों के व्यवहार पर निर्भर करता है, जो उन सतहों को प्रतिबिंबित करते है जहां परावैद्युत निरंतर परिवर्तन होता है, जिस तरह से प्रकाशीय गुणों में परिवर्तन होने पर प्रकाश प्रतिबिंबित होता है। इन डिजाइनों में, परावर्तक सतह चालकता के अंत मे जाती है, सामान्यतः एक पतली धातु के तार या रॉड, जो सरलतम स्थिति में एक छोर पर एक फ़ीड बिंदु होता है जहां यह एक ट्रांसमिशन लाइन से जुड़ा होता है। चालकता, या तत्व, वांछित संकेत के विद्युत क्षेत्र के साथ गठबंधन किया जाता है, सामान्य रूप से इसका अर्थ है कि यह एंटीना से स्रोत (या प्रसारण एंटीना के स्थिति में रिसीवर) की रेखा से लंबवत है।


सामान्य अर्ध-तरंग द्विध्रुव संभवतः सबसे व्यापक रूप से उपयोग किया जाने वाला ऐन्टेना डिज़ाइन है। इसमें दो 1/4 तरंग दैर्ध्य तत्व होते हैं जो अंत-से-अंत तक व्यवस्थित होते हैं, और अनिवार्य रूप से एक ही अक्ष  के साथ स्थित होते हैं, प्रत्येक एक दो-कंडक्टर  संचरण  तार के एक तरफ खिलाते हैं। दो तत्वों की भौतिक व्यवस्था उन्हें 180 डिग्री चरण से बाहर रखती है, जिसका अर्थ है कि किसी भी क्षण में एक तत्व  संचरण  लाइन में करंट चला रहा है जबकि दूसरा इसे बाहर खींच रहा है। मोनोपोल ऐन्टेना अनिवार्य रूप से अर्ध-तरंग द्विध्रुव का एक आधा हिस्सा है, एक एकल 1/4 तरंग दैर्ध्य तत्व है जो दूसरी तरफ जमीन या समकक्ष ग्राउंड प्लेन ''(या काउंटरपोइज़)'' से जुड़ा है। मोनोपोल, जो द्विध्रुव के आधे आकार के होते हैं, लंबी-तरंग दैर्ध्य रेडियो संकेतों के लिए आम हैं जहां एक द्विध्रुव अव्यावहारिक रूप से बड़ा होगा। एक अन्य सामान्य डिज़ाइन मुड़ा हुआ द्विध्रुव है जिसमें दो या अधिक अर्ध-तरंग द्विध्रुव होते हैं जो अगल-बगल रखे जाते हैं और उनके सिरों पर जुड़े होते हैं लेकिन इनमें से केवल एक ही संचालित होता है।
रेडियो सिग्नल का विद्युत घटक चालकता में वोल्टेज को प्रेरित करता है। यह एक विद्युत प्रवाह को संकेत के तात्कालिक क्षेत्र की दिशा में बहने के कारण बनता है। जब परिणामी धारा चालकता के अंत तक पहुँचती है, तो यह परावर्तित हो जाती है, जो कि चरण में 180-डिग्री परिवर्तन के बराबर है। यदि चालकता {{frac|1|4}} लंबे तरंग दैर्ध्य है , फ़ीड बिंदु से धारा 90 डिग्री चरण परिवर्तन से गुजरेगी तब तक यह चालकता के अंत तक नहीं पहुंचती है, 180 डिग्री से परावर्तित होती है, और फिर वापस यात्रा करते समय एक और 90 डिग्री मे परावर्तित होती है। इसका मतलब है कि इसमें कुल 360 डिग्री चरण परिवर्तन हुआ है, इसे मूल सिग्नल पर वापस कर दिया गया है। इस प्रकार तत्व में धारा उस पल में स्रोत से बनाए जा रहे धारा में जुड़ जाता है। यह प्रक्रिया चालकता में एक [[ खड़ी लहर |खड़ी लहर]] बनाती है, जिसमें फीड पर अधिकतम धारा होता है।{{sfn|Hall|1991|p=25}}


डिजाइन ऑपरेटिंग आवृत्ति, एफओ, और एंटेना पर इस वांछित पैटर्न के साथ स्थायी तरंग रूपों को सामान्य रूप से इस आकार के लिए डिज़ाइन किया गया है। हालांकि, उस तत्व को 3 fo (जिसकी तरंग दैर्ध्य 1⁄3 fo की है) के साथ खिलाने से भी एक स्थायी तरंग पैटर्न बन जाएगा। इस प्रकार, एक एंटीना तत्व भी गुंजयमान होता है जब इसकी लंबाई तरंग दैर्ध्य की 3⁄4 होती है। यह 1⁄4 तरंगदैर्घ्य के सभी विषम गुणजों के लिए सत्य है। यह एंटीना की लंबाई और फीड पॉइंट के संदर्भ में डिजाइन के कुछ लचीलेपन की अनुमति देता है। इस तरह से उपयोग किए जाने वाले एंटेना को ''सामंजस्यपूर्ण'' रूप से संचालित करने के लिए जाना जाता है।{{sfn|Hall|1991|pp=31-32}} अनुनादी ऐंटेना आमतौर पर एक रैखिक चालक, या ऐसे तत्वों की जोड़ी का उपयोग करते हैं, जिनमें से प्रत्येक लंबाई में तरंग दैर्ध्य का लगभग एक चौथाई होता है (चौथाई तरंग दैर्ध्य का एक विषम गुणक भी गुंजयमान होगा)। एंटेना जिन्हें तरंग दैर्ध्य बलिदान दक्षता की तुलना में छोटा होना आवश्यक है और बहुत दिशात्मक नहीं हो सकते हैं। चूंकि तरंगदैर्घ्य उच्च आवृत्तियों (यूएचएफ, सूक्ष्म तरंग) पर इतने छोटे होते हैं कि छोटे भौतिक आकार प्राप्त करने के लिए प्रदर्शन बंद कर दिया जाता है, आमतौर पर इसकी आवश्यकता नहीं होती है।
सामान्य अर्ध-तरंग द्विध्रुव संभवतः सबसे व्यापक रूप से उपयोग किया जाने वाला ऐन्टेना डिज़ाइन है। इसमें दो 1/4 तरंग दैर्ध्य तत्व होते हैं जो अंत-से-अंत तक व्यवस्थित होते हैं, और अनिवार्य रूप से एक ही अक्ष के साथ स्थित होते हैं, प्रत्येक एक दो-चालकता संचरण तार के एक तरफ खिलाते हैं। दो तत्वों की भौतिक व्यवस्था उन्हें 180 डिग्री चरण से बाहर रखती है, जिसका अर्थ है कि किसी भी क्षण में एक तत्व संचरण लाइन में धारा चला रहा है जबकि दूसरा इसे बाहर खींच रहा है। मोनोपोल ऐन्टेना अनिवार्य रूप से अर्ध-तरंग द्विध्रुव का एक आधा हिस्सा है, एक एकल 1/4 तरंग दैर्ध्य तत्व है जो दूसरी तरफ जमीन या समकक्ष ग्राउंड प्लेन ''(या काउंटरपोइज़)'' से जुड़ा है। मोनोपोल, जो द्विध्रुव के आधे आकार के होते हैं, लंबी-तरंग दैर्ध्य रेडियो संकेतों के लिए आम हैं जहां एक द्विध्रुव अव्यावहारिक रूप से बड़ा होगा। एक अन्य सामान्य डिज़ाइन मुड़ा हुआ द्विध्रुव है जिसमें दो या अधिक अर्ध-तरंग द्विध्रुव होते हैं जो अगल-बगल रखे जाते हैं और उनके सिरों पर जुड़े होते हैं लेकिन इनमें से केवल एक ही संचालित होता है।


[[File:Dipole antenna standing waves animation 6 - 5fps.gif|thumb|upright=1.5|अपनी गुंजयमान आवृत्ति पर संचालित [[ अर्ध तरंग द्विध्रुव ]] पर खड़ी तरंगें। तरंगों को रंग की पट्टियों (<span style= color:red; >red for thevoltage, V</span> और <span style= color:blue; >blue for current, I</span>) द्वारा ग्राफिक रूप से दिखाया जाता है, जिनकी चौड़ाई ऐन्टेना पर उस बिंदु पर मात्रा के आयाम के समानुपाती होता है।]]
डिजाइन ऑपरेटिंग आवृत्ति, एफओ, और एंटीना पर इस वांछित पैटर्न के साथ स्थायी तरंग रूपों को सामान्य रूप से इस आकार के लिए डिज़ाइन किया गया है। चूंकि, उस तत्व को 3 एफओ (जिसकी तरंग दैर्ध्य 1⁄3एफओ की है) के साथ भी एक स्थायी तरंग पैटर्न बन जाता है। इस प्रकार, एंटीना तत्व भी दोलित्र होता है जब इसकी लंबाई तरंग दैर्ध्य की 3⁄4 होती है। यह 1⁄4 तरंगदैर्घ्य के सभी विषम गुणजों के लिए सत्य है। यह एंटीना की लंबाई और फीड पॉइंट के संदर्भ में डिजाइन के कुछ लचीलेपन की अनुमति देता है। इस तरह से उपयोग किए जाने वाले एंटीना को ''सामंजस्यपूर्ण'' रूप से संचालित करने के लिए जाना जाता है।{{sfn|Hall|1991|pp=31-32}} दोलित्र ऐंटेना सामान्यतः पर एक रैखिक चालक, या ऐसे तत्वों की जोड़ी का उपयोग करते हैं, जिनमें से प्रत्येक लंबाई में तरंग दैर्ध्य का लगभग एक चौथाई होता है (चौथाई तरंग दैर्ध्य का एक विषम गुणक भी दोलित्र होगा)। एंटीना जिन्हें तरंग दैर्ध्य बलिदान दक्षता की तुलना में छोटा होना आवश्यक है और बहुत दिशात्मक नहीं हो सकते हैं। चूंकि तरंगदैर्घ्य उच्च आवृत्तियों (यूएचएफ, सूक्ष्म तरंग) पर इतने छोटे होते हैं कि छोटे भौतिक आकार प्राप्त करने के लिए प्रदर्शन बंद कर दिया जाता है, सामान्यतः पर इसकी आवश्यकता नहीं होती है।


[[File:Dipole antenna standing waves animation 6 - 5fps.gif|thumb|upright=1.5|अपनी दोलित्र आवृत्ति पर संचालित [[ अर्ध तरंग द्विध्रुव |अर्ध तरंग द्विध्रुव]] पर खड़ी तरंगें। तरंगों को रंग की पट्टियों (<span style= color:red; >red for thevoltage, V</span> और <span style= color:blue; >blue for current, I</span>) द्वारा ग्राफिक रूप से दिखाया जाता है, जिनकी चौड़ाई ऐन्टेना पर उस बिंदु पर मात्रा के आयाम के समानुपाती होता है।]]


=== वर्तमान और वोल्टेज वितरण ===
चतुर्थ तरंग तत्व चालक के साथ मौजूद अप्रगामी तरंग  के कारण एक श्रृंखला-गुंजयमान  विद्युत तत्व की नकल करते हैं। गुंजयमान आवृत्ति पर, अप्रगामी तरंग में फीड पर करंट पीक और  विद्युत संचालन बिंदु न्यूनतम होता है। विद्युत शब्दों में, इसका मतलब है कि तत्व में न्यूनतम प्रतिक्रिया है, जो की  न्यूनतम विद्युत संचालन के लिए अधिकतम धारा उत्पन्न करता है। यह आदर्श स्थिति है, क्योंकि यह न्यूनतम इनपुट के लिए अधिकतम उत्पादन का उत्पादन करता है, उच्चतम संभावित दक्षता का उत्पादन करता है। एक आदर्श (दोष रहित) श्रृंखला-प्रतिध्वनि परिपथ के विपरीत, ऐन्टेना के विकिरण प्रतिरोध के साथ-साथ किसी भी वास्तविक विद्युत नुकसान के कारण एक परिमित प्रतिरोध (फीड-पॉइंट पर अपेक्षाकृत छोटे वोल्टेज के अनुरूप) रहता है।


याद रखें कि सामग्री के विद्युत गुणों में परिवर्तन होने पर करंट प्रतिबिंबित होगा। प्राप्त सिग्नल को  संचरण  लाइन में कुशलता से स्थानांतरित करने के लिए, यह महत्वपूर्ण है कि संचरण लाइन में ऐन्टेना पर इसके संपर्क बिंदु के समान प्रतिबाधा हो, अन्यथा कुछ संकेत ऐन्टेना के शरीर में पीछे की ओर परिलक्षित होंगे; इसी तरह ट्रांसमीटर की सिग्नल पावर का हिस्सा ट्रांसमीटर पर वापस दिखाई देगा, अगर विद्युत प्रतिबाधा में कोई बदलाव होता है जहां फीडलाइन एंटीना से जुड़ती है। यह प्रतिबाधा मिलान की अवधारणा, एंटीना और  संचरण  लाइन की समग्र प्रणाली के डिजाइन की ओर जाता है ताकि प्रतिबाधा जितना संभव हो उतना करीब हो, जिससे इन नुकसानों को कम किया जा सके। प्रतिबाधा मिलान एक परिपथ द्वारा पूरा किया जाता है जिसे एंटीना ट्यूनर या ट्रांसमीटर और एंटीना के बीच प्रतिबाधा मिलान नेटवर्क कहा जाता है। फीडलाइन और एंटीना के बीच प्रतिबाधा मैच को फीडलाइन पर स्टैंडिंग वेव रेशियो (एसडब्ल्यूआर) नामक एक पैरामीटर द्वारा मापा जाता है।
=== धारा और वोल्टेज वितरण ===
क्वाटर-वेव तत्व चालकता के साथ सम्मलित स्टैंडिंग वेव के कारण एक श्रृंखला-दोलित्र विद्युत तत्व का अनुसरण करना हैं। दोलित्र आवृत्ति पर, अप्रगामी तरंग में फीड पर धारा पीक और विद्युत संचालन बिंदु न्यूनतम होता है। विद्युत शब्दों में, इसका मतलब है कि तत्व में न्यूनतम प्रतिक्रिया है, जो की न्यूनतम विद्युत संचालन के लिए अधिकतम धारा उत्पन्न करता है। यह आदर्श स्थिति है, क्योंकि यह न्यूनतम इनपुट के लिए अधिकतम उत्पादन करता है, उच्चतम संभावित दक्षता का उत्पादन करता है। एक आदर्श (दोष रहित) श्रृंखला-प्रतिध्वनि परिपथ के विपरीत, ऐन्टेना के विकिरण प्रतिरोध के साथ-साथ किसी भी वास्तविक विद्युत नुकसान के कारण एक परिमित प्रतिरोध (फीड-पॉइंट पर अपेक्षाकृत छोटे वोल्टेज के अनुरूप) रहता है।


तरंगदैर्घ्य 1 मीटर वाले संकेतों के साथ काम करने के लिए डिज़ाइन किए गए है, आधे-लहर द्विध्रुवीय पर विचार करें, जिसका अर्थ है कि एंटीना टिप से टिप तक लगभग 50 सेमी होगा। यदि तत्व की लंबाई-से-व्यास अनुपात 1000 है, तो इसमें लगभग 63 ओम प्रतिरोधक की अंतर्निहित प्रतिबाधा होगी। उपयुक्त  संचारवायर या बलून का उपयोग करके, हम न्यूनतम सिग्नल प्रतिबिंब सुनिश्चित करने के लिए उस प्रतिरोध से मेल खाते हैं। उस एंटेना को 1 एम्पीयर के करंट के साथ फीड करने के लिए 63 वोल्ट की आवश्यकता होगी, और एंटीना 63 वाट (नुकसान को अनदेखा करते हुए) रेडियो फ़्रीक्वेंसी पावर का विकिरण करेगा। अब उस मामले पर विचार करें जब एंटेना को 1.25 मीटर की तरंग दैर्ध्य के साथ एक संकेत दिया जाता है; इस मामले में सिग्नल से प्रेरित करंट सिग्नल के साथ एंटीना के फीडपॉइंट आउट-ऑफ-फेज पर पहुंच जाएगा, जिससे नेट करंट गिर जाएगा जबकि वोल्टेज वही रहेगा। विद्युत रूप से यह एक बहुत ही उच्च प्रतिबाधा प्रतीत होता है। एंटीना और संचारलाइन में अब समान प्रतिबाधा नहीं है, और सिग्नल आउटपुट को कम करते हुए वापस एंटीना में परिलक्षित होगा। इसे एंटीना और संचारलाइन के बीच मिलान प्रणाली को बदलकर संबोधित किया जा सकता है, लेकिन यह समाधान केवल नई डिज़ाइन आवृत्ति पर ही अच्छा काम करता है।
याद रखें कि विद्युत गुणों में परिवर्तन होने पर धारा प्रतिबिंबित होगा। प्राप्त सिग्नल को संचरण लाइन में कुशलता से स्थानांतरित करने के लिए, यह महत्वपूर्ण है कि संचरण लाइन में ऐन्टेना पर इसके संपर्क बिंदु के समान प्रतिबाधा हो, अन्यथा कुछ संकेत ऐन्टेना के पीछे की ओर परिलक्षित होंगे; इसी तरह ट्रांसमीटर की सिग्नल पावर का हिस्सा ट्रांसमीटर पर वापस दिखाई देगा, अगर विद्युत प्रतिबाधा में कोई बदलाव होता है, जहां फीडलाइन एंटीना से जुड़ती है। यह प्रतिबाधा मिलान की अवधारणा, एंटीना और संचरण लाइन की समग्र प्रणाली के डिजाइन की ओर जाता है ताकि प्रतिबाधा जितना संभव हो उतना करीब हो, जिससे इन नुकसानों को कम किया जा सके। प्रतिबाधा मिलान एक परिपथ द्वारा पूरा किया जाता है जिसे एंटीना ट्यूनर या ट्रांसमीटर और एंटीना के बीच प्रतिबाधा मिलान नेटवर्क कहा जाता है। फीडलाइन और एंटीना के बीच प्रतिबाधा मैच को फीडलाइन पर स्टैंडिंग वेव रेशियो (एसडब्ल्यूआर) नामक एक पैरामीटर द्वारा मापा जाता है।


परिणाम यह है कि अनुनादी ऐंटेना कुशलता से संचारलाइन में सिग्नल को तभी फीड करेगा जब स्रोत सिग्नल की आवृत्ति एंटीना की डिज़ाइन आवृत्ति के करीब हो, या गुंजयमान गुणकों में से एक हो। यह गुंजयमान एंटीना डिज़ाइन को स्वाभाविक रूप से संकीर्ण-बैंड बनाता है: केवल अनुनाद (ओं) के आसपास केंद्रित आवृत्तियों की एक छोटी श्रृंखला के लिए उपयोगी होता है।
तरंगदैर्घ्य 1 मीटर वाले संकेतों के साथ काम करने के लिए डिज़ाइन किए गए है, आधे-लहर द्विध्रुवीय पर विचार करें, जिसका अर्थ है कि एंटीना टिप से टिप तक लगभग 50 सेमी होगा। यदि तत्व की लंबाई-से-व्यास अनुपात 1000 है, तो इसमें लगभग 63 ओम प्रतिरोधक की अंतर्निहित प्रतिबाधा होगी। उपयुक्त संचारवायर या बलून का उपयोग करके, हम न्यूनतम सिग्नल प्रतिबिंब सुनिश्चित करने के लिए उस प्रतिरोध से मेल खाते हैं। उस एंटीना को 1 एम्पीयर के धारा के साथ फीड करने के लिए 63 वोल्ट की आवश्यकता होगी, और एंटीना 63 वाट (नुकसान को अनदेखा करते हुए) रेडियो फ़्रीक्वेंसी पावर का विकिरण करेगा। अब उस स्थिति पर विचार करें जब एंटीना को 1.25 मीटर की तरंग दैर्ध्य के साथ एक संकेत दिया जाता है; इस स्थिति में सिग्नल से प्रेरित धारा सिग्नल के साथ एंटीना के फीडपॉइंट आउट-ऑफ-फेज पर पहुंच जाएगा, जिससे नेट धारा गिर जाएगा जबकि वोल्टेज वही रहेगा। विद्युत रूप से यह एक बहुत ही उच्च प्रतिबाधा प्रतीत होता है। एंटीना और संचारलाइन में अब समान प्रतिबाधा नहीं है, और सिग्नल आउटपुट को कम करते हुए वापस एंटीना में परिलक्षित होगा। इसे एंटीना और संचारलाइन के बीच मिलान प्रणाली को बदलकर संबोधित किया जा सकता है, लेकिन यह समाधान केवल नई डिज़ाइन आवृत्ति पर ही अच्छा काम करता है।


=== विद्युत रूप से छोटे एंटेना ===
परिणाम यह है कि दोलित्र ऐंटेना कुशलता से संचारलाइन में सिग्नल को तभी फीड करेगा जब स्रोत सिग्नल की आवृत्ति एंटीना की डिज़ाइन आवृत्ति के करीब हो, या दोलित्र गुणकों में से एक हो। यह दोलित्र एंटीना डिज़ाइन को स्वाभाविक रूप से संकीर्ण-बैंड बनाता है: केवल दोलित्र के आसपास केंद्रित आवृत्तियों की एक छोटी श्रृंखला के लिए उपयोगी होता है।
[[File:CB antenna.jpg|thumb|right|[[ लोडिंग कॉइल ]] के साथ विशिष्ट केंद्र-लोडेड मोबाइल सीबी एंटीना]]
एकध्रुव या द्विध्रुव एंटेना के उपयोग की अनुमति देने के लिए सरल प्रतिबाधा मिलान तकनीकों का उपयोग करना संभव होता है, {{sfrac|1| 4 }} या {{sfrac|1| 2 }}तरंग दैर्ध्य पर,  क्रमशः, जिस पर वे गुंजयमान होते हैं। जैसे ही इन एंटेना को छोटा बनाया जाता है (किसी दी गई आवृत्ति के लिए) उनकी प्रतिबाधा एक श्रृंखला संधारित्र (ऋणात्मक) प्रतिक्रिया से हावी हो जाती है; एक उपयुक्त आकार के लोडिंग कॉइल को जोड़कर रेडियो एंटीना | "लोडिंग कॉइल" - समान और विपरीत  प्रतिक्रिया के साथ एक श्रृंखला अधिष्ठापन - एंटीना के धारिता प्रतिघात को केवल एक शुद्ध प्रतिरोध छोड़कर रद्द किया जा सकता है।


कभी-कभी ऐसी प्रणाली एंटीना प्लस मिलान नेटवर्क की परिणामी विद्युत अनुनाद आवृत्ति [[ विद्युत लंबाई ]] की अवधारणा का उपयोग करके वर्णित की जाती है, इसलिए इसकी अनुनाद आवृत्ति की तुलना में कम आवृत्ति पर उपयोग किए जाने वाले एंटीना को विद्युत रूप से छोटा एंटीना कहा जाता है<ref name=IEEE>{{cite conference |author=Slyusar, V.I. |date=17–21 September 2007 |title=60&nbsp;Years of electrically small antenna theory |conference=6th International Conference on Antenna Theory and Techniques |place=[[Sevastopol, Ukraine]] |pages=116–118 |url=http://slyusar.kiev.ua/ICATT_2007_1.pdf |access-date=2017-09-02 |url-status=live |archive-url=https://web.archive.org/web/20170828212548/http://www.slyusar.kiev.ua/ICATT_2007_1.pdf |archive-date=2017-08-28 |df=dmy-all}}</ref>
=== विद्युत रूप से छोटे एंटीना ===
[[File:CB antenna.jpg|thumb|right|[[ लोडिंग कॉइल | लोडिंग कॉइल]] के साथ विशिष्ट केंद्र-लोडेड मोबाइल सीबी एंटीना]]
एकध्रुव या द्विध्रुव एंटीना के उपयोग की अनुमति देने के लिए सरल प्रतिबाधा मिलान तकनीकों का उपयोग करना संभव होता है, {{sfrac|1| 4 }} या {{sfrac|1| 2 }}तरंग दैर्ध्य पर, क्रमशः, जिस पर वे दोलित्र होते हैं। जैसे ही इन एंटीना को छोटा बनाया जाता है (किसी दी गई आवृत्ति के लिए) उनकी प्रतिबाधा एक श्रृंखला संधारित्र प्रतिक्रिया से हावी हो जाती है; एक उपयुक्त आकार के लोडिंग कॉइल को जोड़कर रेडियो एंटीना, "लोडिंग कॉइल" - समान और विपरीत प्रतिक्रिया के साथ एक श्रृंखला अधिष्ठापन - ऐन्टेना की कैपेसिटिव रिएक्शन को केवल एक शुद्ध प्रतिरोध छोड़कर रद्द किया जा सकता है।


उदाहरण के लिए, 30 मेगाहर्ट्ज (10 मीटर तरंग दैर्ध्य) पर एक वास्तविक अनुनादक {{sfrac|1| 4 }}तरंग एकध्रुव लगभग 2.5 मीटर लंबा होगा, और केवल 1.5 मीटर ऊंचे एंटेना का उपयोग करने के लिए लोडिंग कॉइल को जोड़ने की आवश्यकता होगी। तब यह कहा जा सकता है कि कॉइल ने 2.5 मीटर की विद्युत लंबाई प्राप्त करने के लिए एंटीना को लंबा कर दिया है। हालांकि, प्राप्त परिणामी प्रतिरोधक प्रतिबाधा एक सच्चे की तुलना में काफी कम होगी {{sfrac|1| 4 }}तरंग गुंजयमान एकध्रुव, अक्सर वांछित संचरण लाइन के लिए और प्रतिबाधा मिलान की आवश्यकता होती है। हमेशा छोटे एंटेना के लिए (अधिक विद्युत लम्बाई की आवश्यकता होती है) विकिरण प्रतिरोध कम हो जाता है (लगभग एंटीना लंबाई के वर्ग के अनुसार), जिससे विद्युत अनुनाद से दूर शुद्ध प्रतिक्रिया के कारण बेमेल खराब हो जाता है। या यह भी कहा जा सकता है कि एंटीना सिस्टम के समतुल्य अनुनाद  परिपथ में उच्च [[ क्यू कारक | क्यू कारक]] होता है और इस प्रकार कम बैंडविड्थ होता है,<ref name="IEEE" />जो प्रेषित सिग्नल के तरंग के लिए अपर्याप्त भी हो सकता है। ''लोडिंग कॉइल'' के कारण कॉपर की हानि, कम विकिरण प्रतिरोध के सापेक्ष, कम दक्षता की आवश्यकता होती है, जो एक संचारण एंटेना के लिए बहुत चिंता का विषय हो सकता है, लेकिन बैंडविड्थ प्रमुख कारक है{{dubious|date=June 2016}}{{dubious|date=November 2018}} जो एंटेना के आकार को 1 मेगाहर्ट्ज और कम आवृत्तियों पर सेट करता है।
कभी-कभी ऐसी प्रणाली (एंटीना प्लस मैचिंग नेटवर्क) की परिणामी विद्युत दोलित्र आवृत्ति को विद्युत लंबाई की अवधारणा का उपयोग करके वर्णित किया जाता है, इसलिए इसकी दोलित्र आवृत्ति की तुलना में कम आवृत्ति पर उपयोग किए जाने वाले ऐन्टेना को विद्युत रूप से लघु ऐन्टेना कहा जाता है<ref name=IEEE>{{cite conference |author=Slyusar, V.I. |date=17–21 September 2007 |title=60&nbsp;Years of electrically small antenna theory |conference=6th International Conference on Antenna Theory and Techniques |place=[[Sevastopol, Ukraine]] |pages=116–118 |url=http://slyusar.kiev.ua/ICATT_2007_1.pdf |access-date=2017-09-02 |url-status=live |archive-url=https://web.archive.org/web/20170828212548/http://www.slyusar.kiev.ua/ICATT_2007_1.pdf |archive-date=2017-08-28 |df=dmy-all}}</ref>
 
उदाहरण के लिए, 30 मेगाहर्ट्ज (10 मीटर तरंग दैर्ध्य) पर एक वास्तविक अनुनादक {{sfrac|1| 4 }}तरंग एकध्रुव लगभग 2.5 मीटर लंबा होगा, और केवल 1.5 मीटर ऊंचे एंटीना का उपयोग करने के लिए लोडिंग कॉइल को जोड़ने की आवश्यकता होगी। तब यह कहा जा सकता है कि कॉइल ने 2.5 मीटर की विद्युत लंबाई प्राप्त करने के लिए एंटीना को लंबा कर दिया है। चूंकि, प्राप्त परिणामी प्रतिरोधक प्रतिबाधा की तुलना में काफी कम होगी {{sfrac|1| 4 }}तरंग दोलित्र एकध्रुव, अधिकांशतः वांछित संचरण लाइन के लिए और प्रतिबाधा मिलान की आवश्यकता होती है। हमेशा छोटे एंटीना के लिए (अधिक विद्युत लम्बाई की आवश्यकता होती है) विकिरण प्रतिरोध कम हो जाता है (लगभग एंटीना लंबाई के वर्ग के अनुसार), जिससे विद्युत दोलित्र से दूर शुद्ध प्रतिक्रिया के कारण बेमेल हो जाता है। या यह भी कहा जा सकता है कि एंटीना सिस्टम के समतुल्य दोलित्र परिपथ में उच्च [[ क्यू कारक |क्यू कारक]] होता है और इस प्रकार कम बैंडविड्थ होता है,<ref name="IEEE" /> जो प्रेषित सिग्नल के तरंग के लिए अपर्याप्त भी हो सकता है। ''लोडिंग कॉइल'' के कारण कॉपर की हानि, कम विकिरण प्रतिरोध के सापेक्ष, कम दक्षता की आवश्यकता होती है, जो एक संचारण एंटीना के लिए बहुत चिंता का विषय हो सकता है, लेकिन बैंडविड्थ प्रमुख कारक है{{dubious|date=June 2016}}{{dubious|date=November 2018}} जो एंटीना के आकार को 1 मेगाहर्ट्ज और कम आवृत्तियों पर सेट करता है।


=== सरणियाँ और परावर्तक ===
=== सरणियाँ और परावर्तक ===
[[File:Antenna.jpg|thumb|right|रूफटॉप टेलीविजन यागी-उड़ा एंटीना|यागी-उड़ा और लॉग-आवधिक एंटीना|लॉग-पीरियोडिक (फिशबोन) सरणी एंटेना जैसे इस स्टैक का व्यापक रूप से बहुत उच्च आवृत्ति और अल्ट्रा उच्च आवृत्ति आवृत्तियों पर उपयोग किया जाता है।]]
[[File:Antenna.jpg|thumb|right|लॉग-पीरियोडिक (फिशबोन) सरणी एंटीना जैसे इस स्टैक का व्यापक रूप से बहुत उच्च आवृत्ति और अल्ट्रा उच्च आवृत्ति आवृत्तियों पर उपयोग किया जाता है।]]
संचारण ऐन्टेना से दूरी के एक समारोह के रूप में दीप्तिमान प्रवाह व्युत्क्रम-वर्ग कानून के अनुसार भिन्न होता है, क्योंकि यह संचरित तरंग के ज्यामितीय विचलन का वर्णन करता है। किसी आने वाले प्रवाह के लिए, प्राप्त एंटीना द्वारा अधिग्रहित शक्ति उसके प्रभावी क्षेत्र के समानुपाती होती है। यह पैरामीटर आने वाली तरंग के प्रवाह की तुलना में एक प्राप्त एंटीना द्वारा कैप्चर की गई [[ विद्युत शक्ति ]] की मात्रा की तुलना करता है प्रति वर्ग मीटर वाट में सिग्नल की शक्ति घनत्व के संदर्भ में मापा जाता है। एक अर्ध-लहर द्विध्रुव का प्रभावी क्षेत्र लगभग 0.13 . होता है।{{nnbsp}}λ{{sup|2}} चौड़ी दिशा से देखा जाता है। यदि अधिक लाभ की आवश्यकता है तो कोई केवल एंटीना को बड़ा नहीं बना सकता है। एक प्राप्त एंटीना के प्रभावी क्षेत्र पर बाधा के कारण विस्तृत प्रभावी क्षेत्र या एपर्चर, कोई यह देखता है कि पहले से ही कुशल एंटीना डिज़ाइन के लिए, लाभ प्रभावी क्षेत्र बढ़ाने का एकमात्र तरीका एंटीना के लाभ को दूसरी दिशा में कम करना है।
संचारण ऐन्टेना से दूरी के एक समारोह के रूप में दीप्तिमान प्रवाह व्युत्क्रम-वर्ग कानून के अनुसार भिन्न होता है, क्योंकि यह संचरित तरंग के ज्यामितीय विचलन का वर्णन करता है। किसी आने वाले प्रवाह के लिए, प्राप्त एंटीना द्वारा अधिग्रहित शक्ति उसके प्रभावी क्षेत्र के समानुपाती होती है। यह पैरामीटर आने वाली तरंग के प्रवाह की तुलना में एक प्राप्त एंटीना द्वारा कैप्चर की गई [[ विद्युत शक्ति |विद्युत शक्ति]] की मात्रा की तुलना करता है प्रति वर्ग मीटर वाट में सिग्नल की शक्ति घनत्व के संदर्भ में मापा जाता है। एक अर्ध-लहर द्विध्रुव का प्रभावी क्षेत्र लगभग 0.13 . होता है।{{nnbsp}}λ{{sup|2}} चौड़ी दिशा से देखा जाता है। यदि अधिक लाभ की आवश्यकता है तो कोई केवल एंटीना को बड़ा नहीं बना सकता है। एक प्राप्त एंटीना के प्रभावी क्षेत्र पर बाधा के कारण विस्तृत प्रभावी क्षेत्र या एपर्चर, कोई यह देखता है कि पहले से ही कुशल एंटीना डिज़ाइन के लिए, लाभ प्रभावी क्षेत्र बढ़ाने का एकमात्र तरीका एंटीना के लाभ को दूसरी दिशा में कम करना है।


यदि एक अर्ध-तरंग द्विध्रुवीय बाहरी परिपथ से जुड़ा नहीं है, बल्कि फीडपॉइंट पर छोटा हो जाता है, तो यह एक गुंजयमान अर्ध-लहर तत्व बन जाता है जो एक प्रभावशाली रेडियो तरंग के जवाब में कुशलता से एक स्थायी तरंग उत्पन्न करता है। क्योंकि उस शक्ति को अवशोषित करने के लिए कोई भार नहीं है, यह संभवतः एक चरण बदलाव के साथ सारी शक्ति को पुन: प्रसारित करता है जो तत्व की सटीक लंबाई पर गंभीर रूप से निर्भर है। इस प्रकार ट्रांसमीटर से विद्युत रूप से जुड़े तत्व के विकिरण पैटर्न और फीडपॉइंट प्रतिबाधा को प्रभावित करने के लिए ट्रांसमीटर के सिग्नल की दूसरी प्रति संचारित करने के लिए इस तरह के चालकता की व्यवस्था की जा सकती है। इस तरह से उपयोग किए जाने वाले एंटीना तत्वों को निष्क्रिय रेडिएटर्स के रूप में जाना जाता है।
यदि एक अर्ध-तरंग द्विध्रुवीय बाहरी परिपथ से जुड़ा नहीं है, बल्कि फीडपॉइंट पर छोटा हो जाता है, तो यह एक दोलित्र अर्ध-लहर तत्व बन जाता है जो एक प्रभावशाली रेडियो तरंग के जवाब में कुशलता से एक स्थायी तरंग उत्पन्न करता है। क्योंकि उस शक्ति को अवशोषित करने के लिए कोई भार नहीं है, यह संभवतः एक चरण बदलाव के साथ सारी शक्ति को पुन: प्रसारित करता है जो तत्व की सटीक लंबाई पर गंभीर रूप से निर्भर है। इस प्रकार ट्रांसमीटर से विद्युत रूप से जुड़े तत्व के विकिरण पैटर्न और फीडपॉइंट प्रतिबाधा को प्रभावित करने के लिए ट्रांसमीटर के सिग्नल की दूसरी प्रति संचारित करने के लिए इस तरह के चालकता की व्यवस्था की जा सकती है। इस तरह से उपयोग किए जाने वाले एंटीना तत्वों को निष्क्रिय रेडिएटर्स के रूप में जाना जाता है।


एक यागी-उड़ा सरणी एक दिशा में लाभ बढ़ाने के लिए निष्क्रिय तत्वों का उपयोग करती है। कई समानांतर लगभग अर्ध-तरंग तत्व (बहुत विशिष्ट लंबाई के) एक बूम के साथ विशिष्ट स्थितियों पर एक दूसरे के समानांतर स्थित होते हैं; बूम केवल समर्थन के लिए है और विद्युत रूप से शामिल नहीं है। केवल एक तत्व ट्रांसमीटर से विद्युत रूप से जुड़ा होता है, जबकि शेष तत्व निष्क्रिय होते हैं। यागी काफी बड़ा लाभ पैदा करता है (निष्क्रिय तत्वों की संख्या के आधार पर) और व्यापक रूप से एक दिशात्मक एंटीना के रूप में उपयोग किया जाता है जिसमें एंटीना रोटर के साथ अपने बीम की दिशा को नियंत्रित करने के लिए उपयोग किया जाता है। यह एक सीमित बैंडविड्थ होने से ग्रस्त है, इसके उपयोग को कुछ अनुप्रयोगों तक सीमित करता है।
एक यागी-उड़ा सरणी एक दिशा में लाभ बढ़ाने के लिए निष्क्रिय तत्वों का उपयोग करती है। कई समानांतर लगभग अर्ध-तरंग तत्व एक बूम के साथ विशिष्ट स्थितियों पर एक दूसरे के समानांतर स्थित होते हैं; बूम केवल समर्थन के लिए है और विद्युत रूप से सम्मिलित नहीं है। केवल एक तत्व ट्रांसमीटर से विद्युत रूप से जुड़ा होता है, जबकि शेष तत्व निष्क्रिय होते हैं। यागी काफी बड़ा लाभ पैदा करता है (निष्क्रिय तत्वों की संख्या के आधार पर) और व्यापक रूप से एक दिशात्मक एंटीना के रूप में उपयोग किया जाता है जिसमें एंटीना रोटर के साथ अपने बीम की दिशा को नियंत्रित करने के लिए उपयोग किया जाता है। यह एक सीमित बैंडविड्थ होने से ग्रस्त है, इसके उपयोग को कुछ अनुप्रयोगों तक सीमित करता है।


निष्क्रिय रेडिएटर्स के साथ एक संचालित ऐन्टेना तत्व का उपयोग करने के बजाय, एक सरणी ऐन्टेना का निर्माण किया जा सकता है जिसमें कई तत्व ट्रांसमीटर द्वारा पावर स्प्लिटर्स और संचार लाइनों की एक प्रणाली के माध्यम से सापेक्ष चरणों में संचालित होते हैं ताकि एक एकल में आरएफ शक्ति को केंद्रित किया जा सके। दिशा। क्या अधिक है, एक चरणबद्ध सरणी को '''" कर्णनीय "''' बनाया जा सकता है, अर्थात, प्रत्येक तत्व पर लागू चरणों को बदलकर विकिरण पैटर्न को ऐन्टेना तत्वों को भौतिक रूप से स्थानांतरित किए बिना स्थानांतरित किया जा सकता है। एक आम सरणी ऐन्टेना लॉग-आवधिक द्विध्रुव सरणी है जो यागी के समान दिखती है (बूम के साथ समानांतर तत्वों की संख्या के साथ) लेकिन संचालन में पूरी तरह से भिन्न है क्योंकि सभी तत्व एक फेज रिवर्सल के साथ निकटवर्ती तत्व से विद्युत रूप से जुड़े होते हैं। ; लॉग-आवधिक सिद्धांत का उपयोग करके यह एक बहुत बड़े बैंडविड्थ पर अपनी प्रदर्शन विशेषताओं (लाभ और प्रतिबाधा) को बनाए रखने की अनूठी संपत्ति प्राप्त करता है।
निष्क्रिय रेडिएटर्स के साथ एक संचालित ऐन्टेना तत्व का उपयोग करने के अतिरिक्त, एक सरणी ऐन्टेना का निर्माण किया जा सकता है जिसमें कई तत्व ट्रांसमीटर द्वारा पावर स्प्लिटर्स और संचार लाइनों की एक प्रणाली के माध्यम से सापेक्ष चरणों में संचालित होते हैं ताकि एक एकल में आरएफ शक्ति को केंद्रित किया जा सके। दिशा। क्या अधिक है, एक चरणबद्ध सरणी को '''" कर्णनीय "''' बनाया जा सकता है, अर्थात, प्रत्येक तत्व पर लागू चरणों को बदलकर विकिरण पैटर्न को ऐन्टेना तत्वों को भौतिक रूप से स्थानांतरित किए बिना स्थानांतरित किया जा सकता है। एक आम सरणी ऐन्टेना लॉग-आवधिक द्विध्रुव सरणी है जो यागी के समान दिखती है (बूम के साथ समानांतर तत्वों की संख्या के साथ) लेकिन संचालन में पूरी तरह से भिन्न है क्योंकि सभी तत्व एक फेज रिवर्सल के साथ निकटवर्ती तत्व से विद्युत रूप से जुड़े होते हैं। ; लॉग-आवधिक सिद्धांत का उपयोग करके यह एक बहुत बड़े बैंडविड्थ पर अपनी प्रदर्शन विशेषताओं (लाभ और प्रतिबाधा) को बनाए रखने की अनूठी संपत्ति प्राप्त करता है।


जब एक रेडियो तरंग एक बड़ी संवाहक शीट से टकराती है तो यह परावर्तित होती है (विद्युत क्षेत्र के चरण के उलट होने के साथ) जैसे दर्पण प्रकाश को दर्शाता है।अन्यथा गैर-दिशात्मक ऐन्टेना के पीछे इस तरह के एक परावर्तक को रखने से यह सुनिश्चित होगा कि इसकी दिशा में जाने वाली शक्ति वांछित दिशा की ओर पुनर्निर्देशित हो जाती है, ऐन्टेना का लाभ कम से कम 2 के कारक से बढ़ जाता है। इसी तरह, एक कोणी परावर्तक यह सुनिश्चित कर सकता है ऐन्टेना की समस्त शक्ति अंतरिक्ष के केवल एक चतुर्थांश में केंद्रित होती है जिसके परिणामस्वरूप लाभ में वृद्धि होती है। व्यावहारिक रूप से, परावर्तक को एक ठोस धातु शीट होने की आवश्यकता नहीं है, लेकिन इसमें ऐन्टेना के ध्रुवीकरण के साथ संरेखित छड़ों का एक पर्दा शामिल हो सकता है; यह परावर्तक के वजन और वायु भार को बहुत कम करता है। रेडियो तरंगों के स्पेक्युलर परावर्तन को एक परवलयिक परावर्तक एंटीना में भी नियोजित किया जाता है, जिसमें एक घुमावदार परावर्तक सतह प्रभाव एक तथाकथित फ़ीड एंटीना की ओर आने वाली लहर को केंद्रित करता है; इसका परिणाम ऐन्टेना प्रणाली में एक प्रभावी क्षेत्र के साथ होता है जिसकी तुलना स्वयं परावर्तक के आकार से की जा सकती है। ज्यामितीय प्रकाशिकी से अन्य अवधारणाओं को भी ऐन्टेना प्रौद्योगिकी में नियोजित किया जाता है, जैसे कि लेंस ऐन्टेना के साथ।।
जब एक रेडियो तरंग एक बड़ी संवाहक शीट से टकराती है तो यह परावर्तित होती है (विद्युत क्षेत्र के चरण के उलट होने के साथ) जैसे दर्पण प्रकाश को दर्शाता है।अन्यथा गैर-दिशात्मक ऐन्टेना के पीछे इस तरह के एक परावर्तक को रखने से यह सुनिश्चित होगा कि इसकी दिशा में जाने वाली शक्ति वांछित दिशा की ओर पुनर्निर्देशित हो जाती है, ऐन्टेना का लाभ कम से कम 2 के कारक से बढ़ जाता है। इसी तरह, एक कोणी परावर्तक यह सुनिश्चित कर सकता है ऐन्टेना की समस्त शक्ति अंतरिक्ष के केवल एक चतुर्थांश में केंद्रित होती है जिसके परिणामस्वरूप लाभ में वृद्धि होती है। व्यावहारिक रूप से, परावर्तक को एक ठोस धातु शीट होने की आवश्यकता नहीं है, लेकिन इसमें ऐन्टेना के ध्रुवीकरण के साथ संरेखित छड़ों का एक पर्दा सम्मिलित हो सकता है; यह परावर्तक के वजन और वायु भार को बहुत कम करता है। रेडियो तरंगों के स्पेक्युलर परावर्तन को एक परवलयिक परावर्तक एंटीना में भी नियोजित किया जाता है, जिसमें एक घुमावदार परावर्तक सतह प्रभाव एक तथाकथित फ़ीड एंटीना की ओर आने वाली लहर को केंद्रित करता है; इसका परिणाम ऐन्टेना प्रणाली में एक प्रभावी क्षेत्र के साथ होता है जिसकी तुलना स्वयं परावर्तक के आकार से की जा सकती है। ज्यामितीय प्रकाशिकी से अन्य अवधारणाओं को भी ऐन्टेना प्रौद्योगिकी में नियोजित किया जाता है, जैसे कि लेंस ऐन्टेना के साथ।।


==विशेषताएं==
==विशेषताएं==
{{More citations needed section|date=January 2014}}
{{More citations needed section|date=January 2014}}
{{see also|Antenna measurement#Antenna parameters}}
{{see also|एंटीना माप # एंटीना पैरामीटर}}
ऐन्टेना का शक्ति लाभ (या केवल "लाभ") भी ऐन्टेना की दक्षता को ध्यान में रखता है, और अक्सर योग्यता का प्राथमिक आंकड़ा होता है। एंटेना को कई प्रदर्शन उपायों की विशेषता होती है, जो एक उपयोगकर्ता किसी विशेष एप्लिकेशन के लिए एंटीना को चुनने या डिजाइन करने से संबंधित होता है। ऐन्टेना के आसपास के स्थान में दिशात्मक विशेषताओं का एक प्लॉट इसका ''विकिरण पैटर्न'' है।
ऐन्टेना का शक्ति लाभ (या केवल "लाभ") भी ऐन्टेना की दक्षता को ध्यान में रखता है, और अधिकांशतः योग्यता का प्राथमिक आंकड़ा होता है। एंटीना को कई प्रदर्शन उपायों की विशेषता होती है, जो एक उपयोगकर्ता किसी विशेष एप्लिकेशन के लिए एंटीना को चुनने या डिजाइन करने से संबंधित होता है। ऐन्टेना के आसपास के स्थान में दिशात्मक विशेषताओं का एक प्लॉट इसका ''विकिरण पैटर्न'' है।


=== बैंडविड्थ ===
=== बैंडविड्थ ===
आवृत्ति रेंज या बैंडविड्थ जिस पर एक एंटीना अच्छी तरह से काम करता है वह बहुत चौड़ा होता है (जैसे लॉग-आवधिक एंटीना में) या संकीर्ण (एक छोटे लूप एंटीना के रूप में); इस सीमा के बाहर एंटीना प्रतिबाधा संचार लाइन और ट्रांसमीटर के लिए एक खराब मेल बन जाती है। एंटीना का उपयोग इसकी डिजाइन आवृत्ति से काफी दूर इसके विकिरण पैटर्न को प्रभावित करता है, इसके निर्देश लाभ को कम करता है।
आवृत्ति विस्तार या बैंडविड्थ जिस पर एक एंटीना काम करता है जैसे लॉग-आवधिक एंटीना में या संकीर्ण एक छोटे लूप एंटीना के रूप में; इस सीमा के बाहर एंटीना प्रतिबाधा संचार लाइन और ट्रांसमीटर के लिए एक खराब मेल बन जाती है। एंटीना का उपयोग इसकी डिजाइन आवृत्ति से काफी दूर इसके विकिरण पैटर्न को प्रभावित करता है, इसके निर्देश लाभ को कम करता है।


आम तौर पर एक एंटीना में एक फीड-पॉइंट प्रतिबाधा नहीं होती है, जो एक ट्रांसमिशन लाइन से मेल खाती है; एंटीना टर्मिनलों और ट्रांसमिशन लाइन के बीच एक मेल नेटवर्क एंटीना को पावर ट्रांसफर में सुधार करता है। एक गैर-समायोज्य मिलान नेटवर्क ऐन्टेना प्रणाली के प्रयोग करने योग्य बैंडविड्थ को और अधिक सीमित कर देता है। एंटीना बनाने के लिए पतले तारों के बजाय ट्यूबलर तत्वों का उपयोग करना वांछनीय होता है; ये अधिक बैंडविड्थ की अनुमति देंते है, या एक मोटे तत्व का अनुकरण करने के लिए कई पतले तारों को एक पिंजरे में समूहीकृत किया जाता है। यह अनुनाद की बैंडविड्थ को चौड़ा करता है।
सामान्यतः एक एंटीना में फीड-पॉइंट प्रतिबाधा नहीं होती है, जो एक ट्रांसमिशन लाइन से मेल खाती है; एंटीना टर्मिनलों और ट्रांसमिशन लाइन के बीच एक मेल नेटवर्क एंटीना को पावर ट्रांसफर में सुधार करता है। एक गैर-समायोज्य मिलान नेटवर्क ऐन्टेना प्रणाली के प्रयोग करने योग्य बैंडविड्थ को और अधिक सीमित कर देता है। एंटीना बनाने के लिए पतले तारों के अतिरिक्त ट्यूबलर तत्वों का उपयोग करना वांछनीय होता है; ये अधिक बैंडविड्थ की अनुमति देंते है, या एक मोटे तत्व का अनुकरण करने के लिए कई पतले तारों को एक पिंजरे में समूहीकृत किया जाता है। यह दोलित्र की बैंडविड्थ का विस्तारित करता है।


अव्यावसायिक रेडियो एंटेना जो कई आवृत्ति बैंड पर काम करते हैं जो एक दूसरे से व्यापक रूप से अलग होते हैं, समानांतर में उन विभिन्न आवृत्तियों पर गुंजयमान तत्वों को जोड़ सकते हैं। ट्रांसमीटर की अधिकांश शक्ति गुंजयमान तत्व में प्रवाहित होगी जबकि अन्य उच्च प्रतिबाधा प्रस्तुत करते हैं। एक अन्य समाधान जाल, समानांतर अनुनाद  परिपथ का उपयोग करता है जो रणनीतिक रूप से लंबे एंटीना तत्वों में बनाए गए ब्रेक में रखे जाते हैं। जब ट्रैप की विशेष गुंजयमान आवृत्ति पर उपयोग किया जाता है तो ट्रैप एक बहुत ही उच्च प्रतिबाधा (समानांतर प्रतिध्वनि) प्रस्तुत करता है जो ट्रैप के स्थान पर तत्व को प्रभावी ढंग से काटता है; यदि सही ढंग से तैनात किया गया है, तो काटे गए तत्व ट्रैप आवृत्ति पर एक उचित गुंजयमान एंटीना बनाता है। काफी अधिक या कम आवृत्तियों पर ट्रैप टूटे हुए तत्व की पूरी लंबाई को नियोजित करने की अनुमति देता है, लेकिन एक गुंजयमान आवृत्ति के साथ ट्रैप द्वारा जोड़े गए शुद्ध प्रतिक्रिया द्वारा स्थानांतरित किया जाता है।
अव्यावसायिक रेडियो एंटीना जो कई आवृत्ति बैंड पर काम करते हैं जो एक दूसरे से व्यापक रूप से अलग होते हैं, समानांतर में उन विभिन्न आवृत्तियों पर दोलित्र तत्वों को जोड़ सकते हैं। ट्रांसमीटर की अधिकांश शक्ति दोलित्र तत्व में प्रवाहित होगी जबकि अन्य उच्च प्रतिबाधा प्रस्तुत करते हैं। एक अन्य समाधान ट्रैप, समानांतर दोलित्र परिपथ का उपयोग करता है जो लंबे एंटीना तत्वों में बनाए गए ब्रेक में रखे जाते हैं। जब ट्रैप की विशेष दोलित्र आवृत्ति पर उपयोग किया जाता है तो ट्रैप एक बहुत ही उच्च प्रतिबाधा (समानांतर प्रतिध्वनि) प्रस्तुत करता है जो ट्रैप के स्थान पर तत्व को प्रभावी ढंग से काटता है; यदि सही ढंग से तैनात किया गया है, तो काटे गए तत्व ट्रैप आवृत्ति पर एक उचित दोलित्र एंटीना बनाता है। काफी अधिक या कम आवृत्तियों पर ट्रैप टूटे हुए तत्व की पूरी लंबाई को नियोजित करने की अनुमति देता है, लेकिन एक दोलित्र आवृत्ति के साथ ट्रैप द्वारा जोड़े गए शुद्ध प्रतिक्रिया द्वारा स्थानांतरित किया जाता है।


एक गुंजयमान एंटीना तत्व की बैंडविड्थ विशेषताओं को इसके क्यू कारक के अनुसार चित्रित किया जा सकता है| {{mvar|Q}} जहां शामिल प्रतिरोध विकिरण प्रतिरोध है, जो गुंजयमान एंटीना से मुक्त स्थान तक ऊर्जा के उत्सर्जन का प्रतिनिधित्व करता है।
एक दोलित्र एंटीना तत्व की बैंडविड्थ विशेषताओं को इसके क्यू कारक के अनुसार चित्रित किया जा सकता है| {{mvar|Q}} जहां सम्मिलित प्रतिरोध विकिरण प्रतिरोध है, जो दोलित्र एंटीना से मुक्त स्थान तक ऊर्जा के उत्सर्जन का प्रतिनिधित्व करता है।


एक संकीर्ण बैंड एंटीना का क्यू 15 जितना ऊंचा हो सकता है। दूसरी ओर, मोटे तत्वों का उपयोग करने वाले एक की समान ऑफ-रेजोनेंट आवृत्ति पर प्रतिक्रिया बहुत कम होती है, जिसके परिणामस्वरूप क्यू कम से कम 5 होता है। ये दो एंटेना गुंजयमान आवृत्ति पर समान रूप से प्रदर्शन कर सकता है, लेकिन दूसरा एंटीना एक पतले कंडक्टर से युक्त एंटीना के रूप में 3 गुना चौड़ा बैंडविड्थ पर प्रदर्शन करेगा।
एक संकीर्ण बैंड एंटीना का क्यू 15 जितना ऊंचा हो सकता है। दूसरी ओर, मोटे तत्वों का उपयोग करने वाले समान ऑफ-गुंजायमान आवृत्ति पर प्रतिक्रिया बहुत कम होती है, जिसके परिणामस्वरूप क्यू कम से कम 5 होता है। ये दो एंटीना दोलित्र आवृत्ति पर समान रूप से प्रदर्शन कर सकता है, लेकिन दूसरा एंटीना एक पतले चालकता से युक्त एंटीना के रूप में 3 गुना चौड़ा बैंडविड्थ पर प्रदर्शन करेगा।


अधिक व्यापक आवृत्ति रेंज में उपयोग के लिए एंटेना आगे की तकनीकों का उपयोग करके प्राप्त किए जाते हैं। एक मिलान नेटवर्क का समायोजन, सिद्धांत रूप में, किसी भी एंटेना को किसी भी आवृत्ति पर मिलान करने की अनुमति दे सकता है। इस प्रकार अधिकांश एएम प्रसारण (मध्यम तरंग) रिसीवर में निर्मित छोटे लूप एंटीना में एक बहुत ही संकीर्ण बैंडविड्थ होता है, लेकिन समानांतर समाई का उपयोग करके ट्यून किया जाता है जिसे रिसीवर ट्यूनिंग के अनुसार समायोजित किया जाता है। दूसरी ओर, लॉग-आवधिक एंटेना किसी एकल आवृत्ति पर गुंजयमान नहीं होते हैं, लेकिन किसी भी आवृत्ति रेंज पर समान विशेषताओं (फीडपॉइंट प्रतिबाधा सहित) को प्राप्त करने के लिए बनाया जा सकता है। इसलिए इन्हें टेलीविजन एंटेना के रूप में आमतौर पर (दिशात्मक लॉग-आवधिक द्विध्रुवीय सरणियों के रूप में) उपयोग किया जाता है।
अधिक व्यापक आवृत्ति रेंज में उपयोग के लिए एंटीना आगे की तकनीकों का उपयोग करके प्राप्त किए जाते हैं। एक मिलान नेटवर्क का समायोजन, सिद्धांत रूप में, किसी भी एंटीना को किसी भी आवृत्ति पर मिलान करने की अनुमति दे सकता है। इस प्रकार अधिकांश एएम प्रसारण रिसीवर में निर्मित छोटे लूप एंटीना में एक बहुत ही संकीर्ण बैंडविड्थ होता है, लेकिन समानांतर समाई का उपयोग करके ट्यून किया जाता है जिसे रिसीवर ट्यूनिंग के अनुसार समायोजित किया जाता है। दूसरी ओर, लॉग-आवधिक एंटीना किसी एकल आवृत्ति पर दोलित्र नहीं होते हैं, लेकिन किसी भी आवृत्ति रेंज पर समान विशेषताओं (फीडपॉइंट प्रतिबाधा सहित) को प्राप्त करने के लिए बनाया जा सकता है। इसलिए इन्हें टेलीविजन एंटीना के रूप में सामान्यतः पर (दिशात्मक लॉग-आवधिक द्विध्रुवीय सरणियों के रूप में) उपयोग किया जाता है।


{{Main|Antenna gain}}
{{Main|एंटीना लाभ}}
लाभ एक पैरामीटर है जो ऐन्टेना के विकिरण पैटर्न की दिशा की डिग्री को मापता है। एक उच्च-लाभ वाला एंटीना अपनी अधिकांश शक्ति को एक विशेष दिशा में विकीर्ण करेगा, जबकि एक कम-लाभ वाला एंटीना एक विस्तृत कोण पर विकिरण करेगा। ऐन्टेना लाभ, या ऐन्टेना के शक्ति लाभ को [[ तीव्रता (भौतिकी) ]] (शक्ति प्रति इकाई सतह क्षेत्र) के अनुपात के रूप में परिभाषित किया गया है। <math>I</math> ऐन्टेना द्वारा अपने अधिकतम आउटपुट की दिशा में विकिरणित, एक मनमाना दूरी पर, तीव्रता से विभाजित <math>I_\text{iso}</math> एक काल्पनिक आइसोट्रोपिक रेडिएटर द्वारा समान दूरी पर विकिरण किया जाता है जो सभी दिशाओं में समान शक्ति का विकिरण करता है। यह आयाम रहित अनुपात आमतौर पर [[ डेसिबल ]] में लघुगणकीय रूप से व्यक्त किया जाता है, इन इकाइयों को डेसिबल-आइसोट्रोपिक (डीबीआई) कहा जाता है।
लाभ एक पैरामीटर है जो ऐन्टेना के विकिरण पैटर्न की दिशा की डिग्री को मापता है। एक उच्च-लाभ वाला एंटीना अपनी अधिकांश शक्ति को एक विशेष दिशा में विकीर्ण करेगा, जबकि एक कम-लाभ वाला एंटीना एक विस्तृत कोण पर विकिरण करेगा। ऐन्टेना लाभ, या ऐन्टेना के शक्ति लाभ को [[ तीव्रता (भौतिकी) |तीव्रता (भौतिकी)]] (शक्ति प्रति इकाई सतह क्षेत्र) के अनुपात के रूप में परिभाषित किया गया है। <math>I</math> ऐन्टेना द्वारा अपने अधिकतम आउटपुट की दिशा में विकिरणित, एक मनमाना दूरी पर, तीव्रता से विभाजित <math>I_\text{iso}</math> एक काल्पनिक आइसोट्रोपिक रेडिएटर द्वारा समान दूरी पर विकिरण किया जाता है जो सभी दिशाओं में समान शक्ति का विकिरण करता है। यह आयाम रहित अनुपात सामान्यतः पर [[ डेसिबल |डेसिबल]] में लघुगणकीय रूप से व्यक्त किया जाता है, इन इकाइयों को डेसिबल-आइसोट्रोपिक (डीबीआई) कहा जाता है।
: <math>G_\text{dBi} = 10\log{I \over I_\text{iso}}\,</math>
: <math>G_\text{dBi} = 10\log{I \over I_\text{iso}}\,</math>
लाभ को मापने के लिए इस्तेमाल की जाने वाली दूसरी इकाई एंटीना द्वारा विकीर्ण की गई शक्ति का आधा-लहर द्विध्रुवीय एंटीना द्वारा विकीर्ण की गई शक्ति का अनुपात है। <math>I_\text{dipole}</math>; इन इकाइयों को डेसीबल-द्विध्रुवीय (dBd) कहते हैं।
लाभ को मापने के लिए उपयोग की जाने वाली दूसरी इकाई एंटीना द्वारा विकीर्ण की गई शक्ति का आधा-लहर द्विध्रुवीय एंटीना द्वारा विकीर्ण की गई शक्ति का अनुपात है। <math>I_\text{dipole}</math>; इन इकाइयों को डेसीबल-द्विध्रुवीय (dBd) कहते हैं।
: <math>G_\text{dBd} = 10\log{I \over I_\text{dipole}}\,</math>
: <math>G_\text{dBd} = 10\log{I \over I_\text{dipole}}\,</math>
चूंकि अर्ध-तरंग द्विध्रुव का लाभ 2.15 dBi है और उत्पाद का लघुगणक योगात्मक है, dBi में लाभ dBd में लाभ से केवल 2.15 डेसिबल अधिक है
चूंकि अर्ध-तरंग द्विध्रुव का लाभ 2.15 dBi है और उत्पाद का लघुगणक योगात्मक है, dBi में लाभ dBd में लाभ से केवल 2.15 डेसिबल अधिक है
: <math>G_\text{dBi} \approx G_\text{dBd} + 2.15\,</math>
: <math>G_\text{dBi} \approx G_\text{dBd} + 2.15\,</math>
उच्च-लाभ वाले एंटेना में लंबी दूरी और बेहतर सिग्नल गुणवत्ता का लाभ होता है, लेकिन अन्य एंटीना पर ध्यान से लक्षित होना चाहिए। उच्च-लाभ वाले एंटीना का एक उदाहरण एक परवलयिक एंटीना है जैसे उपग्रह टेलीविजन एंटीना। कम लाभ वाले एंटेना की सीमा कम होती है, लेकिन एंटीना का उन्मुखीकरण अपेक्षाकृत महत्वहीन होता है। लो-गेन एंटेना का एक उदाहरण पोर्टेबल रेडियो और [[ ताररहित फोन ]] पर पाया जाने वाला व्हिप एंटीना है। एंटीना गेन को गेन (इलेक्ट्रोमैग्नेटिक्स) के साथ भ्रमित नहीं होना चाहिए, एक अलग पैरामीटर जो सिस्टम के फ्रंट-एंड पर लगाए गए एम्पलीफाइंग डिवाइस के कारण सिग्नल पावर में वृद्धि को मापता है, जैसे कि कम शोर वाला  प्रवर्धक
उच्च-लाभ वाले एंटीना में लंबी दूरी और बेहतर सिग्नल गुणवत्ता का लाभ होता है, लेकिन अन्य एंटीना पर ध्यान से लक्षित होना चाहिए। उच्च-लाभ वाले एंटीना का एक उदाहरण एक परवलयिक एंटीना है जैसे उपग्रह टेलीविजन एंटीना। कम लाभ वाले एंटीना की सीमा कम होती है, लेकिन एंटीना का उन्मुखीकरण अपेक्षाकृत महत्वहीन होता है। लो-गेन एंटीना का एक उदाहरण पोर्टेबल रेडियो और कॉर्डलेस फोन पर पाया जाने वाला व्हिप एंटीना है।एंटीना गेन विद्युत् चुम्बकिकी के साथ भ्रमित नहीं होना चाहिए, एक अलग पैरामीटर जो सिस्टम के फ्रंट-एंड पर रखे एक प्रवर्धक उपकरण के कारण सिग्नल पावर में वृद्धि को मापता है, जैसे कि कम-शोर एम्पलीफायर


===प्रभावी क्षेत्र या एपर्चर===
===प्रभावी क्षेत्र या एपर्चर===
{{Main|Antenna effective area}}
{{Main|एंटीना प्रभावी क्षेत्र}}
[[ एंटीना प्रभावी क्षेत्र ]] या प्राप्त करने वाले एंटीना का प्रभावी एपर्चर एक गुजरने वाली विद्युत चुम्बकीय तरंग की शक्ति के हिस्से को व्यक्त करता है जो एंटीना अपने टर्मिनलों को वितरित करता है, जिसे समकक्ष क्षेत्र के संदर्भ में व्यक्त किया जाता है। उदाहरण के लिए, यदि किसी दिए गए स्थान से गुजरने वाली रेडियो तरंग का प्रवाह 1 pW/m . है<sup>2</sup> (10<sup>-12</sup> वाट प्रति वर्ग मीटर) और एक एंटेना का प्रभावी क्षेत्र 12 m . है<sup>2</sup>, तब एंटेना रिसीवर को 12 pW रेडियो फ़्रीक्वेंसी पावर प्रदान करेगा (30 माइक्रोवोल्ट रूट माध्य वर्ग 75 ओम पर)। चूंकि प्राप्त करने वाला एंटीना सभी दिशाओं से प्राप्त संकेतों के प्रति समान रूप से संवेदनशील नहीं होता है, इसलिए प्रभावी क्षेत्र स्रोत की दिशा का एक कार्य है।
[[ एंटीना प्रभावी क्षेत्र | एंटीना प्रभावी क्षेत्र]] छिद्र् से गुजरने वाली विद्युत चुम्बकीय तरंग की शक्ति को व्यक्त करता है जो एंटीना अपने टर्मिनलों को वितरित करता है, जिसे समकक्ष क्षेत्र के संदर्भ में व्यक्त किया जाता है। उदाहरण के लिए, यदि किसी दिए गए स्थान से गुजरने वाली रेडियो तरंग का प्रवाह 1 pW/m . है<sup>2</sup> (10<sup>-12</sup> वाट प्रति वर्ग मीटर) और एक एंटीना का प्रभावी क्षेत्र 12 m . है<sup>2</sup>, तब एंटीना रिसीवर को 12 pW रेडियो फ़्रीक्वेंसी पावर प्रदान करेगा (30 माइक्रोवोल्ट रूट माध्य वर्ग 75 ओम पर)। चूंकि प्राप्त करने वाला एंटीना सभी दिशाओं से प्राप्त संकेतों के प्रति समान रूप से संवेदनशील नहीं होता है, इसलिए प्रभावी क्षेत्र स्रोत की दिशा का एक कार्य है।


पारस्परिकता (विद्युत चुंबकत्व) (ऊपर चर्चा की गई) के कारण संचारण के लिए उपयोग किए जाने वाले एंटीना का लाभ प्राप्त करने के लिए उपयोग किए जाने पर इसके प्रभावी क्षेत्र के समानुपाती होना चाहिए। तांबे के नुकसान के बिना एक एंटीना पर विचार करें, यानी, जिसकी [[ एंटीना दक्षता ]] 100% है। यह दिखाया जा सकता है कि इसका प्रभावी क्षेत्र सभी दिशाओं में औसत के बराबर होना चाहिए {{math|λ<sup>2</sup>/4π}}, तरंग दैर्ध्य वर्ग द्वारा विभाजित {{math|4π}}. लाभ को इस तरह परिभाषित किया गया है कि 100% एंटीना दक्षता वाले एंटीना के लिए सभी दिशाओं पर औसत लाभ 1 के बराबर है। इसलिए, प्रभावी क्षेत्र {{math|''A''<sub>eff</sub>}} लाभ की दृष्टि से {{mvar|G}} किसी दिए गए दिशा में दिया गया है:
पारस्परिकता विद्युत चुंबकत्व के कारण संचारण के लिए उपयोग किए जाने वाले एंटीना का लाभ प्राप्त करने के लिए उपयोग किए जाने पर इसके प्रभावी क्षेत्र के समानुपाती होना चाहिए। तांबे के नुकसान के बिना एक एंटीना पर विचार करें, यानी, जिसकी [[ एंटीना दक्षता |एंटीना दक्षता]] 100% है। यह दिखाया जा सकता है कि इसका प्रभावी क्षेत्र सभी दिशाओं में औसत के बराबर होना चाहिए {{math|λ<sup>2</sup>/4π}}, तरंग दैर्ध्य वर्ग द्वारा विभाजित {{math|4π}}. लाभ को इस तरह परिभाषित किया गया है कि 100% एंटीना दक्षता वाले सभी दिशाओं पर औसत लाभ 1 के बराबर है। इसलिए, प्रभावी क्षेत्र {{math|''A''<sub>eff</sub>}} लाभ की दृष्टि से {{mvar|G}} किसी दिए गए दिशा में दिया गया है:
:<math>A_{\mathrm{eff}} =  {\lambda^2 \over 4 \pi} \, G </math>
:<math>A_{\mathrm{eff}} =  {\lambda^2 \over 4 \pi} \, G </math>
100% से कम की ऐन्टेना दक्षता वाले एंटीना के लिए, प्रभावी क्षेत्र और लाभ दोनों उसी राशि से कम हो जाते हैं। इसलिए, लाभ और प्रभावी क्षेत्र के बीच उपरोक्त संबंध अभी भी कायम है। इस प्रकार ये एक ही मात्रा को व्यक्त करने के दो अलग-अलग तरीके हैं। {{math|''A''}}<sub>eff</sub> एक निर्दिष्ट लाभ के एंटीना द्वारा प्राप्त की जाने वाली शक्ति की गणना करते समय विशेष रूप से सुविधाजनक है, जैसा कि उपरोक्त उदाहरण द्वारा दिखाया गया है।
100% से कम की दक्षता वाले एंटीना के लिए, प्रभावी क्षेत्र और लाभ दोनों उसी राशि से कम हो जाते हैं। इसलिए, लाभ और प्रभावी क्षेत्र के बीच उपरोक्त संबंध अभी भी कायम है। इस प्रकार ये एक ही मात्रा को व्यक्त करने के दो अलग-अलग तरीके हैं। {{math|''A''}}<sub>eff</sub> एक निर्दिष्ट लाभ एंटीना द्वारा प्राप्त की जाने वाली शक्ति की गणना करते समय विशेष रूप से सुविधाजनक होते है, जैसा कि उपरोक्त उदाहरण द्वारा दिखाया गया है।


===विकिरण पैटर्न ===
===विकिरण पैटर्न ===
{{Main|Radiation pattern}}
{{Main|विकिरण स्वरुप}}
[[File:Sidelobes en.svg|thumb|(आभासी) यागी-उद-एंटीना के क्षैतिज क्रॉस सेक्शन के ध्रुवीय भूखंड। Outline बिंदुओं को ISO एमिटर की तुलना में 3 dB फ़ील्ड पावर से जोड़ता है।]]
[[File:Sidelobes en.svg|thumb|(आभासी) यागी-उद-एंटीना के क्षैतिज क्रॉस सेक्शन के ध्रुवीय भूखंड। Outline बिंदुओं को ISO एमिटर की तुलना में 3 dB फ़ील्ड पावर से जोड़ता है।]]
एंटीना का विकिरण पैटर्न दूर-क्षेत्र में विभिन्न कोणों पर एंटीना द्वारा उत्सर्जित रेडियो तरंगों की सापेक्ष क्षेत्र शक्ति का एक प्लॉट है। यह आमतौर पर एक त्रि-आयामी ग्राफ, या क्षैतिज और ऊर्ध्वाधर क्रॉस सेक्शन के ध्रुवीय भूखंडों द्वारा दर्शाया जाता है। एक आदर्श आइसोट्रोपिक रेडिएटर का पैटर्न, जो सभी दिशाओं में समान रूप से विकिरण करता है, एक गोले जैसा दिखेगा। कई गैर-दिशात्मक एंटेना, जैसे एकध्रुव एंटीना और द्विध्रुवीय एंटीना, सभी क्षैतिज दिशाओं में समान शक्ति का उत्सर्जन करते हैं, उच्च और निचले कोणों पर बिजली गिरती है; इसे एक सर्वदिशात्मक एंटीना कहा जाता है और जब प्लॉट किया जाता है तो यह [[ टोरस्र्स | टोरस्र्स]] या डोनट जैसा दिखता है।
एंटीना का विकिरण पैटर्न दूर-क्षेत्र में विभिन्न कोणों पर एंटीना द्वारा उत्सर्जित रेडियो तरंगों की सापेक्ष क्षेत्र का एक प्लॉट है। यह सामान्यतः पर एक त्रि-आयामी ग्राफ, या क्षैतिज और ऊर्ध्वाधर क्रॉस सेक्शन के ध्रुवीय भूखंडों द्वारा दर्शाया जाता है। एक आदर्श समदैशिक विकिरक का पैटर्न, जो सभी दिशाओं में समान रूप से विकिरण करता है, एक गोले जैसा दिखेगा। कई गैर-दिशात्मक एंटीना, जैसे एकध्रुव एंटीना और द्विध्रुवीय एंटीना, सभी क्षैतिज दिशाओं में समान शक्ति का उत्सर्जन करते हैं, उच्च और निचले कोणों पर बिजली गिरती है; इसे एक सर्वदिशात्मक एंटीना कहा जाता है और जब आलेखित किया जाता है तो यह [[ टोरस्र्स |टोरस्र्स]] या डोनट जैसा दिखता है।


कई एंटेना का विकिरण विभिन्न कोणों पर मैक्सिमा या लोब का एक पैटर्न दिखाता है, जो नल (रेडियो) से अलग होता है, कोण जहां विकिरण शून्य हो जाता है। इसका कारण यह है कि एंटीना के विभिन्न हिस्सों द्वारा उत्सर्जित रेडियो तरंगें आमतौर पर [[ हस्तक्षेप (लहर प्रसार) ]] होती हैं, जिससे कोणों पर मैक्सिमा होता है जहां रेडियो तरंगें चरण में दूर के बिंदुओं पर पहुंचती हैं, और अन्य कोणों पर शून्य विकिरण जहां रेडियो तरंगें [[ चरण से बाहर ]] आती हैं। एक विशेष दिशा में रेडियो तरंगों को प्रक्षेपित करने के लिए डिज़ाइन किए गए एक दिशात्मक एंटीना में, उस दिशा में लोब को अन्य की तुलना में बड़ा बनाया जाता है और इसे मुख्य लोब कहा जाता है। अन्य लोब आमतौर पर अवांछित विकिरण का प्रतिनिधित्व करते हैं और उन्हें [[ बैठक ]] कहा जाता है। मुख्य लोब के माध्यम से अक्ष को मुख्य अक्ष या एंटीना दूरदर्शिता अक्ष कहा जाता है।
कई एंटीना का विकिरण विभिन्न कोणों पर दीर्घतम या लोब का एक पैटर्न दिखाता है, जो "नल" से अलग होता है, कोण जहां विकिरण शून्य हो जाता है। इसका कारण यह है कि एंटीना के विभिन्न हिस्सों द्वारा उत्सर्जित रेडियो तरंगें सामान्यतः हस्तक्षेप करती हैं, जिससे कोणों पर मैक्सिमा होता है जहां रेडियो तरंगें चरण बिंदुओं पर पहुंचती हैं, और शून्य विकिरण पर रेडियो तरंगें चरण से बाहर आती हैं। एक विशेष दिशा में रेडियो तरंगों को प्रोजेक्ट करने के लिए डिज़ाइन किए गए एक दिशात्मक एंटीना में, उस दिशा में लोब को दूसरों की तुलना में बड़ा बनाया जाता है और इसे "मुख्य लोब" कहा जाता है। अन्य लोब सामान्यतः अवांछित विकिरण का प्रतिनिधित्व करते हैं और उन्हें "साइडलोब" कहा जाता है। मुख्य लोब के माध्यम से अक्ष को "प्रमुख अक्ष" या "दूरदर्शिता अक्ष" कहा जाता है।


यागी एंटेना के ध्रुवीय आरेख (और इसलिए दक्षता और लाभ) सख्त होते हैं यदि एंटीना को एक संकीर्ण आ[[ वृत्त | वृत्त]] ि रेंज के लिए ट्यून किया जाता है, उदा। वाइडबैंड की तुलना में समूहीकृत एंटीना। इसी तरह, क्षैतिज रूप से ध्रुवीकृत यागियों के ध्रुवीय भूखंड लंबवत ध्रुवीकृत की तुलना में सख्त होते हैं।<ref>{{cite web |publisher=ATV/Fracarro |title=Aerial Polar Response Diagrams |url=https://www.aerialsandtv.com/knowledge/aerials/aerial-polar-response-diagrams#vertical-v-horizontal-aerial-polar-diagram
यागी एंटीना के ध्रुवीय आरेख (और इसलिए दक्षता और लाभ) सख्त होते हैं यदि एंटीना को एक संकीर्ण आवृत्ति रेंज के लिए ट्यून किया जाता है, उदहारण वाइडबैंड की तुलना में समूहीकृत एंटीना। इसी तरह, क्षैतिज रूप से ध्रुवीकृत यागियों के ध्रुवीय भूखंड, लंबवत ध्रुवीकृत की तुलना में सख्त होते हैं।<ref>{{cite web |publisher=ATV/Fracarro |title=Aerial Polar Response Diagrams |url=https://www.aerialsandtv.com/knowledge/aerials/aerial-polar-response-diagrams#vertical-v-horizontal-aerial-polar-diagram
}}</ref>
}}</ref>




=== क्षेत्र क्षेत्र ===
=== क्षेत्र क्षेत्र ===
{{Main|Near and far field}}
{{Main|निकट और दूर का मैदान}}
ऐन्टेना के आस-पास के स्थान को तीन संकेंद्रित क्षेत्रों में विभाजित किया जा सकता है: प्रतिक्रियाशील निकट-क्षेत्र (जिसे आगमनात्मक निकट-क्षेत्र भी कहा जाता है), विकिरण निकट-क्षेत्र (फ़्रेज़नेल क्षेत्र) और दूर-क्षेत्र (फ्रौनहोफ़र) क्षेत्र। ये क्षेत्र प्रत्येक में क्षेत्र संरचना की पहचान करने के लिए उपयोगी होते हैं, हालांकि उनके बीच संक्रमण क्रमिक होते हैं, और कोई सटीक सीमा नहीं होती है।
ऐन्टेना के आसपास के स्थान को तीन संकेंद्रित क्षेत्रों में विभाजित किया जा सकता है: प्रतिक्रियाशील निकट-क्षेत्र (जिसे आगमनात्मक निकट-क्षेत्र भी कहा जाता है), विकिरण निकट-क्षेत्र (फ्रेस्नेल क्षेत्र) और दूर-क्षेत्र (फ्राउनहोफर) क्षेत्र। ये प्रत्येक क्षेत्र संरचना की पहचान करने के लिए उपयोगी होते हैं, चूंकि उनके बीच संक्रमण क्रमिक होते हैं, और कोई सटीक सीमा नहीं होती है।


दूर-क्षेत्र क्षेत्र अपने आकार और आकार को अनदेखा करने के लिए ऐन्टेना से काफी दूर है: यह माना जा सकता है कि विद्युत चुम्बकीय तरंग विशुद्ध रूप से एक विकिरणित समतल तरंग है (विद्युत और चुंबकीय क्षेत्र एक दूसरे के चरण और लंबवत हैं और दिशा की दिशा में हैं) प्रसार)। यह विकिरणित क्षेत्र के गणितीय विश्लेषण को सरल करता है।
दूर-क्षेत्र अपने आकार को अनदेखा करने के लिए ऐन्टेना से काफी दूर है: यह माना जा सकता है कि विद्युत चुम्बकीय तरंग विशुद्ध रूप से एक विकिरणित समतल तरंग है (विद्युत और चुंबकीय क्षेत्र एक दूसरे के लंबवत दिशा में होते है )। यह विकिरणित क्षेत्र के गणितीय विश्लेषण को सरल करता है।


===दक्षता ===
===दक्षता ===
{{Main|Antenna efficiency}}
{{Main|एंटीना दक्षता}}
एक संचारण एंटेना की [[ विद्युत दक्षता ]] वास्तव में (सभी दिशाओं में) विकिरणित शक्ति का अनुपात है जो एंटीना टर्मिनलों द्वारा अवशोषित की जाती है। एंटीना टर्मिनलों को आपूर्ति की जाने वाली बिजली जो विकिरणित नहीं होती है, गर्मी में परिवर्तित हो जाती है। यह आमतौर पर ऐन्टेना के चालकताों में तांबे के नुकसान के माध्यम से होता है, या परवलयिक एंटीना के परावर्तक और फ़ीड हॉर्न के बीच का नुकसान होता है।
एक ट्रांसमिटिंग एंटीना की क्षमता ऐन्टेना टर्मिनलों द्वारा अवशोषित शक्ति के लिए वास्तव में विकीर्ण (सभी दिशाओं में) शक्ति का अनुपात है। ऐन्टेना टर्मिनलों को आपूर्ति की गई शक्ति जो विकीर्ण नहीं होती है, ऊष्मा में परिवर्तित हो जाती है। सामान्यतः ऐन्टेना के परिचालक में नुकसान प्रतिरोध के माध्यम से होता है, या परवलयिक एंटीना के परावर्तक और फ़ीड हॉर्न के बीच नुकसान होता है।


एंटीना दक्षता प्रतिबाधा मिलान से अलग है, जो किसी दिए गए ट्रांसमीटर का उपयोग करके विकिरणित शक्ति की मात्रा को भी कम कर सकती है। यदि एक स्टैंडिंग वेव रेशियो मीटर 150 डब्ल्यू की घटना शक्ति और 50 डब्ल्यू परावर्तित शक्ति को पढ़ता है, तो इसका मतलब है कि 100 डब्ल्यू वास्तव में एंटीना द्वारा अवशोषित कर लिया गया है ( संचारलाइन लॉस को अनदेखा कर रहा है)। उस शक्ति का कितना हिस्सा वास्तव में विकिरणित किया गया है, यह सीधे ऐन्टेना टर्मिनलों पर (या पहले) विद्युत माप के माध्यम से निर्धारित नहीं किया जा सकता है, लेकिन इसके लिए (उदाहरण के लिए) क्षेत्र की ताकत के सावधानीपूर्वक माप की आवश्यकता होगी। एक ऐन्टेना के नुकसान प्रतिरोध और दक्षता की गणना एक बार क्षेत्र की ताकत ज्ञात होने के बाद, एंटीना को आपूर्ति की गई शक्ति से तुलना करके की जा सकती है।
एंटीना दक्षता प्रतिबाधा मिलान से अलग होती है, जो किसी दिए गए ट्रांसमीटर का उपयोग करके विकिरणित शक्ति की मात्रा को भी कम कर सकती है। यदि एक स्टैंडिंग वेव रेशियो मीटर 150 डब्ल्यू की घटना शक्ति और 50 डब्ल्यू परावर्तित शक्ति को पढ़ता है, तो इसका मतलब है कि 100 डब्ल्यू वास्तव में एंटीना द्वारा अवशोषित कर लिया गया है । उस शक्ति का कितना हिस्सा वास्तव में विकिरणित किया गया है, यह सीधे ऐन्टेना टर्मिनलों पर विद्युत माप के माध्यम से निर्धारित नहीं किया जा सकता है, उदाहरण के लिए क्षेत्र को सावधानीपूर्वक माप की आवश्यकता होगी। एक ऐन्टेना के नुकसान प्रतिरोध और दक्षता की गणना एक बार क्षेत्र की ताकत ज्ञात होने के बाद, एंटीना को आपूर्ति की गई शक्ति से तुलना करके की जा सकती है।


कॉपर का नुकसान आम तौर पर इसके प्रतिरोधक घटक को जोड़ते हुए, फीडपॉइंट प्रतिबाधा को प्रभावित करेगा। उस प्रतिरोध में विकिरण प्रतिरोध का योग शामिल होगा{{mvar|R}}<sub>rad</sub> और नुकसान प्रतिरोध{{mvar|R}}<sub>loss</sub>. यदि एक धारा{{mvar|I}}एक एंटीना के टर्मिनलों तक पहुंचाया जाता है, फिर की शक्ति{{mvar|I}}<sup>2 </sup>{{mvar|R}}<sub>rad</sub> विकीर्ण किया जाएगा और की एक शक्ति{{mvar|I}}<sup>2 </sup>{{mvar|R}}<sub>loss</sub> गर्मी के रूप में खो जाएगा। इसलिए, एक एंटीना की दक्षता बराबर होती है {{sfrac|''{{mvar|R}}''<sub>rad</sub>|(''{{mvar|R}}''<sub>rad</sub> + ''{{mvar|R}}''<sub>loss</sub>)}}. केवल कुल प्रतिरोध{{mvar|R}}<sub>rad</sub> +{{mvar|R}}<sub>loss</sub> सीधे मापा जा सकता है।
हानि प्रतिरोध सामान्यतः फीडपॉइंट प्रतिबाधा को प्रभावित करेगा, और इसके प्रतिरोधी घटक को जोड़ देगा।। इस प्रतिरोध में विकिरण प्रतिरोध का योग सम्मिलित होगा{{mvar|R}}<sub>rad</sub> और नुकसान प्रतिरोध{{mvar|R}}<sub>loss</sub>. यदि एक धारा{{mvar|I}}एक एंटीना के टर्मिनलों तक पहुंचाया जाता है, फिर की शक्ति{{mvar|I}}<sup>2 </sup>{{mvar|R}}<sub>rad</sub> विकीर्ण कि जाएगी और एक {{mvar|I}}<sup>2 </sup>{{mvar|R}}<sub>loss</sub> की शक्ति ऊष्मा के रूप में नष्ट हो जाएगी। इसलिए, एक एंटीना की दक्षता बराबर होती है {{sfrac|''{{mvar|R}}''<sub>rad</sub>|(''{{mvar|R}}''<sub>rad</sub> + ''{{mvar|R}}''<sub>loss</sub>)}}. केवल कुल प्रतिरोध{{mvar|R}}<sub>rad</sub> +{{mvar|R}}<sub>loss</sub> सीधे मापा जा सकता है।


रेसिप्रोसिटी (विद्युत चुंबकत्व) के अनुसार, प्राप्त एंटीना के रूप में उपयोग किए जाने वाले एंटीना की दक्षता ऊपर वर्णित एक संचारणएंटीना के रूप में इसकी दक्षता के समान है। एक एंटीना एक रिसीवर (उचित प्रतिबाधा मिलान के साथ) को जो शक्ति देगा, वह उसी राशि से कम हो जाती है। कुछ प्राप्त करने वाले अनुप्रयोगों में, बहुत अक्षम एंटेना प्रदर्शन पर बहुत कम प्रभाव डाल सकते हैं। कम आवृत्तियों पर, उदाहरण के लिए, वायुमंडलीय या मानव निर्मित शोर एंटीना की अक्षमता को छुपा सकता है। उदाहरण के लिए, सीसीआईआर प्रतिनिधि 258-3 इंगित करता है कि 40 मेगाहर्ट्ज पर एक आवासीय सेटिंग में मानव निर्मित शोर थर्मल शोर तल से लगभग 28 डीबी ऊपर है। नतीजतन, 20 dB नुकसान (अक्षमता के कारण) वाले एंटीना का सिस्टम शोर प्रदर्शन पर बहुत कम प्रभाव पड़ेगा। ऐन्टेना के भीतर नुकसान इच्छित सिग्नल और शोर/हस्तक्षेप को समान रूप से प्रभावित करेगा, जिससे सिग्नल से शोर अनुपात (एसएनआर) में कोई कमी नहीं होगी।
रेसिप्रोसिटी के अनुसार, प्राप्त एंटीना के रूप में उपयोग किए जाने वाले एंटीना की दक्षता ऊपर वर्णित एक संचारण एंटीना के रूप में इसकी दक्षता के समान है। एक एंटीना एक रिसीवर (उचित प्रतिबाधा मिलान के साथ) को जो शक्ति देगा, वह उसी राशि से कम हो जाती है। कुछ प्राप्त करने वाले अनुप्रयोगों में, बहुत अक्षम एंटीना प्रदर्शन पर बहुत कम प्रभाव डाल सकते हैं। कम आवृत्तियों पर, उदाहरण के लिए, वायुमंडलीय या मानव निर्मित शोर एंटीना की अक्षमता को छुपा सकता है। उदाहरण के लिए, सीसीआईआर प्रतिनिधि 258-3 इंगित करता है कि 40 मेगाहर्ट्ज पर एक आवासीय सेटिंग में मानव निर्मित शोर थर्मल शोर तल से लगभग 28 डीबी ऊपर है। परिणामस्वरूप, 20 dB नुकसान वाले एंटीना का सिस्टम शोर प्रदर्शन पर बहुत कम प्रभाव पड़ेगा। ऐन्टेना के भीतर नुकसान इच्छित सिग्नल और हस्तक्षेप को समान रूप से प्रभावित करेगा, जिससे सिग्नल से शोर अनुपात (एसएनआर) में कोई कमी नहीं होगी।


एंटेना जो आकार में तरंग दैर्ध्य का एक महत्वपूर्ण अंश नहीं हैं, उनके छोटे विकिरण प्रतिरोध के कारण अनिवार्य रूप से अक्षम हैं। AM प्रसारण रेडियो में एक छोटा लूप एंटेना शामिल होता है#AM प्रसारण रिसेप्शन के लिए एंटेना प्राप्त करता है जिसमें बेहद खराब दक्षता होती है। इसका रिसीवर के प्रदर्शन पर बहुत कम प्रभाव पड़ता है, लेकिन इसके लिए रिसीवर के इलेक्ट्रॉनिक्स द्वारा अधिक से अधिक प्रवर्धन की आवश्यकता होती है। इस छोटे घटक की तुलना एएम प्रसारण स्टेशनों पर समान आवृत्ति पर संचारण के लिए उपयोग किए जाने वाले बड़े और बहुत ऊंचे टावरों से करें, जहां कम एंटीना दक्षता के प्रत्येक प्रतिशत बिंदु में पर्याप्त लागत होती है।
एंटीना जो आकार में तरंग दैर्ध्य का एक महत्वपूर्ण अंश नहीं हैं, उनके छोटे विकिरण प्रतिरोध के कारण अनिवार्य रूप से अक्षम हैं। AM प्रसारण रेडियो में एक छोटा लूप एंटीना सम्मिलित होता है AM प्रसारण रिसेप्शन के लिए एंटीना प्राप्त करता है जिसमें बेहद खराब दक्षता होती है। इसका रिसीवर के प्रदर्शन पर बहुत कम प्रभाव पड़ता है, लेकिन इसके लिए रिसीवर के इलेक्ट्रॉनिक्स द्वारा अधिक से अधिक प्रवर्धन की आवश्यकता होती है। इस छोटे घटक की तुलना एएम प्रसारण स्टेशनों पर समान आवृत्ति पर संचारण के लिए उपयोग किए जाने वाले बड़े और बहुत ऊंचे टावरों से करें, जहां कम एंटीना दक्षता के प्रत्येक प्रतिशत बिंदु में पर्याप्त लागत होती है।


एंटीना लाभ या शक्ति लाभ की परिभाषा में पहले से ही एंटीना की दक्षता का प्रभाव शामिल है। इसलिए, यदि कोई किसी दी गई शक्ति के ट्रांसमीटर का उपयोग करके एक रिसीवर की ओर एक संकेत विकीर्ण करने की कोशिश कर रहा है, तो उसे दक्षता पर विचार करने के बजाय केवल विभिन्न एंटेना के लाभ की तुलना करने की आवश्यकता है। यह बहुत अधिक (विशेष रूप से सूक्ष्म तरंग) आवृत्तियों पर प्राप्त करने वाले एंटीना के लिए भी सच है, जहां बिंदु एक संकेत प्राप्त करना है जो रिसीवर के शोर तापमान की तुलना में मजबूत है। हालांकि, विभिन्न दिशाओं से हस्तक्षेप को अस्वीकार करने के इरादे से सिग्नल प्राप्त करने के लिए उपयोग किए जाने वाले दिशात्मक एंटीना के मामले में, जैसा कि ऊपर चर्चा की गई है, अब एंटीना दक्षता से कोई संबंध नहीं है। इस मामले में, ऐन्टेना लाभ को उद्धृत करने के बजाय, किसी को निर्देश लाभ, या केवल प्रत्यक्षता के बारे में अधिक चिंतित होना चाहिए जिसमें एंटीना (इन) दक्षता का प्रभाव शामिल नहीं है। ऐन्टेना के निर्देशक लाभ की गणना ऐन्टेना की दक्षता से विभाजित प्रकाशित लाभ से की जा सकती है। समीकरण रूप में, लाभ = प्रत्यक्षता × दक्षता।
एंटीना लाभ या शक्ति लाभ की परिभाषा में पहले से ही एंटीना की दक्षता का प्रभाव सम्मिलित है। इसलिए, यदि कोई किसी दी गई शक्ति के ट्रांसमीटर का उपयोग करके एक रिसीवर की ओर एक संकेत विकीर्ण करने की कोशिश कर रहा है, तो उसे दक्षता पर विचार करने के अतिरिक्त केवल विभिन्न एंटीना के लाभ की तुलना करने की आवश्यकता है। यह बहुत अधिक (विशेष रूप से सूक्ष्म तरंग) आवृत्तियों पर प्राप्त करने वाले एंटीना के लिए भी सच है, जहां बिंदु एक संकेत प्राप्त करना है जो रिसीवर तापमान की तुलना में मजबूत होते है। चूंकि, विभिन्न दिशाओं से हस्तक्षेप को अस्वीकार करने के इरादे से सिग्नल प्राप्त करने के लिए उपयोग किए जाने वाले दिशात्मक एंटीना के स्थिति में, जैसा कि ऊपर चर्चा की गई है, अब एंटीना दक्षता से कोई संबंध नहीं है। इस स्थिति में, ऐन्टेना लाभ को उद्धृत करने के अतिरिक्त, किसी को निर्देश लाभ, या केवल प्रत्यक्षता के बारे में अधिक चिंतित होना चाहिए जिसमें एंटीना दक्षता का प्रभाव सम्मिलित नहीं है। ऐन्टेना के निर्देशक लाभ की गणना ऐन्टेना की दक्षता से विभाजित प्रकाशित लाभ से की जा सकती है। समीकरण रूप में, लाभ = प्रत्यक्षता × दक्षता।


=== ध्रुवीकरण ===
=== ध्रुवीकरण ===
{{see also|Polarization (waves)#Antennas}}
{{see also|ध्रुवीकरण (लहरें) # एंटेना}}
ऐन्टेना की ओरिएंटेशन और भौतिक संरचना इसके द्वारा प्रेषित रेडियो तरंग के विद्युत क्षेत्र के ध्रुवीकरण (तरंगों) को निर्धारित करती है। उदाहरण के लिए, एक रैखिक चालकता (जैसे एक द्विध्रुवीय एंटीना या व्हिप एंटीना) से बना एक एंटीना लंबवत रूप से उन्मुख होता है, जिसके परिणामस्वरूप ऊर्ध्वाधर ध्रुवीकरण होगा; अगर उसकी तरफ घुमाया जाए तो उसी एंटीना का ध्रुवीकरण क्षैतिज होगा।
ऐन्टेना की ओरिएंटेशन और भौतिक संरचना इसके द्वारा प्रेषित रेडियो तरंग के विद्युत क्षेत्र के ध्रुवीकरण (तरंगों) को निर्धारित करती है। उदाहरण के लिए, एक रैखिक चालकता (जैसे एक द्विध्रुवीय एंटीना या व्हिप एंटीना) से बना एक एंटीना लंबवत रूप से उन्मुख होता है, जिसके परिणामस्वरूप ऊर्ध्वाधर ध्रुवीकरण होगा; अगर उसकी तरफ घुमाया जाए तो उसी एंटीना का ध्रुवीकरण क्षैतिज होगा।


प्रतिबिंब आमतौर पर ध्रुवीकरण को प्रभावित करते हैं। आयनमंडल से परावर्तित रेडियो तरंगें तरंग के ध्रुवीकरण को बदल सकती हैं। लाइन-ऑफ़-विज़न प्रचार के लिए | लाइन-ऑफ़-विज़न संचार या [[ जमीनी लहर ]] प्रोपगेशन, क्षैतिज या लंबवत ध्रुवीकृत प्रसारण आमतौर पर प्राप्त स्थान पर समान ध्रुवीकरण स्थिति में रहते हैं। क्षैतिज रूप से ध्रुवीकृत तरंग (या वीजा-विपरीत) प्राप्त करने के लिए एक लंबवत ध्रुवीकृत एंटीना का उपयोग करने से अपेक्षाकृत खराब रिसेप्शन होता है।
प्रतिबिंब सामान्यतः पर ध्रुवीकरण को प्रभावित करते हैं। आयनमंडल से परावर्तित रेडियो तरंगें तरंग के ध्रुवीकरण को बदल सकती हैं। लाइन-ऑफ़-विज़न प्रचार के लिए | लाइन-ऑफ़-विज़न संचार या [[ जमीनी लहर |जमीनी लहर]] प्रोपगेशन, क्षैतिज या लंबवत ध्रुवीकृत प्रसारण सामान्यतः पर प्राप्त स्थान पर समान ध्रुवीकरण स्थिति में रहते हैं। क्षैतिज रूप से ध्रुवीकृत तरंग (या वीजा-विपरीत) प्राप्त करने के लिए एक लंबवत ध्रुवीकृत एंटीना का उपयोग करने से अपेक्षाकृत खराब रिसेप्शन होता है।


एक एंटीना के ध्रुवीकरण को कभी-कभी इसकी ज्यामिति से सीधे अनुमान लगाया जा सकता है। जब एक संदर्भ स्थान से देखे गए एंटीना के चालकता एक पंक्ति के साथ दिखाई देते हैं, तो एंटीना का ध्रुवीकरण उसी दिशा में रैखिक होगा। अधिक सामान्य मामले में, ऐन्टेना के ध्रुवीकरण को [[ कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स ]] के माध्यम से निर्धारित किया जाना चाहिए। उदाहरण के लिए, पृथ्वी पर दूर के स्थान से क्षैतिज रूप से (हमेशा की तरह) घुड़सवार एक टर्नस्टाइल एंटीना एक क्षैतिज रेखा खंड के रूप में प्रकट होता है, इसलिए वहां प्राप्त विकिरण क्षैतिज रूप से ध्रुवीकृत होता है। लेकिन एक हवाई जहाज से नीचे के कोण पर देखा जाता है, वही एंटीना इस आवश्यकता को पूरा नहीं करता है; वास्तव में इसका विकिरण उस दिशा से देखने पर [[ अण्डाकार रूप से ध्रुवीकृत ]] होता है। कुछ एंटेना में संचरण की आवृत्ति के साथ ध्रुवीकरण की स्थिति बदल जाएगी। एक वाणिज्यिक एंटीना का ध्रुवीकरण एक आवश्यक विनिर्देश (तकनीकी मानक) है।
एक एंटीना के ध्रुवीकरण को कभी-कभी इसकी ज्यामिति से सीधे अनुमान लगाया जा सकता है। जब एक संदर्भ स्थान से देखे गए एंटीना के चालकता एक पंक्ति के साथ दिखाई देते हैं, तो एंटीना का ध्रुवीकरण उसी दिशा में रैखिक होगा। अधिक सामान्य स्थिति में, ऐन्टेना के ध्रुवीकरण को [[ कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स |कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स]] के माध्यम से निर्धारित किया जाना चाहिए। उदाहरण के लिए, पृथ्वी पर दूर के स्थान से क्षैतिज रूप से (हमेशा की तरह) घुड़सवार एक टर्नस्टाइल एंटीना एक क्षैतिज रेखा खंड के रूप में प्रकट होता है, इसलिए वहां प्राप्त विकिरण क्षैतिज रूप से ध्रुवीकृत होता है। लेकिन एक हवाई जहाज से नीचे के कोण पर देखा जाता है, वही एंटीना इस आवश्यकता को पूरा नहीं करता है; वास्तव में इसका विकिरण उस दिशा से देखने पर [[ अण्डाकार रूप से ध्रुवीकृत |अण्डाकार रूप से ध्रुवीकृत]] होता है। कुछ एंटीना में संचरण की आवृत्ति के साथ ध्रुवीकरण की स्थिति बदल जाएगी। एक वाणिज्यिक एंटीना का ध्रुवीकरण एक आवश्यक विनिर्देश (तकनीकी मानक) है।


सबसे सामान्य मामले में, ध्रुवीकरण [[ अंडाकार ]] रूप से ध्रुवीकृत होता है, जिसका अर्थ है कि प्रत्येक चक्र में विद्युत क्षेत्र वेक्टर एक अंडाकार का पता लगाता है। दो विशेष मामले हैं [[ रैखिक ध्रुवीकरण ]] (दीर्घवृत्त एक रेखा में ढह जाता है) जैसा कि ऊपर चर्चा की गई है, और परिपत्र ध्रुवीकरण (जिसमें अंडाकार के दो अक्ष बराबर हैं)। रैखिक ध्रुवीकरण में रेडियो तरंग का विद्युत क्षेत्र एक दिशा में दोलन करता है। वृत्ताकार ध्रुवीकरण में, रेडियो तरंग का विद्युत क्षेत्र प्रसार की धुरी के चारों ओर घूमता है। वृत्ताकार या अण्डाकार रूप से ध्रुवीकृत रेडियो तरंगें हैं वृत्ताकार ध्रुवीकरण#बाएं/दाएं हाथ की परंपराएं|प्रसार नियम की दिशा में अंगूठे का उपयोग करके दाएं हाथ या बाएं हाथ के रूप में नामित। ध्यान दें कि [[ गोलाकार ध्रुवीकरण ]] के लिए, ऑप्टिकल शोधकर्ता विपरीत दाहिने हाथ के नियम का उपयोग करते हैं {{Citation needed|date=November 2020}} रेडियो इंजीनियरों द्वारा उपयोग किए जाने वाले से।
सबसे सामान्य स्थिति में, ध्रुवीकरण [[ अंडाकार |अंडाकार]] रूप से ध्रुवीकृत होता है, जिसका अर्थ है कि प्रत्येक चक्र में विद्युत क्षेत्र वेक्टर एक अंडाकार का पता लगाता है। दो विशेष स्थिति हैं [[ रैखिक ध्रुवीकरण |रैखिक ध्रुवीकरण]] (दीर्घवृत्त एक रेखा में ढह जाता है) जैसा कि ऊपर चर्चा की गई है, और परिपत्र ध्रुवीकरण (जिसमें अंडाकार के दो अक्ष बराबर हैं)। रैखिक ध्रुवीकरण में रेडियो तरंग का विद्युत क्षेत्र एक दिशा में दोलित्र करता है। वृत्ताकार ध्रुवीकरण में, रेडियो तरंग का विद्युत क्षेत्र प्रसार की धुरी के चारों ओर घूमता है। वृत्ताकार या अण्डाकार रूप से ध्रुवीकृत रेडियो तरंगें हैं वृत्ताकार ध्रुवीकरण#बाएं/दाएं हाथ की परंपराएं|प्रसार नियम की दिशा में अंगूठे का उपयोग करके दाएं हाथ या बाएं हाथ के रूप में नामित। ध्यान दें कि [[ गोलाकार ध्रुवीकरण |गोलाकार ध्रुवीकरण]] के लिए, ऑप्टिकल शोधकर्ता विपरीत दाहिने हाथ के नियम का उपयोग करते हैं {{Citation needed|date=November 2020}} रेडियो इंजीनियरों द्वारा उपयोग किए जाने वाले से।


इष्टतम रिसेप्शन के लिए प्रेषित तरंग के ध्रुवीकरण से मेल खाने के लिए प्राप्त करने वाले एंटीना के लिए यह सबसे अच्छा है। अन्यथा संकेत शक्ति का नुकसान होगा: जब एक रैखिक रूप से ध्रुवीकृत एंटीना के सापेक्ष कोण पर रैखिक रूप से ध्रुवीकृत विकिरण प्राप्त करता है, तो कॉस की शक्ति का नुकसान होगा<sup>2</sup>θ. एक गोलाकार ध्रुवीकृत एंटीना का उपयोग समान रूप से लंबवत या क्षैतिज रैखिक ध्रुवीकरण से मेल खाने के लिए किया जा सकता है, जिसमें 3 डेसिबल सिग्नल कमी होती है। हालाँकि यह विपरीत अभिविन्यास के एक गोलाकार ध्रुवीकृत संकेत के लिए अंधा होगा।
इष्टतम रिसेप्शन के लिए प्रेषित तरंग के ध्रुवीकरण से मेल खाने के लिए प्राप्त करने वाले एंटीना के लिए यह सबसे अच्छा है। अन्यथा संकेत शक्ति का नुकसान होगा: जब एक रैखिक रूप से ध्रुवीकृत एंटीना के सापेक्ष कोण पर रैखिक रूप से ध्रुवीकृत विकिरण प्राप्त करता है, तो कॉस की शक्ति का नुकसान होगा<sup>2</sup>θ. एक गोलाकार ध्रुवीकृत एंटीना का उपयोग समान रूप से लंबवत या क्षैतिज रैखिक ध्रुवीकरण से मेल खाने के लिए किया जा सकता है, जिसमें 3 डेसिबल सिग्नल कमी होती है। चूंकि यह विपरीत अभिविन्यास के एक गोलाकार ध्रुवीकृत संकेत के लिए अंधा होगा।


=== प्रतिबाधा मिलान ===
=== प्रतिबाधा मिलान ===
{{Main|Antenna tuner|Impedance matching}}
{{Main|एंटीना ट्यूनर|प्रतिबाधा मिलान}}
रिसीवर या ट्रांसमीटर के प्रतिबाधा के जटिल संयुग्म के लिए अधिकतम पावर ट्रांसफर के लिए एंटीना सिस्टम (जैसा कि  संचारलाइन में देखा जाता है) के प्रतिबाधा से मेल खाने की आवश्यकता होती है। एक ट्रांसमीटर के मामले में, हालांकि, वांछित मिलान प्रतिबाधा ट्रांसमीटर के गतिशील आउटपुट प्रतिबाधा के अनुरूप नहीं हो सकती है, जैसा कि थेवेनिन के प्रमेय के रूप में विश्लेषण किया गया है, बल्कि संचारण के कुशल और सुरक्षित संचालन के लिए आवश्यक डिज़ाइन मान (आमतौर पर 50 ओम) है।  परिपथ री इच्छित प्रतिबाधा आम तौर पर प्रतिरोधी होती है, लेकिन एक ट्रांसमीटर (और कुछ रिसीवर) में मैच को मोड़ने के लिए एक निश्चित मात्रा में प्रतिक्रिया को रद्द करने के लिए सीमित अतिरिक्त समायोजन हो सकते हैं।


जब एंटीना और ट्रांसमीटर (या रिसीवर) के बीच एक संचारलाइन का उपयोग किया जाता है, तो आम तौर पर एक एंटीना सिस्टम पसंद होता है जिसका प्रतिबाधा प्रतिरोधी होता है और लगभग उस संचारलाइन की [[ विशेषता प्रतिबाधा ]] के समान होता है, प्रतिबाधा से मेल खाने के अलावा ट्रांसमीटर (या रिसीवर) उम्मीद करता है। मैच को स्टैंडिंग वेव्स (स्टैंडिंग वेव रेशियो; एसडब्ल्यूआर के माध्यम से मापा जाता है) के आयाम को कम करने की मांग की जाती है, जो लाइन पर एक बेमेल उठता है, और संचारलाइन के नुकसान में वृद्धि होती है।
रिसीवर या ट्रांसमीटर के प्रतिबाधा के जटिल संयुग्म के लिए अधिकतम पावर ट्रांसफर के लिए एंटीना सिस्टम (जैसा कि संचारलाइन में देखा जाता है) के प्रतिबाधा से मेल खाने की आवश्यकता होती है। एक ट्रांसमीटर के स्थिति में, चूंकि, वांछित मिलान प्रतिबाधा ट्रांसमीटर के गतिशील आउटपुट प्रतिबाधा के अनुरूप नहीं हो सकती है, जैसा कि थेवेनिन के प्रमेय के रूप में विश्लेषण किया गया है, बल्कि संचारण के कुशल और सुरक्षित संचालन के लिए आवश्यक डिज़ाइन मान (सामान्यतः पर 50 ओम) है। परिपथ री इच्छित प्रतिबाधा सामान्यतः पर प्रतिरोधी होती है, लेकिन एक ट्रांसमीटर (और कुछ रिसीवर) में मैच को मोड़ने के लिए एक निश्चित मात्रा में प्रतिक्रिया को रद्द करने के लिए सीमित अतिरिक्त समायोजन हो सकते हैं।
 
जब एंटीना और ट्रांसमीटर (या रिसीवर) के बीच एक संचारलाइन का उपयोग किया जाता है, तो सामान्यतः पर एक एंटीना सिस्टम पसंद होता है जिसका प्रतिबाधा प्रतिरोधी होता है और लगभग उस संचारलाइन की [[ विशेषता प्रतिबाधा |विशेषता प्रतिबाधा]] के समान होता है, प्रतिबाधा से मेल खाने के अतिरिक्त ट्रांसमीटर (या रिसीवर) उम्मीद करता है। मैच को स्टैंडिंग वेव्स (स्टैंडिंग वेव रेशियो; एसडब्ल्यूआर के माध्यम से मापा जाता है) के आयाम को कम करने की मांग की जाती है, जो लाइन पर एक बेमेल उठता है, और संचारलाइन के नुकसान में वृद्धि होती है।


==== एंटीना पर एंटीना ट्यूनिंग ====
==== एंटीना पर एंटीना ट्यूनिंग ====
ऐन्टेना ट्यूनिंग, ऐन्टेना को संशोधित करने के [[ सीमित ]] में, आम तौर पर केवल ऐन्टेना टर्मिनलों पर देखी गई किसी भी प्रतिक्रिया को रद्द करने के लिए संदर्भित करता है, केवल एक प्रतिरोधक प्रतिबाधा को छोड़कर जो वास्तव में वांछित प्रतिबाधा ( संचारलाइन की) हो सकती है या नहीं भी हो सकती है।
ऐन्टेना ट्यूनिंग, ऐन्टेना को संशोधित करने के [[ सीमित |सीमित]] में, सामान्यतः पर केवल ऐन्टेना टर्मिनलों पर देखी गई किसी भी प्रतिक्रिया को रद्द करने के लिए संदर्भित करता है, केवल एक प्रतिरोधक प्रतिबाधा को छोड़कर जो वास्तव में वांछित प्रतिबाधा ( संचारलाइन की) हो सकती है या नहीं भी हो सकती है।


यद्यपि एक ऐन्टेना को विशुद्ध रूप से प्रतिरोधक फीडपॉइंट प्रतिबाधा (जैसे कि आधा तरंग दैर्ध्य का 97% द्विध्रुवीय) के लिए डिज़ाइन किया जा सकता है, यह उस आवृत्ति पर बिल्कुल सही नहीं हो सकता है जिस पर अंततः इसका उपयोग किया जाता है। ज्यादातर मामलों में, सिद्धांत रूप में ऐन्टेना की भौतिक लंबाई को शुद्ध प्रतिरोध प्राप्त करने के लिए काटा जा सकता है, हालांकि यह शायद ही कभी सुविधाजनक होता है। दूसरी ओर, एक विपरीत अधिष्ठापन या समाई का उपयोग क्रमशः अवशिष्ट कैपेसिटिव या आगमनात्मक प्रतिक्रिया को रद्द करने के लिए किया जा सकता है, और एंटीना को कम करने से अधिक सुविधाजनक हो सकता है।
यद्यपि एक ऐन्टेना को विशुद्ध रूप से प्रतिरोधक फीडपॉइंट प्रतिबाधा (जैसे कि आधा तरंग दैर्ध्य का 97% द्विध्रुवीय) के लिए डिज़ाइन किया जा सकता है, यह उस आवृत्ति पर बिल्कुल सही नहीं हो सकता है जिस पर अंततः इसका उपयोग किया जाता है। ज्यादातर स्थितियों में, सिद्धांत रूप में ऐन्टेना की भौतिक लंबाई को शुद्ध प्रतिरोध प्राप्त करने के लिए काटा जा सकता है, चूंकि यह संभवतः ही कभी सुविधाजनक होता है। दूसरी ओर, एक विपरीत अधिष्ठापन या समाई का उपयोग क्रमशः अवशिष्ट कैपेसिटिव या आगमनात्मक प्रतिक्रिया को रद्द करने के लिए किया जा सकता है, और एंटीना को कम करने से अधिक सुविधाजनक हो सकता है।


एंटीना विद्युत प्रतिक्रिया को लम्प्ड तत्वों का उपयोग करके हटाया जा सकता है, जैसे कि [[ संधारित्र ]] या [[ प्रारंभ करनेवाला ]]्स, एंटीना को घुमाने वाले मुख्य पथ में, अक्सर फीडपॉइंट के पास, या फीडपॉइंट रिएक्शन को रद्द करने के लिए एंटीना के संचालन निकाय में कैपेसिटिव या अपरिवर्तनीय संरचनाओं को शामिल करके - जैसे कि ओपन-एंडेड स्पोक रेडियल वायर, या लूपेड पैरेलल वायर - इसलिए सेंसु स्ट्रिक्टो एंटीना को रेजोनेंस के लिए ट्यून करते हैं। उन प्रतिक्रिया-बेअसर करने वाले ऐड-ऑन के अलावा, किसी भी प्रकार के एंटेना में उनके फीडपॉइंट पर एक [[ बालुना ]] शामिल हो सकता है ताकि प्रतिबाधा के प्रतिरोधक भाग को फीडलाइन की विशेषता प्रतिबाधा से अधिक मेल खाने के लिए बदल दिया जा सके।
एंटीना विद्युत प्रतिक्रिया को लम्प्ड तत्वों का उपयोग करके हटाया जा सकता है, जैसे कि [[ संधारित्र |संधारित्र]] या [[ प्रारंभ करनेवाला |प्रारंभ करनेवाला]] ्स, एंटीना को घुमाने वाले मुख्य पथ में, अधिकांशतः फीडपॉइंट के पास, या फीडपॉइंट रिएक्शन को रद्द करने के लिए एंटीना के संचालन निकाय में कैपेसिटिव या अपरिवर्तनीय संरचनाओं को सम्मिलित करके - जैसे कि ओपन-एंडेड स्पोक रेडियल वायर, या लूपेड पैरेलल वायर - इसलिए सेंसु स्ट्रिक्टो एंटीना को रेजोनेंस के लिए ट्यून करते हैं। उन प्रतिक्रिया-बेअसर करने वाले ऐड-ऑन के अतिरिक्त, किसी भी प्रकार के एंटीना में उनके फीडपॉइंट पर एक [[ बालुना |बालुना]] सम्मिलित हो सकता है ताकि प्रतिबाधा के प्रतिरोधक भाग को फीडलाइन की विशेषता प्रतिबाधा से अधिक मेल खाने के लिए बदल दिया जा सके।


==== रेडियो पर रेखा मिलान ====
==== रेडियो पर रेखा मिलान ====
एंटीना ट्यूनिंग [[ सार्थक गर्मी ]], एक प्रतिबाधा मिलान उपकरण द्वारा किया जाता है (कुछ अनुपयुक्त रूप से "एंटीना ट्यूनर" या पुराने, अधिक उपयुक्त शब्द एंटीना ट्यूनर का नाम दिया गया है) केवल प्रतिक्रिया को हटाने से परे है और इसमें फीडलाइन और रेडियो से मेल खाने के लिए शेष प्रतिरोध को बदलना शामिल है।
एंटीना ट्यूनिंग [[ सार्थक गर्मी |सार्थक गर्मी]] , एक प्रतिबाधा मिलान उपकरण द्वारा किया जाता है (कुछ अनुपयुक्त रूप से "एंटीना ट्यूनर" या पुराने, अधिक उपयुक्त शब्द एंटीना ट्यूनर का नाम दिया गया है) केवल प्रतिक्रिया को हटाने से परे है और इसमें फीडलाइन और रेडियो से मेल खाने के लिए शेष प्रतिरोध को बदलना सम्मिलित है।


एक अतिरिक्त समस्या शेष प्रतिरोधक प्रतिबाधा को संचारलाइन की विशेषता प्रतिबाधा से मेल कर रही है: एक सामान्य प्रतिबाधा मिलान नेटवर्क ("एंटीना ट्यूनर" या एटीयू) में प्रतिबाधा के दोनों घटकों को ठीक करने के लिए कम से कम दो समायोज्य तत्व होंगे। संचारण के लिए उपयोग किए जाने पर किसी भी प्रतिबाधा मिलान में बिजली की हानि और बिजली प्रतिबंध दोनों होंगे।
एक अतिरिक्त समस्या शेष प्रतिरोधक प्रतिबाधा को संचारलाइन की विशेषता प्रतिबाधा से मेल कर रही है: एक सामान्य प्रतिबाधा मिलान नेटवर्क ("एंटीना ट्यूनर" या एटीयू) में प्रतिबाधा के दोनों घटकों को ठीक करने के लिए कम से कम दो समायोज्य तत्व होंगे। संचारण के लिए उपयोग किए जाने पर किसी भी प्रतिबाधा मिलान में बिजली की हानि और बिजली प्रतिबंध दोनों होंगे।


वाणिज्यिक एंटेना आमतौर पर मानक आवृत्तियों पर मानक 50 [[ ओम (इकाई) ]] समाक्षीय केबल से मेल खाने के लिए डिज़ाइन किए गए हैं; डिज़ाइन अपेक्षा यह है कि एक मिलान नेटवर्क का उपयोग केवल किसी भी अवशिष्ट बेमेल को 'ट्वीक' करने के लिए किया जाएगा।
वाणिज्यिक एंटीना सामान्यतः पर मानक आवृत्तियों पर मानक 50 [[ ओम (इकाई) |ओम (इकाई)]] समाक्षीय केबल से मेल खाने के लिए डिज़ाइन किए गए हैं; डिज़ाइन अपेक्षा यह है कि एक मिलान नेटवर्क का उपयोग केवल किसी भी अवशिष्ट बेमेल को 'ट्वीक' करने के लिए किया जाएगा।


==== लोड किए गए छोटे एंटेना के चरम उदाहरण ====
==== लोड किए गए छोटे एंटीना के चरम उदाहरण ====
कुछ मामलों में मिलान अधिक चरम तरीके से किया जाता है, न केवल अवशिष्ट प्रतिक्रिया की एक छोटी मात्रा को रद्द करने के लिए, बल्कि एक एंटीना को प्रतिध्वनित करने के लिए, जिसकी अनुनाद आवृत्ति ऑपरेशन की इच्छित आवृत्ति से काफी भिन्न होती है।
कुछ स्थितियों में मिलान अधिक चरम तरीके से किया जाता है, न केवल अवशिष्ट प्रतिक्रिया की एक छोटी मात्रा को रद्द करने के लिए, बल्कि एक एंटीना को प्रतिध्वनित करने के लिए, जिसकी दोलित्र आवृत्ति ऑपरेशन की इच्छित आवृत्ति से काफी भिन्न होती है।


;छोटा लंबवत "कोड़ा"
;छोटा लंबवत "कोड़ा"
उदाहरण के लिए, व्यावहारिक कारणों से एक "व्हिप एंटीना" को एक चौथाई-तरंग दैर्ध्य की तुलना में काफी छोटा बनाया जा सकता है और फिर तथाकथित लोडिंग कॉइल # रेडियो एंटीना का उपयोग करके प्रतिध्वनित किया जा सकता है।
उदाहरण के लिए, व्यावहारिक कारणों से एक "व्हिप एंटीना" को एक चौथाई-तरंग दैर्ध्य की तुलना में काफी छोटा बनाया जा सकता है और फिर तथाकथित लोडिंग कॉइल # रेडियो एंटीना का उपयोग करके प्रतिध्वनित किया जा सकता है।


ऐन्टेना के आधार पर भौतिक रूप से बड़े प्रारंभ करनेवाला में एक आगमनात्मक प्रतिक्रिया होती है जो कैपेसिटिव रिएक्शन के विपरीत होती है जो कि छोटे ऊर्ध्वाधर एंटीना में वांछित ऑपरेटिंग आवृत्ति पर होती है। परिणाम लोडिंग कॉइल के फीडपॉइंट पर देखा गया शुद्ध प्रतिरोध है; हालांकि, आगे के उपायों के बिना, वाणिज्यिक समाक्षीय केबल से मेल खाने के लिए प्रतिरोध कुछ हद तक कम होगा।{{citation needed|date=June 2011}}
ऐन्टेना के आधार पर भौतिक रूप से बड़े प्रारंभ करनेवाला में एक आगमनात्मक प्रतिक्रिया होती है जो कैपेसिटिव रिएक्शन के विपरीत होती है जो कि छोटे ऊर्ध्वाधर एंटीना में वांछित ऑपरेटिंग आवृत्ति पर होती है। परिणाम लोडिंग कॉइल के फीडपॉइंट पर देखा गया शुद्ध प्रतिरोध है; चूंकि, आगे के उपायों के बिना, वाणिज्यिक समाक्षीय केबल से मेल खाने के लिए प्रतिरोध कुछ हद तक कम होगा।{{citation needed|date=June 2011}}
;छोटा "चुंबकीय" लूप
;छोटा "चुंबकीय" लूप
प्रतिबाधा मिलान का एक और चरम मामला अपेक्षाकृत कम आवृत्ति पर एक छोटे [[ लूप एंटीना ]] (आमतौर पर, लेकिन हमेशा प्राप्त करने के लिए नहीं) का उपयोग करते समय होता है, जहां यह लगभग एक शुद्ध प्रारंभ करनेवाला के रूप में दिखाई देता है। संचालन की आवृत्ति पर संधारित्र के साथ इस तरह के एक प्रारंभ करनेवाला को प्रतिध्वनित करना न केवल प्रतिक्रिया को रद्द करता है (लेकिन जब एक समानांतर संधारित्र के माध्यम से प्रतिध्वनित होता है) एक बेहतर मिलान वाले फीडपॉइंट प्रतिबाधा का उत्पादन करने के लिए एक लूप एंटीना # small_loop_anchor के बहुत छोटे विकिरण प्रतिरोध को बहुत बढ़ाता है।{{citation needed|date=June 2011}}
प्रतिबाधा मिलान का एक और चरम स्थिति अपेक्षाकृत कम आवृत्ति पर एक छोटे [[ लूप एंटीना |लूप एंटीना]] (सामान्यतः पर, लेकिन हमेशा प्राप्त करने के लिए नहीं) का उपयोग करते समय होता है, जहां यह लगभग एक शुद्ध प्रारंभ करनेवाला के रूप में दिखाई देता है। संचालन की आवृत्ति पर संधारित्र के साथ इस तरह के एक प्रारंभ करनेवाला को प्रतिध्वनित करना न केवल प्रतिक्रिया को रद्द करता है (लेकिन जब एक समानांतर संधारित्र के माध्यम से प्रतिध्वनित होता है) एक बेहतर मिलान वाले फीडपॉइंट प्रतिबाधा का उत्पादन करने के लिए एक लूप एंटीना # small_loop_anchor के बहुत छोटे विकिरण प्रतिरोध को बहुत बढ़ाता है।{{citation needed|date=June 2011}}
यह अधिकांश AM प्रसारण रिसीवरों में कार्यान्वित किया जाता है, एक फेराइट (चुंबक) रॉड (एक "लूपस्टिक" एंटीना) के चारों ओर एक छोटा लूप एंटीना घाव के साथ, एक संधारित्र द्वारा प्रतिध्वनित होता है जो रिसीवर को एक नई आवृत्ति पर ट्यून करने के साथ-साथ भिन्न होता है, ताकि AM प्रसारण बैंड पर एंटीना प्रतिध्वनि बनाए रखें
यह अधिकांश AM प्रसारण रिसीवरों में कार्यान्वित किया जाता है, एक फेराइट (चुंबक) रॉड (एक "लूपस्टिक" एंटीना) के चारों ओर एक छोटा लूप एंटीना घाव के साथ, एक संधारित्र द्वारा प्रतिध्वनित होता है जो रिसीवर को एक नई आवृत्ति पर ट्यून करने के साथ-साथ भिन्न होता है, ताकि AM प्रसारण बैंड पर एंटीना प्रतिध्वनि बनाए रखें


==जमीन का प्रभाव==
==जमीन का प्रभाव==
{{Main|Multipath propagation}}
{{Main|मल्टीपाथ प्रचार}}
{{further|Two-ray ground-reflection model}}
{{further|दो-किरण भू-प्रतिबिंब मॉडल}}
जमीनी परावर्तन बहुपथ के सामान्य प्रकारों में से एक है।<ref>{{Google books |id=M8NOGnp2IRwC |page=130 |title=Fixed Broadband Wireless System Design }}</ref><ref>{{Google books |id=62_WpVcU8GIC |page=340 |title=Monopole Antennas }}</ref><ref>{{Google books |id=rKVq0C5jsX8C |page=37 |title=Wireless and Mobile Communication }}</ref>
जमीनी परावर्तन बहुपथ के सामान्य प्रकारों में से एक है।<ref>{{Google books |id=M8NOGnp2IRwC |page=130 |title=Fixed Broadband Wireless System Design }}</ref><ref>{{Google books |id=62_WpVcU8GIC |page=340 |title=Monopole Antennas }}</ref><ref>{{Google books |id=rKVq0C5jsX8C |page=37 |title=Wireless and Mobile Communication }}</ref>
विकिरण पैटर्न और यहां तक ​​कि एक एंटीना के ड्राइविंग बिंदु प्रतिबाधा को [[ ढांकता हुआ ]] स्थिरांक और विशेष रूप से आस-पास की वस्तुओं की विद्युत चालकता से प्रभावित किया जा सकता है। स्थलीय एंटीना के लिए, जमीन आमतौर पर ऐसी ही एक महत्वपूर्ण वस्तु होती है। जमीन के ऊपर एंटीना की ऊंचाई, साथ ही जमीन के विद्युत गुण (पारगम्यता और चालकता), तब महत्वपूर्ण हो सकते हैं। इसके अलावा, एक एकध्रुव एंटीना के विशेष मामले में, ग्राउंड (या एक कृत्रिम ग्राउंड प्लेन) एंटीना करंट के लिए रिटर्न कनेक्शन के रूप में कार्य करता है, इस प्रकार एक अतिरिक्त प्रभाव पड़ता है, विशेष रूप से फीड लाइन द्वारा देखी गई प्रतिबाधा पर।
विकिरण पैटर्न और यहां तक ​​कि एक एंटीना के ड्राइविंग बिंदु प्रतिबाधा को [[ ढांकता हुआ |ढांकता हुआ]] स्थिरांक और विशेष रूप से आस-पास की वस्तुओं की विद्युत चालकता से प्रभावित किया जा सकता है। स्थलीय एंटीना के लिए, जमीन सामान्यतः पर ऐसी ही एक महत्वपूर्ण वस्तु होती है। जमीन के ऊपर एंटीना की ऊंचाई, साथ ही जमीन के विद्युत गुण (पारगम्यता और चालकता), तब महत्वपूर्ण हो सकते हैं। इसके अतिरिक्त, एक एकध्रुव एंटीना के विशेष स्थिति में, ग्राउंड (या एक कृत्रिम ग्राउंड प्लेन) एंटीना धारा के लिए रिटर्न संयोजन के रूप में कार्य करता है, इस प्रकार एक अतिरिक्त प्रभाव पड़ता है, विशेष रूप से फीड लाइन द्वारा देखी गई प्रतिबाधा पर।


जब कोई विद्युतचुंबकीय तरंग किसी समतल सतह से टकराती है, जैसे कि जमीन, तो तरंग का एक हिस्सा जमीन में संचरित हो जाता है और [[ फ्रेस्नेल गुणांक ]] के अनुसार इसका कुछ हिस्सा परावर्तित हो जाता है। यदि जमीन एक बहुत अच्छा चालकता है तो लगभग सभी तरंग परावर्तित हो जाती है (चरण से 180 डिग्री), जबकि एक (हानिकारक) ढांकता हुआ के रूप में मॉडलिंग की गई जमीन लहर की शक्ति की एक बड़ी मात्रा को अवशोषित कर सकती है। परावर्तित तरंग में शेष शक्ति, और परावर्तन पर चरण परिवर्तन, लहर के [[ आपतन कोण (प्रकाशिकी) ]] और ध्रुवीकरण (तरंगों) पर दृढ़ता से निर्भर करता है। ढांकता हुआ स्थिरांक और चालकता (या बस जटिल ढांकता हुआ स्थिरांक) मिट्टी के प्रकार पर निर्भर है और आवृत्ति का एक कार्य है।
जब कोई विद्युतचुंबकीय तरंग किसी समतल सतह से टकराती है, जैसे कि जमीन, तो तरंग का एक हिस्सा जमीन में संचरित हो जाता है और [[ फ्रेस्नेल गुणांक |फ्रेस्नेल गुणांक]] के अनुसार इसका कुछ हिस्सा परावर्तित हो जाता है। यदि जमीन एक बहुत अच्छा चालकता है तो लगभग सभी तरंग परावर्तित हो जाती है (चरण से 180 डिग्री), जबकि एक (हानिकारक) ढांकता हुआ के रूप में मॉडलिंग की गई जमीन लहर की शक्ति की एक बड़ी मात्रा को अवशोषित कर सकती है। परावर्तित तरंग में शेष शक्ति, और परावर्तन पर चरण परिवर्तन, लहर के [[ आपतन कोण (प्रकाशिकी) |आपतन कोण (प्रकाशिकी)]] और ध्रुवीकरण (तरंगों) पर दृढ़ता से निर्भर करता है। ढांकता हुआ स्थिरांक और चालकता (या बस जटिल ढांकता हुआ स्थिरांक) मिट्टी के प्रकार पर निर्भर है और आवृत्ति का एक कार्य है।


वीएलएफ से [[ उच्च आवृत्ति ]] (< 30 मेगाहर्ट्ज) के लिए, जमीन एक हानिकारक ढांकता हुआ के रूप में व्यवहार करती है,<ref>{{cite book |editor1-first=H. Ward |editor1-last=Silver |display-editors=etal |date=2011 |title=ARRL Antenna Book |page=3‑2 <!-- hyphenated page number --> |location=Newington, Connecticut |publisher=American Radio Relay League |isbn=978-0-87259-694-8 }}</ref> इस प्रकार जमीन को [[ विद्युत प्रतिरोधकता और चालकता ]] दोनों की विशेषता है<ref>{{cite web |url=http://www.fcc.gov/encyclopedia/m3-map-effective-ground-conductivity-united-states-wall-sized-map-am-broadcast-stations |title=M3 Map of Effective Ground Conductivity in the United States (a Wall-Sized Map), for AM Broadcast Stations |date=11 December 2015 |website=fcc.gov |access-date=6 May 2018 |url-status=live |archive-url=https://web.archive.org/web/20151118083258/https://www.fcc.gov/encyclopedia/m3-map-effective-ground-conductivity-united-states-wall-sized-map-am-broadcast-stations |archive-date=18 November 2015 }}</ref> और पारगम्यता (ढांकता हुआ स्थिरांक) जिसे किसी दिए गए मिट्टी के लिए मापा जा सकता है (लेकिन नमी के स्तर में उतार-चढ़ाव से प्रभावित होता है) या कुछ मानचित्रों से अनुमान लगाया जा सकता है। कम [[ मध्यम तरंग ]] आवृत्तियों पर जमीन मुख्य रूप से एक अच्छे चालकता के रूप में कार्य करती है, जिस पर AM प्रसारण (0.5–1.7 मेगाहर्ट्ज) एंटेना निर्भर करता है।
वीएलएफ से [[ उच्च आवृत्ति |उच्च आवृत्ति]] (< 30 मेगाहर्ट्ज) के लिए, जमीन एक हानिकारक ढांकता हुआ के रूप में व्यवहार करती है,<ref>{{cite book |editor1-first=H. Ward |editor1-last=Silver |display-editors=etal |date=2011 |title=ARRL Antenna Book |page=3‑2 <!-- hyphenated page number --> |location=Newington, Connecticut |publisher=American Radio Relay League |isbn=978-0-87259-694-8 }}</ref> इस प्रकार जमीन को [[ विद्युत प्रतिरोधकता और चालकता |विद्युत प्रतिरोधकता और चालकता]] दोनों की विशेषता है<ref>{{cite web |url=http://www.fcc.gov/encyclopedia/m3-map-effective-ground-conductivity-united-states-wall-sized-map-am-broadcast-stations |title=M3 Map of Effective Ground Conductivity in the United States (a Wall-Sized Map), for AM Broadcast Stations |date=11 December 2015 |website=fcc.gov |access-date=6 May 2018 |url-status=live |archive-url=https://web.archive.org/web/20151118083258/https://www.fcc.gov/encyclopedia/m3-map-effective-ground-conductivity-united-states-wall-sized-map-am-broadcast-stations |archive-date=18 November 2015 }}</ref> और पारगम्यता (ढांकता हुआ स्थिरांक) जिसे किसी दिए गए मिट्टी के लिए मापा जा सकता है (लेकिन नमी के स्तर में उतार-चढ़ाव से प्रभावित होता है) या कुछ मानचित्रों से अनुमान लगाया जा सकता है। कम [[ मध्यम तरंग |मध्यम तरंग]] आवृत्तियों पर जमीन मुख्य रूप से एक अच्छे चालकता के रूप में कार्य करती है, जिस पर AM प्रसारण (0.5–1.7 मेगाहर्ट्ज) एंटीना निर्भर करता है।


3-30 मेगाहर्ट्ज के बीच आवृत्तियों पर, क्षैतिज रूप से ध्रुवीकृत एंटीना से ऊर्जा का एक बड़ा हिस्सा जमीन से परावर्तित होता है, जिसमें जमीनी तरंग प्रसार के लिए महत्वपूर्ण चराई कोणों पर लगभग कुल प्रतिबिंब होता है। वह परावर्तित तरंग, अपने चरण के उलट होने के साथ, तरंग दैर्ध्य और ऊंचाई कोण (आकाश तरंग के लिए) में एंटीना की ऊंचाई के आधार पर, प्रत्यक्ष तरंग को या तो रद्द या सुदृढ़ कर सकती है।
3-30 मेगाहर्ट्ज के बीच आवृत्तियों पर, क्षैतिज रूप से ध्रुवीकृत एंटीना से ऊर्जा का एक बड़ा हिस्सा जमीन से परावर्तित होता है, जिसमें जमीनी तरंग प्रसार के लिए महत्वपूर्ण चराई कोणों पर लगभग कुल प्रतिबिंब होता है। वह परावर्तित तरंग, अपने चरण के उलट होने के साथ, तरंग दैर्ध्य और ऊंचाई कोण (आकाश तरंग के लिए) में एंटीना की ऊंचाई के आधार पर, प्रत्यक्ष तरंग को या तो रद्द या सुदृढ़ कर सकती है।


दूसरी ओर, लंबवत ध्रुवीकृत विकिरण जमीन से अच्छी तरह से परावर्तित नहीं होता है, सिवाय चराई की घटनाओं या समुद्र के पानी जैसे बहुत उच्च संवाहक सतहों पर।<ref>{{harvnb|Silver|2011|p=3‑23<!--hyphenated page#-->}}</ref> हालांकि, ऊर्ध्वाधर ध्रुवीकरण का उपयोग करते हुए, ग्राउंड वेव प्रसार के लिए महत्वपूर्ण चराई कोण प्रतिबिंब, प्रत्यक्ष तरंग के साथ चरण में है, जो 6 dB तक की वृद्धि प्रदान करता है, जैसा कि नीचे विवरण दिया गया है।
दूसरी ओर, लंबवत ध्रुवीकृत विकिरण जमीन से अच्छी तरह से परावर्तित नहीं होता है, सिवाय चराई की घटनाओं या समुद्र के पानी जैसे बहुत उच्च संवाहक सतहों पर।<ref>{{harvnb|Silver|2011|p=3‑23<!--hyphenated page#-->}}</ref> चूंकि, ऊर्ध्वाधर ध्रुवीकरण का उपयोग करते हुए, ग्राउंड वेव प्रसार के लिए महत्वपूर्ण चराई कोण प्रतिबिंब, प्रत्यक्ष तरंग के साथ चरण में है, जो 6 dB तक की वृद्धि प्रदान करता है, जैसा कि नीचे विवरण दिया गया है।


[[File:A6-1EN.svg|right|frame|पृथ्वी द्वारा परावर्तित तरंग को छवि एंटीना द्वारा उत्सर्जित माना जा सकता है।]]
[[File:A6-1EN.svg|right|frame|पृथ्वी द्वारा परावर्तित तरंग को छवि एंटीना द्वारा उत्सर्जित माना जा सकता है।]]
वीएचएफ और उससे ऊपर (> 30 मेगाहर्ट्ज) पर जमीन खराब परावर्तक बन जाती है। हालांकि, [[ शॉर्टवेव ]] आवृत्तियों के लिए, विशेष रूप से ~ 15 मेगाहर्ट्ज से नीचे, यह विशेष रूप से क्षैतिज ध्रुवीकरण और घटना के चराई कोणों के लिए एक अच्छा परावर्तक बना हुआ है। यह महत्वपूर्ण है क्योंकि ये उच्च आवृत्तियां आमतौर पर क्षैतिज लाइन-ऑफ-विज़न प्रसार (उपग्रह संचार को छोड़कर) पर निर्भर करती हैं, फिर जमीन लगभग एक दर्पण के रूप में व्यवहार करती है।
वीएचएफ और उससे ऊपर (> 30 मेगाहर्ट्ज) पर जमीन खराब परावर्तक बन जाती है। चूंकि, [[ शॉर्टवेव |शॉर्टवेव]] आवृत्तियों के लिए, विशेष रूप से ~ 15 मेगाहर्ट्ज से नीचे, यह विशेष रूप से क्षैतिज ध्रुवीकरण और घटना के चराई कोणों के लिए एक अच्छा परावर्तक बना हुआ है। यह महत्वपूर्ण है क्योंकि ये उच्च आवृत्तियां सामान्यतः पर क्षैतिज लाइन-ऑफ-विज़न प्रसार (उपग्रह संचार को छोड़कर) पर निर्भर करती हैं, फिर जमीन लगभग एक दर्पण के रूप में व्यवहार करती है।


जमीनी परावर्तन की शुद्ध गुणवत्ता सतह की स्थलाकृति पर निर्भर करती है। जब सतह की अनियमितताएं तरंग दैर्ध्य की तुलना में बहुत छोटी होती हैं, तो प्रमुख शासन स्पेक्युलर परावर्तन का होता है, और रिसीवर वास्तविक एंटीना और जमीन के नीचे एंटीना की छवि दोनों को प्रतिबिंब के कारण देखता है। लेकिन अगर तरंगदैर्घ्य की तुलना में जमीन में अनियमितताएं छोटी नहीं हैं, तो प्रतिबिंब सुसंगत नहीं होंगे बल्कि यादृच्छिक चरणों से स्थानांतरित हो जाएंगे। कम तरंग दैर्ध्य (उच्च आवृत्तियों) के साथ, आमतौर पर ऐसा ही होता है।
जमीनी परावर्तन की शुद्ध गुणवत्ता सतह की स्थलाकृति पर निर्भर करती है। जब सतह की अनियमितताएं तरंग दैर्ध्य की तुलना में बहुत छोटी होती हैं, तो प्रमुख शासन स्पेक्युलर परावर्तन का होता है, और रिसीवर वास्तविक एंटीना और जमीन के नीचे एंटीना की छवि दोनों को प्रतिबिंब के कारण देखता है। लेकिन अगर तरंगदैर्घ्य की तुलना में जमीन में अनियमितताएं छोटी नहीं हैं, तो प्रतिबिंब सुसंगत नहीं होंगे बल्कि यादृच्छिक चरणों से स्थानांतरित हो जाएंगे। कम तरंग दैर्ध्य (उच्च आवृत्तियों) के साथ, सामान्यतः पर ऐसा ही होता है।


जब भी प्राप्त करने या संचारित करने वाले दोनों एंटेना को जमीन से ऊपर (तरंग दैर्ध्य के सापेक्ष) महत्वपूर्ण ऊंचाई पर रखा जाता है, तो जमीन से परावर्तित तरंगें प्रत्यक्ष तरंगों की तुलना में लंबी दूरी तय करती हैं, एक चरण बदलाव को प्रेरित करती हैं जो कभी-कभी महत्वपूर्ण हो सकती हैं। जब इस तरह के एंटीना द्वारा एक आकाश तरंग लॉन्च की जाती है, तो वह चरण बदलाव हमेशा महत्वपूर्ण होता है जब तक कि एंटीना जमीन के बहुत करीब न हो (तरंग दैर्ध्य की तुलना में)।
जब भी प्राप्त करने या संचारित करने वाले दोनों एंटीना को जमीन से ऊपर (तरंग दैर्ध्य के सापेक्ष) महत्वपूर्ण ऊंचाई पर रखा जाता है, तो जमीन से परावर्तित तरंगें प्रत्यक्ष तरंगों की तुलना में लंबी दूरी तय करती हैं, एक चरण बदलाव को प्रेरित करती हैं जो कभी-कभी महत्वपूर्ण हो सकती हैं। जब इस तरह के एंटीना द्वारा एक आकाश तरंग लॉन्च की जाती है, तो वह चरण बदलाव हमेशा महत्वपूर्ण होता है जब तक कि एंटीना जमीन के बहुत करीब न हो।


{{Unreferenced section|date=January 2014}}
{{Unreferenced section|date=January 2014}}
विद्युत चुम्बकीय तरंगों के परावर्तन का चरण आपतित तरंग के ध्रुवीकरण (तरंगों) पर निर्भर करता है। जमीन के बड़े अपवर्तनांक को देखते हुए (आमतौर पर {{mvar|n}}≈ 2) हवा की तुलना में ({{mvar|n}}= 1), क्षैतिज रूप से ध्रुवीकृत विकिरण का चरण परावर्तन पर उलट जाता है ( . का एक चरण बदलाव) {{mvar|&pi;}}रेडियन, या 180°)। दूसरी ओर, तरंग के विद्युत क्षेत्र का ऊर्ध्वाधर घटक लगभग चरण में घटना के चराई कोणों पर परिलक्षित होता है। ये चरण बदलाव एक अच्छे विद्युत चालकता के रूप में तैयार किए गए ग्राउंड पर भी लागू होते हैं।
विद्युत चुम्बकीय तरंगों के परावर्तन का चरण आपतित तरंग के ध्रुवीकरण पर निर्भर करता है। जमीन के बड़े अपवर्तनांक को देखते हुए (सामान्यतः पर {{mvar|n}}≈ 2) हवा की तुलना में ({{mvar|n}}= 1), क्षैतिज रूप से ध्रुवीकृत विकिरण का चरण परावर्तन पर उलट जाता है, दूसरी ओर तरंग के विद्युत क्षेत्र का ऊर्ध्वाधर घटक लगभग चरण में घटना के चराई कोणों पर परिलक्षित होता है। ये चरण बदलाव एक अच्छे विद्युत चालकता के रूप में तैयार किए गए ग्राउंड पर भी लागू होते हैं।


[[File:A6-2.jpg|right|frame|एंटेना में धाराएं चराई के कोणों पर परावर्तित होने पर विपरीत चरण में एक छवि के रूप में दिखाई देती हैं। यह क्षैतिज रूप से ध्रुवीकृत एंटीना (केंद्र) द्वारा उत्सर्जित तरंगों के लिए एक चरण उलट का कारण बनता है, लेकिन लंबवत ध्रुवीकृत एंटीना (बाएं) के लिए नहीं।]]
[[File:A6-2.jpg|right|frame|एंटीना में धाराएं चराई के कोणों पर परावर्तित होने पर विपरीत चरण में एक छवि के रूप में दिखाई देती हैं। यह क्षैतिज रूप से ध्रुवीकृत एंटीना (केंद्र) द्वारा उत्सर्जित तरंगों के लिए एक चरण उलट का कारण बनता है, लेकिन लंबवत ध्रुवीकृत एंटीना (बाएं) के लिए नहीं।]]
इसका मतलब यह है कि एक प्राप्त करने वाला एंटीना उत्सर्जक एंटीना की एक छवि देखता है, लेकिन 'उलट' धाराओं के साथ (दिशा और चरण में विपरीत) यदि उत्सर्जक एंटीना क्षैतिज रूप से उन्मुख है (और इस प्रकार क्षैतिज रूप से ध्रुवीकृत)। हालाँकि, प्राप्त करंट उसी निरपेक्ष दिशा और चरण में होगा यदि उत्सर्जक एंटीना लंबवत ध्रुवीकृत हो।
इसका मतलब यह है कि एक प्राप्त करने वाला एंटीना उत्सर्जक एंटीना की एक छवि देखता है, लेकिन 'उलट' धाराओं के साथ (दिशा और चरण में विपरीत) यदि उत्सर्जक एंटीना क्षैतिज रूप से उन्मुख है (और इस प्रकार क्षैतिज रूप से ध्रुवीकृत)। चूंकि, प्राप्त धारा उसी निरपेक्ष दिशा और चरण में होगा यदि उत्सर्जक एंटीना लंबवत ध्रुवीकृत हो।


वास्तविक एंटेना जो मूल तरंग को प्रसारित कर रहा है, उसे भी जमीन से अपनी छवि से एक मजबूत संकेत प्राप्त हो सकता है। यह ऐन्टेना तत्व में एक अतिरिक्त करंट को प्रेरित करेगा, किसी दिए गए फीडपॉइंट वोल्टेज के लिए फीडपॉइंट पर करंट को बदल देगा। इस प्रकार ऐन्टेना की प्रतिबाधा, जो कि फीडपॉइंट वोल्टेज और करंट के अनुपात से दी जाती है, जमीन से ऐन्टेना की निकटता के कारण बदल जाती है। यह काफी महत्वपूर्ण प्रभाव हो सकता है जब एंटीना तरंग दैर्ध्य या जमीन के दो के भीतर हो। लेकिन जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, परावर्तित तरंग की कम शक्ति (उलटा वर्ग कानून के कारण) एंटीना को सिद्धांत द्वारा दिए गए अपने स्पर्शोन्मुख फीडपॉइंट प्रतिबाधा तक पहुंचने की अनुमति देती है। कम ऊंचाई पर, एंटीना के प्रतिबाधा पर प्रभाव जमीन से सटीक दूरी के प्रति बहुत संवेदनशील होता है, क्योंकि यह एंटीना में धाराओं के सापेक्ष परावर्तित तरंग के चरण को प्रभावित करता है। एंटीना की ऊंचाई को एक चौथाई तरंग दैर्ध्य से बदलना, फिर प्रतिबिंब के चरण को 180 ° से बदल देता है, एंटीना के प्रतिबाधा पर पूरी तरह से अलग प्रभाव पड़ता है।
वास्तविक एंटीना जो मूल तरंग को प्रसारित कर रहा है, उसे भी जमीन से अपनी छवि से एक मजबूत संकेत प्राप्त हो सकता है। यह ऐन्टेना तत्व में एक अतिरिक्त धारा को प्रेरित करेगा, किसी दिए गए फीडपॉइंट वोल्टेज के लिए फीडपॉइंट पर धारा को बदल देगा। इस प्रकार ऐन्टेना की प्रतिबाधा, जो कि फीडपॉइंट वोल्टेज और धारा के अनुपात से दी जाती है, जमीन से ऐन्टेना की निकटता के कारण बदल जाती है। यह काफी महत्वपूर्ण प्रभाव हो सकता है जब एंटीना तरंग दैर्ध्य या जमीन के दो के भीतर हो। लेकिन जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, परावर्तित तरंग की कम शक्ति एंटीना को सिद्धांत द्वारा दिए गए अपने स्पर्शोन्मुख फीडपॉइंट प्रतिबाधा तक पहुंचने की अनुमति देती है। कम ऊंचाई पर, एंटीना के प्रतिबाधा पर प्रभाव जमीन से सटीक दूरी के प्रति बहुत संवेदनशील होता है, क्योंकि यह एंटीना में धाराओं के सापेक्ष परावर्तित तरंग के चरण को प्रभावित करता है। एंटीना की ऊंचाई को एक चौथाई तरंग दैर्ध्य से बदलना, फिर प्रतिबिंब के चरण को 180 ° से बदल देता है, एंटीना के प्रतिबाधा पर पूरी तरह से अलग प्रभाव पड़ता है।


जमीनी परावर्तन का ऊर्ध्वाधर तल में शुद्ध दूर क्षेत्र के विकिरण पैटर्न पर एक महत्वपूर्ण प्रभाव पड़ता है, जो कि ऊंचाई कोण के एक कार्य के रूप में होता है, जो इस प्रकार एक लंबवत और क्षैतिज रूप से ध्रुवीकृत एंटीना के बीच भिन्न होता है। ऊंचाई पर एक एंटीना पर विचार करें {{mvar|h}} जमीन के ऊपर, ऊंचाई कोण पर मानी जाने वाली लहर को प्रेषित करना {{mvar|θ}}. एक लंबवत ध्रुवीकृत संचरण के लिए प्रत्यक्ष किरण और परावर्तित किरण द्वारा उत्पादित विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का परिमाण है:
जमीनी परावर्तन का ऊर्ध्वाधर तल में शुद्ध दूर क्षेत्र के विकिरण पैटर्न पर एक महत्वपूर्ण प्रभाव पड़ता है, जो कि ऊंचाई कोण के एक कार्य के रूप में होता है, जो इस प्रकार एक लंबवत और क्षैतिज रूप से ध्रुवीकृत एंटीना के बीच भिन्न होता है। ऊंचाई पर एक एंटीना पर विचार करें {{mvar|h}} जमीन के ऊपर, ऊंचाई कोण पर मानी जाने वाली लहर को प्रेषित करना {{mvar|θ}}. एक लंबवत ध्रुवीकृत संचरण के लिए प्रत्यक्ष किरण और परावर्तित किरण द्वारा उत्पादित विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का परिमाण है:


::<math>\textstyle{\left|E_V\right|=2\left|E_0\right|  \,  \left|\cos\left({2 \pi h\over\lambda}\sin\theta\right) \right|}</math>
::<math>\textstyle{\left|E_V\right|=2\left|E_0\right|  \,  \left|\cos\left({2 \pi h\over\lambda}\sin\theta\right) \right|}</math>
इस प्रकार प्राप्त शक्ति अकेले प्रत्यक्ष तरंग के कारण 4 गुना अधिक हो सकती है (जैसे कि कब {{mvar|θ}}= 0), कोज्या के वर्ग के बाद। इसके बजाय क्षैतिज रूप से ध्रुवीकृत उत्सर्जन के प्रतिबिंब के लिए साइन इनवर्जन का परिणाम है:
इस प्रकार प्राप्त शक्ति अकेले प्रत्यक्ष तरंग के कारण (जैसे कि कब {{mvar|θ}}= 0), कोज्या के वर्ग के बाद 4 गुना अधिक हो सकती है। इसके अतिरिक्त क्षैतिज रूप से ध्रुवीकृत उत्सर्जन के प्रतिबिंब के लिए साइन इनवर्जन का परिणाम है:


::<math>\textstyle{\left|E_H\right|=2\left|E_0\right|  \,
::<math>\textstyle{\left|E_H\right|=2\left|E_0\right|  \,
\left|\sin\left({2 \pi h\over\lambda}\sin\theta\right) \right|}</math>
\left|\sin\left({2 \pi h\over\lambda}\sin\theta\right) \right|}</math>
कहाँ पे:
जहाँ पे:
* <math>\scriptstyle{E_0}</math> वह विद्युत क्षेत्र है जो जमीन न होने पर प्रत्यक्ष तरंग द्वारा प्राप्त किया जाएगा।
* <math>\scriptstyle{E_0}</math> वह विद्युत क्षेत्र है जो जमीन न होने पर प्रत्यक्ष तरंग द्वारा प्राप्त किया जाएगा।
* {{mvar|θ}} लहर का उन्नयन कोण माना जा रहा है।
* {{mvar|θ}} लहर का उन्नयन कोण माना जा रहा है।
Line 256: Line 258:
* <math>\scriptstyle{h}</math> एंटीना की ऊंचाई है (एंटीना और उसकी छवि के बीच की आधी दूरी)।
* <math>\scriptstyle{h}</math> एंटीना की ऊंचाई है (एंटीना और उसकी छवि के बीच की आधी दूरी)।


[[File:A6-4.jpg|right|frame|एंटेना के विकिरण पैटर्न और उनकी छवियां जमीन से परावर्तित होती हैं। बाईं ओर ध्रुवीकरण लंबवत है और हमेशा अधिकतम होता है {{mvar|θ}}= 0 . यदि ध्रुवीकरण दाईं ओर क्षैतिज है, तो हमेशा शून्य होता है {{mvar|θ}} = 0 .]]
[[File:A6-4.jpg|right|frame|एंटीना के विकिरण पैटर्न और उनकी छवियां जमीन से परावर्तित होती हैं। बाईं ओर ध्रुवीकरण लंबवत है और हमेशा अधिकतम होता है {{mvar|θ}}= 0 . यदि ध्रुवीकरण दाईं ओर क्षैतिज है, तो हमेशा शून्य होता है {{mvar|θ}} = 0 .]]
एक दूसरे से काफी दूर जमीन के पास स्थित संचारणऔर रिसीविंग एंटेना के बीच क्षैतिज प्रसार के लिए, सीधी और परावर्तित किरणों द्वारा तय की गई दूरी लगभग समान होती है। लगभग कोई सापेक्ष चरण बदलाव नहीं है। यदि उत्सर्जन को लंबवत रूप से ध्रुवीकृत किया जाता है, तो दो क्षेत्र (प्रत्यक्ष और परावर्तित) जुड़ते हैं और अधिकतम प्राप्त संकेत होता है। यदि सिग्नल को क्षैतिज रूप से ध्रुवीकृत किया जाता है, तो दो सिग्नल घट जाते हैं और प्राप्त सिग्नल काफी हद तक रद्द हो जाता है। ऊर्ध्वाधर विमान विकिरण पैटर्न छवि में दाईं ओर दिखाए गए हैं। ऊर्ध्वाधर ध्रुवीकरण के साथ हमेशा अधिकतम होता है {{mvar|θ}}= 0, क्षैतिज प्रसार (बाएं पैटर्न)। क्षैतिज ध्रुवीकरण के लिए, उस कोण पर रद्दीकरण होता है। ध्यान दें कि उपरोक्त सूत्र और ये भूखंड जमीन को एक आदर्श संवाहक मानते हैं। विकिरण पैटर्न के ये भूखंड एंटीना और इसकी छवि 2.5 . के बीच की दूरी के अनुरूप हैं{{mvar|λ}}. जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, लोब की संख्या भी बढ़ती जाती है।
जमीन के पास एक दूसरे से यथोचित दूरी पर स्थित संचारण और प्राप्त एंटेना के बीच क्षैतिज प्रसार के लिए, प्रत्यक्ष और परावर्तित किरणों द्वारा तय की गई दूरी लगभग समान होती है। लगभग कोई सापेक्ष चरण बदलाव नहीं होता है यदि उत्सर्जन लंबवत रूप से ध्रुवीकृत होता है, तो दो क्षेत्र (प्रत्यक्ष और परावर्तित) जुड़ते हैं और अधिकतम प्राप्त संकेत होता है। यदि सिग्नल को क्षैतिज रूप से ध्रुवीकृत किया जाता है, तो दो सिग्नल घट जाते हैं और प्राप्त सिग्नल काफी हद तक रद्द हो जाता है। ऊर्ध्वाधर विमान विकिरण पैटर्न छवि में दाईं ओर दिखाए गए हैं। ऊर्ध्वाधर ध्रुवीकरण के साथ हमेशा अधिकतम होता है {{mvar|θ}}= 0, क्षैतिज प्रसार (बाएं पैटर्न)। क्षैतिज ध्रुवीकरण के लिए, उस कोण पर रद्दीकरण होता है। ध्यान दें कि उपरोक्त सूत्र और ये भूखंड जमीन को एक आदर्श संवाहक मानते हैं। विकिरण पैटर्न के ये भूखंड ऐन्टेना और इसकी 2.5 λ की छवि के बीच की दूरी के अनुरूप हैं। जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, वैसे-वैसे पालियों की संख्या भी बढ़ती जाती है।
 
θ = 0 के स्थिति के लिए उपरोक्त कारकों में अंतर है कि अधिकांश प्रसारण लंबवत ध्रुवीकरण का उपयोग करते हैं। जमीन के पास रिसीवर्स के लिए, क्षैतिज रूप से ध्रुवीकृत प्रसारण रद्द हो जाते हैं। सर्वोत्तम स्वागत के लिए इन संकेतों के लिए प्राप्त करने वाले एंटेना इसी तरह लंबवत ध्रुवीकृत होते हैं। कुछ अनुप्रयोगों में जहां प्राप्त एंटीना को किसी भी स्थिति में काम करना चाहिए, जैसे मोबाइल फोन में, बेस स्टेशन एंटेना मिश्रित ध्रुवीकरण का उपयोग करते हैं, जैसे कोण पर रैखिक ध्रुवीकरण (ऊर्ध्वाधर और क्षैतिज दोनों घटकों के साथ) या परिपत्र ध्रुवीकरण मे किया जाता है।
 
दूसरी ओर, एनालॉग टेलीविजन प्रसारण साधारणतयः क्षैतिज रूप से ध्रुवीकृत होते हैं, क्योंकि शहरी क्षेत्रों में इमारतें विद्युत चुम्बकीय तरंगों को प्रतिबिंबित कर सकती हैं और मल्टीपाथ प्रसार के कारण भूत की छवियां बना सकती हैं। क्षैतिज ध्रुवीकरण का उपयोग करना, घोस्टिंग को कम करता है क्योंकि एक भवन के किनारे क्षैतिज ध्रुवीकरण में प्रतिबिंब की मात्रा साधारणतयः लंबवत दिशा से कम होती है। कुछ ग्रामीण क्षेत्रों में लंबवत ध्रुवीकृत एनालॉग टेलीविजन का उपयोग किया गया है। डिजिटल टेरेस्ट्रियल टेलीविजन में बाइनरी ट्रांसमिशन की मजबूती और त्रुटि सुधार के कारण ऐसे प्रतिबिंब कम समस्याग्रस्त होते हैं।


के मामले के लिए उपरोक्त कारकों में अंतर {{mvar|θ}}= 0 यही कारण है कि अधिकांश प्रसारण (जनता के लिए लक्षित प्रसारण) लंबवत ध्रुवीकरण का उपयोग करते हैं। जमीन के पास रिसीवर के लिए, क्षैतिज रूप से ध्रुवीकृत प्रसारण रद्द हो जाते हैं। सर्वोत्तम रिसेप्शन के लिए इन संकेतों के लिए प्राप्त एंटेना समान रूप से लंबवत ध्रुवीकृत होते हैं। कुछ अनुप्रयोगों में जहां प्राप्त करने वाले एंटीना को किसी भी स्थिति में काम करना चाहिए, जैसे कि [[ चल दूरभाष ]] में, [[ नींव का अवस्थान ]] एंटेना मिश्रित ध्रुवीकरण का उपयोग करते हैं, जैसे कोण पर रैखिक ध्रुवीकरण (ऊर्ध्वाधर और क्षैतिज दोनों घटकों के साथ) या परिपत्र ध्रुवीकरण।
==लाइन समीकरणों के साथ एंटीना मॉडलिंग ==
:पहले सन्निकटन में, पतले एंटीना में धारा वितरित होता है<br>बिल्कुल संचारलाइन की तरह। - [[ सर्गेई अलेक्जेंडर शेलकुनॉफ |सर्गेई अलेक्जेंडर शेलकुनॉफ]] और हेराल्ड टी. फ्रिस (1952)<ref name=SchelkFriis1952/>{{rp|style=ama|p= 217 (§8.4)}}


दूसरी ओर, एनालॉग टेलीविजन प्रसारण आमतौर पर क्षैतिज रूप से ध्रुवीकृत होते हैं, क्योंकि शहरी क्षेत्रों में इमारतें विद्युत चुम्बकीय तरंगों को प्रतिबिंबित कर सकती हैं और [[ बहुपथ प्रसार ]] के कारण [[ भूत (टेलीविजन) ]] बना सकती हैं। क्षैतिज ध्रुवीकरण का उपयोग करते हुए, भूत-प्रेत को कम किया जाता है क्योंकि भवन के किनारे से क्षैतिज ध्रुवीकरण में प्रतिबिंब की मात्रा आमतौर पर ऊर्ध्वाधर दिशा की तुलना में कम होती है। कुछ ग्रामीण क्षेत्रों में लंबवत ध्रुवीकृत एनालॉग टेलीविजन का उपयोग किया गया है। [[ डिजिटल स्थलीय टेलीविजन ]] में बाइनरी  संचारकी मजबूती और [[ त्रुटि का पता लगाने और सुधार ]] के कारण ऐसे प्रतिबिंब कम समस्याग्रस्त हैं।
{{main|टेलीग्राफर समीकरण}}
वायर एंटेना में धारा का प्रवाह एकल चालकता ट्रांसमिशन लाइन में काउंटर-प्रॉपेगेटिंग तरंगों के समाधान के समान है, जिसे टेलीग्राफर के समीकरणों का उपयोग करके हल किया जा सकता है।


==लाइन समीकरणों के साथ एंटेना मॉडलिंग ==
एंटीना के तत्वों के साथ धाराओं के समाधान संख्यात्मक तरीकों से अधिक आसानी से और सटीक रूप से प्राप्त किए जाते हैं, इसलिए सटीक मॉडलिंग के लिए ट्रांसमिशन-लाइन तकनीकों को काफी हद तक छोड़ दिया गया है, लेकिन वे उपयोगी, सरल अनुमानों का व्यापक रूप से उपयोग किया जाने वाला स्रोत बने हुए हैं जो अच्छी तरह से प्रतिबाधा प्रोफाइल का वर्णन करते हैं। एंटीना<ref name="Raines2007">{{cite book |first=Jeremy Keith |last=Raines |year=2007 |title=Folded Unipole Antennas: Theory and applications |edition=1st |series=Electronic Engineering |publisher=McGraw Hill |ISBN=978-0-07-147485-6 |postscript=;}} {{ISBN|0-07-147485-4}}</ref>{{rp|style=ama|pp= 7–10}}<ref name="SchelkFriis1952">{{cite book |first1=Sergei A. |last1=Schelkunoff |author-link1=Sergei Alexander Schelkunoff |first2=Harald T. |last2=Friis |author-link2=Harald T. Friis |orig-year=1952 |date=July 1966 |title=Antennas: Theory and practice |publisher=John Wiley & Sons |lccn=52-5083}}</ref>{{rp|style=ama|p= 232}}  
:पहले सन्निकटन में, पतले एंटेना में करंट वितरित होता है<br>बिल्कुल  संचारलाइन की तरह। - [[ सर्गेई अलेक्जेंडर शेलकुनॉफ ]] और हेराल्ड टी. फ्रिस (1952)<ref name=SchelkFriis1952/>{{rp|style=ama|p= 217 (§8.4)}}


{{main|telegraphers equations}}
संचारलाइनों के विपरीत, एंटीना में धाराएं विद्युत चुम्बकीय क्षेत्र में शक्ति का योगदान करती हैं, जिसे विकिरण प्रतिरोध का उपयोग करके मॉडल किया जा सकता है।{{efn|
वायर एंटेना में करंट का प्रवाह  संचारलाइन में काउंटर-प्रोपेगेटिंग तरंगों के समाधान के समान होता है, जिसे टेलीग्राफर के समीकरणों का उपयोग करके हल किया जा सकता है।
कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स द्वारा एंटीना तत्वों के साथ धाराओं के समाधान अधिक आसानी से और सटीक रूप से प्राप्त किए जाते हैं, इसलिए  संचरण -लाइन तकनीकों को बड़े पैमाने पर सटीक मॉडलिंग के लिए छोड़ दिया गया है, लेकिन वे उपयोगी, सरल अनुमानों का व्यापक रूप से उपयोग किया जाने वाला स्रोत हैं जो प्रतिबाधा प्रोफाइल का अच्छी तरह से वर्णन करते हैं एंटेना<ref name=Raines2007>{{cite book |first=Jeremy Keith |last=Raines |year=2007 |title=Folded Unipole Antennas: Theory and applications |edition=1st |series=Electronic Engineering |publisher=McGraw Hill |ISBN=978-0-07-147485-6 |postscript=;}} {{ISBN|0-07-147485-4}}</ref>{{rp|style=ama|pp= 7–10}}<ref name=SchelkFriis1952>{{cite book |first1=Sergei A. |last1=Schelkunoff |author-link1=Sergei Alexander Schelkunoff |first2=Harald T. |last2=Friis |author-link2=Harald T. Friis |orig-year=1952 |date=July 1966 |title=Antennas: Theory and practice |publisher=John Wiley & Sons |lccn=52-5083}}</ref>{{rp|style=ama|p= 232}}
संचारलाइनों के विपरीत, एंटेना में धाराएं विद्युत चुम्बकीय क्षेत्र में शक्ति का योगदान करती हैं, जिसे विकिरण प्रतिरोध का उपयोग करके मॉडल किया जा सकता है।{{efn|
Excepting full-wave [[loop antenna]]s, [[radiation resistance]] is typically small (tens of [[Ohm (unit)|Ohms]]) compared to the antenna element's surge impedance (hundreds of Ohms), and since dry air is a very good insulator, the antenna is often modeled as lossless: {{nobr|{{math|''R′'' {{=}} ''G′'' {{=}} 0 }}.<ref name=Raines2007/>}}
Excepting full-wave [[loop antenna]]s, [[radiation resistance]] is typically small (tens of [[Ohm (unit)|Ohms]]) compared to the antenna element's surge impedance (hundreds of Ohms), and since dry air is a very good insulator, the antenna is often modeled as lossless: {{nobr|{{math|''R′'' {{=}} ''G′'' {{=}} 0 }}.<ref name=Raines2007/>}}
The essential loss or gain of voltage due to transmission or reception is usually inserted post-hoc, after the transmission line solutions, although it can be approximately modeled as a small value added to the loss resistance {{math|''R′''}}, at the expense of working with [[complex number]]s.<ref name=SchelkFriis1952/>
The essential loss or gain of voltage due to transmission or reception is usually inserted post-hoc, after the transmission line solutions, although it can be approximately modeled as a small value added to the loss resistance {{math|''R′''}}, at the expense of working with [[complex number]]s.<ref name=SchelkFriis1952/>
}}
}}
<!--
Also, unlike a transmission line which can be modeled using the line parameters {{math|''L′''}} and {{math|''C′''}} (and {{math|''R′''}} and {{math|''G′''}}), no set of such parameters can model a single conductor line.{{Disputed inline|Utterly false statement about line parameters|date=December 2021}}
-->
एक ऐन्टेना तत्व का अंत एकल-चालकता  संचारलाइन के एक अनटर्मिनेटेड (खुले) सिरे से मेल खाता है, जिसके परिणामस्वरूप घटना तरंग के समान एक परावर्तित तरंग होती है, जिसका वोल्टेज घटना तरंग के साथ चरण में होता है (इस प्रकार नेट वोल्टेज को दोगुना कर देता है) अंत) और विपरीत चरण में इसकी धारा (इस प्रकार शुद्ध शून्य धारा, जहां है, आखिरकार, कोई और चालकता नहीं)। घटना और परावर्तित तरंग का संयोजन, जैसे कि एक  संचारलाइन में, चालकता के अंत में एक वर्तमान नोड के साथ एक स्थायी लहर बनाता है, और एक वोल्टेज नोड अंत से एक-चौथाई तरंग दैर्ध्य (यदि तत्व कम से कम इतना लंबा है) .<ref name=Raines2007/><ref name=SchelkFriis1952/>


[[ विद्युत अनुनाद ]] में, एंटीना का फीडपॉइंट उन वोल्टेज नोड्स में से एक पर होता है। संचारलाइन मॉडल से विसंगतियों के कारण, वर्तमान नोड से एक चौथाई तरंग दैर्ध्य वोल्टेज बिल्कुल शून्य नहीं है, लेकिन यह चालकता के अंत में बहुत बड़े वोल्टेज की तुलना में न्यूनतम और छोटा है। उस बिंदु पर एंटीना को खिलाने में अपेक्षाकृत छोटा वोल्टेज शामिल होता है लेकिन बड़ी धारा (दो तरंगों से धाराएं वहां चरण में जुड़ती हैं), इस प्रकार अपेक्षाकृत कम फीडपॉइंट प्रतिबाधा होती है। अन्य बिंदुओं पर एंटीना को खिलाने में एक बड़ा वोल्टेज शामिल होता है, इस प्रकार एक बड़ा प्रतिबाधा, और आमतौर पर एक जो मुख्य रूप से प्रतिक्रियाशील (कम शक्ति कारक) होता है, जो उपलब्ध संचारलाइनों के लिए एक भयानक प्रतिबाधा मैच होता है। इसलिए यह आमतौर पर एक एंटीना के लिए एक गुंजयमान तत्व के रूप में संचालित करने के लिए वांछित होता है, जिसमें प्रत्येक चालकता की लंबाई एक चौथाई तरंग दैर्ध्य (या एक चौथाई तरंग दैर्ध्य के अन्य विषम गुणक) होती है।
एक ऐन्टेना तत्व का अंत एकल-चालकता संचारलाइन लाइन के एक असमाप्त अंत तक मेल खाता है जिसके परिणामस्वरूप घटना तरंग के समान एक परावर्तित तरंग होती है, जिसका वोल्टेज घटना तरंग के साथ चरण में होता है इस प्रकार नेट वोल्टेज को दोगुना कर देता है अंत और विपरीत चरण में इसका प्रवाह होता है ( इस प्रकार शुद्ध शून्य धारा, जहां कोई और चालकता नहीं है)। घटना और परावर्तित तरंग का संयोजन, एक संचरण लाइन की तरह, चालकता के अंत में एक धारा नोड के साथ एक स्थायी तरंग बनाता है, और एक वोल्टेज नोड एक-चौथाई तरंग दैर्ध्य अंत से (यदि तत्व कम से कम इतना लंबा है).<ref name="Raines2007" /><ref name="SchelkFriis1952" />
 
[[ विद्युत अनुनाद | विद्युत]] दोलित्र में, एंटीना का फीडपॉइंट उन वोल्टेज नोड्स में से एक पर होता है। संचारलाइन मॉडल से विसंगतियों के कारण, धारा नोड से एक चौथाई तरंग दैर्ध्य वोल्टेज बिल्कुल शून्य नहीं है, लेकिन यह चालकता के अंत में बहुत बड़े वोल्टेज की तुलना में न्यूनतम और छोटा है। उस बिंदु पर एंटीना को खिलाने में अपेक्षाकृत छोटा वोल्टेज सम्मिलित होता है लेकिन बड़ी धारा (दो तरंगों से धाराएं वहां चरण में जुड़ती हैं), इस प्रकार अपेक्षाकृत कम फीडपॉइंट प्रतिबाधा होती है। अन्य बिंदुओं पर एंटीना को खिलाने में एक बड़ा वोल्टेज सम्मिलित होता है, इस प्रकार एक बड़ा प्रतिबाधा, और सामान्यतः पर एक जो मुख्य रूप से प्रतिक्रियाशील होता है, जो उपलब्ध संचारलाइनों के लिए एक भयानक प्रतिबाधा मैच होता है। इसलिए यह सामान्यतः पर एक एंटीना के लिए एक दोलित्र तत्व के रूप में संचालित करने के लिए वांछित होता है, जिसमें प्रत्येक चालकता की लंबाई एक चौथाई तरंग दैर्ध्य (या एक चौथाई तरंग दैर्ध्य के अन्य विषम गुणक) होती है।
 
उदाहरण के लिए, एक अर्ध-तरंग द्विध्रुवीय में दो ऐसे तत्व होते हैं एक संतुलित संचरण लाइन के प्रत्येक चालकता से जुड़ा होता है लगभग एक चौथाई तरंगदैर्ध्य लंबा होता है। चालकताों के व्यास के आधार पर, इस लंबाई से एक छोटा विचलन द्विध्रुवीय एंटीना विभिन्न लंबाई के द्विध्रुवों की प्रतिबाधा उस बिंदु तक पहुंचने के लिए जहां एंटीना धारा और फीडपॉइंट वोल्टेज बिल्कुल चरण में है। फिर ऐन्टेना एक विशुद्ध रूप से प्रतिरोधक प्रतिबाधा प्रस्तुत करता है, और आदर्श रूप से एक उपलब्ध संचारलाइन की विशेषता प्रतिबाधा के करीब है। चूंकि दोलित्र ऐंटेना का नुकसान यह है कि वे केवल एक मौलिक आवृत्ति पर दोलित्र विशुद्ध रूप से प्रतिरोधी फीडपॉइंट प्रतिबाधा प्राप्त करते हैं, और संभवतः इसके कुछ [[ लयबद्ध |लयबद्ध]]। इसलिए दोलित्र ऐंटेना क्यू कारक के आधार पर सीमित बैंडविड्थ के भीतर ही अपना अच्छा प्रदर्शन {{mvar|Q}} प्रतिध्वनि पर प्राप्त कर सकते हैं।


उदाहरण के लिए, एक अर्ध-तरंग द्विध्रुवीय में दो ऐसे तत्व होते हैं (एक संतुलित संचरण लाइन के प्रत्येक चालकता से जुड़ा होता है) लगभग एक चौथाई तरंगदैर्ध्य लंबा होता है। चालकताों के व्यास के आधार पर, इस लंबाई से एक छोटा विचलन द्विध्रुवीय एंटीना # विभिन्न लंबाई के द्विध्रुवों की प्रतिबाधा उस बिंदु तक पहुंचने के लिए जहां एंटीना वर्तमान और (छोटा) फीडपॉइंट वोल्टेज बिल्कुल चरण में है। फिर ऐन्टेना एक विशुद्ध रूप से प्रतिरोधक प्रतिबाधा प्रस्तुत करता है, और आदर्श रूप से एक उपलब्ध  संचारलाइन की विशेषता प्रतिबाधा के करीब है। हालांकि अनुनादी ऐंटेना का नुकसान यह है कि वे केवल एक मौलिक आवृत्ति पर अनुनाद (विशुद्ध रूप से प्रतिरोधी फीडपॉइंट प्रतिबाधा) प्राप्त करते हैं, और शायद इसके कुछ [[ लयबद्ध ]]्स। इसलिए अनुनादी ऐंटेना क्यू कारक के आधार पर सीमित बैंडविड्थ के भीतर ही अपना अच्छा प्रदर्शन प्राप्त कर सकते हैं|{{mvar|Q}}प्रतिध्वनि पर।
== एंटीना के बीच पारस्परिक प्रतिबाधा और बातचीत ==
एक संचालित एंटीना तत्व से निकलने वाले विद्युत और चुंबकीय क्षेत्र सामान्यतः आस-पास के एंटीना, तत्वों या अन्य चालकताों में वोल्टेज और धाराओं को प्रभावित करते हैं। यह विशेष रूप से सच है जब चालकता एक ही आवृत्ति पर दोलित्र तत्व (लंबाई में आधा-तरंग दैर्ध्य ) होता है, तो चालकता एक ही सक्रिय या निष्क्रिय एंटीना सरणी का हिस्सा होते हैं।


== एंटेना के बीच पारस्परिक प्रतिबाधा और बातचीत ==
क्योंकि प्रभावित चालकता निकट-क्षेत्र में हैं, उदाहरण के लिए [[ शुक्र संचरण समीकरण |शुक्र संचरण समीकरण]] के अनुसार केवल दो एंटीना को संचारण और सिग्नल प्राप्त करने के रूप में नहीं माना जा सकता है, लेकिन यागी-उडा एंटीना पारस्परिक प्रतिबाधा मैट्रिक्स की गणना करनी चाहिए जो दोनों को ध्यान में रखता है वोल्टेज और धाराएं (विद्युत और चुंबकीय दोनों क्षेत्रों के माध्यम से बातचीत)। इस प्रकार एक विशिष्ट ज्यामिति के लिए गणना पारस्परिक बाधाओं का उपयोग करके की गयी है, कोई यागी-उड़ा एंटीना के विकिरण पैटर्न या एंटीना सरणी के प्रत्येक तत्व के लिए धाराओं और वोल्टेज को हल कर सकता है। इस तरह के विश्लेषण से ग्राउंड प्लेन या कॉर्नर रिफ्लेक्टर एंटीना द्वारा रेडियो तरंगों के परावर्तन और इसके आसपास के एंटीना के प्रतिबाधा पर उनके प्रभाव का विस्तार से वर्णन किया जा सकता है।
एक संचालित एंटीना तत्व से निकलने वाले विद्युत और चुंबकीय क्षेत्र आम तौर पर आस-पास के एंटेना, एंटीना तत्वों या अन्य चालकताों में वोल्टेज और धाराओं को प्रभावित करते हैं। यह विशेष रूप से सच है जब प्रभावित चालकता एक ही आवृत्ति पर एक गुंजयमान तत्व (लंबाई में आधा-तरंग दैर्ध्य के कई) होता है, जैसा कि उस मामले में होता है जहां चालकता एक ही सक्रिय या निष्क्रिय एंटीना सरणी का हिस्सा होते हैं। क्योंकि प्रभावित चालकता निकट-क्षेत्र में हैं, उदाहरण के लिए [[ शुक्र संचरण समीकरण ]] के अनुसार केवल दो एंटेना को संचारणऔर सिग्नल प्राप्त करने के रूप में नहीं माना जा सकता है, लेकिन यागी-उडा एंटीना # पारस्परिक प्रतिबाधा मैट्रिक्स की गणना करनी चाहिए जो दोनों को ध्यान में रखता है वोल्टेज और धाराएं (विद्युत और चुंबकीय दोनों क्षेत्रों के माध्यम से बातचीत)। इस प्रकार एक विशिष्ट ज्यामिति के लिए गणना की गई पारस्परिक बाधाओं का उपयोग करके, कोई यागी-उड़ा एंटीना के विकिरण पैटर्न या एंटीना सरणी के प्रत्येक तत्व के लिए धाराओं और वोल्टेज को हल कर सकता है। इस तरह के विश्लेषण से ग्राउंड प्लेन या कॉर्नर रिफ्लेक्टर एंटेना द्वारा रेडियो तरंगों के परावर्तन और इसके आसपास के एंटीना के प्रतिबाधा (और विकिरण पैटर्न) पर उनके प्रभाव का विस्तार से वर्णन किया जा सकता है।


अक्सर ऐसी निकट-क्षेत्रीय अंतःक्रियाएं अवांछित और हानिकारक होती हैं। एक संचारणएंटेना के पास यादृच्छिक धातु की वस्तुओं में धाराएं अक्सर खराब चालकताों में होती हैं, जिससे एंटीना की विशेषताओं को अप्रत्याशित रूप से बदलने के अलावा आरएफ शक्ति का नुकसान होता है। सावधानीपूर्वक डिजाइन करके, आस-पास के चालकताों के बीच विद्युत संपर्क को कम करना संभव है। उदाहरण के लिए, टर्नस्टाइल ऐन्टेना की रचना करने वाले दो द्विध्रुवों के बीच 90 डिग्री का कोण इनके बीच कोई अंतःक्रिया नहीं करता है, जिससे इन्हें स्वतंत्र रूप से संचालित किया जा सकता है (लेकिन वास्तव में टर्नस्टाइल एंटीना डिज़ाइन में चतुर्भुज चरणों में समान संकेत के साथ)।
प्राय: इस तरह के निकट-क्षेत्रीय अंतःक्रियाएँ अवांछित और हानिकारक होती हैं। एक ट्रांसमिटिंग एंटीना के पास यादृच्छिक धातु की वस्तुओं में धारा प्रायः खराब चालकता में होता है, जिससे एंटीना की विशेषताओं में अप्रत्याशित रूप से परिवर्तन के अतिरिक्त आरएफ शक्ति का नुकसान होता है। और सावधान डिजाइन द्वारा, आस-पास के चालकताों के बीच विद्युत संपर्क को कम करना संभव बनता है। उदाहरण के लिए, घूमने वाला दरवाज़ा ऐन्टेना बनाने वाले दो द्विध्रुवों के बीच 90 डिग्री का कोण इन दोनों के बीच कोई अंतःक्रिया सुनिश्चित नहीं करता है, जिससे इन्हें स्वतंत्र रूप से संचालित किया जा सकता है लेकिन वास्तव में घूमने वाले ऐन्टेना डिज़ाइन में द्विध्रुव चरणों में समान संकेत के साथ होता है।


== एंटीना प्रकार ==
== एंटीना प्रकार ==
{{main|Antenna types}}
{{main|एंटीना प्रकार}}
एंटेना को ऑपरेटिंग सिद्धांतों या उनके आवेदन द्वारा वर्गीकृत किया जा सकता है। विभिन्न प्राधिकरणों ने एंटेना को संकीर्ण या व्यापक श्रेणियों में रखा। आम तौर पर इनमें शामिल हैं
 
एंटीना को ऑपरेटिंग सिद्धांतों या उनके आवेदन द्वारा वर्गीकृत किया जा सकता है। विभिन्न प्राधिकरणों ने एंटीना को संकीर्ण या व्यापक श्रेणियों में रखा। सामान्यतः इनमें सम्मिलित हैं
 
{{div col begin|colwidth=15em}}
{{div col begin|colwidth=15em}}
* द्विध्रुवीय एंटीना और एकध्रुव एंटेना
* द्विध्रुवीय एंटीना और एकध्रुव एंटीना
* ऐरे एंटेना
* ऐरे एंटीना
* लूप एंटेना
* लूप एंटीना
* परवलयिक एंटीना
* परवलयिक एंटीना
* [[ यात्रा तरंग एंटीना ]]
* [[ यात्रा तरंग एंटीना ]]
{{div col end}}
इन ऐन्टेना प्रकारों और अन्य को संक्षिप्त विवरण लेख, ऐन्टेना प्रकारों के साथ-साथ ऊपर दी गई सूची में प्रत्येक लिंक किए गए लेखों में और उन लेखों में और भी अधिक विवरण में संक्षेपित किया गया है जिनसे वे लिंक करते हैं।
इन ऐन्टेना प्रकारों और अन्य को संक्षिप्त विवरण लेख, ऐन्टेना प्रकारों के साथ-साथ ऊपर दी गई सूची में प्रत्येक लिंक किए गए लेखों में और उन लेखों में और भी अधिक विवरण में संक्षेपित किया गया है जिनसे वे लिंक करते हैं।


Line 319: Line 324:
* [[ व्यक्तिगत आरएफ सुरक्षा मॉनिटर ]]
* [[ व्यक्तिगत आरएफ सुरक्षा मॉनिटर ]]
{{Div col end}}
{{Div col end}}
==फुटनोट==
==फुटनोट==
{{notelist|1}}
{{notelist|1}}


 
संदर्भ
==संदर्भ==
{{reflist|25em}}
{{reflist|25em}}


Line 334: Line 336:
{{Telecommunications}}
{{Telecommunications}}


{{Authority control}}
{{DEFAULTSORT:Antenna (Radio)}}


{{DEFAULTSORT:Antenna (Radio)}}[[Category: एंटेना (रेडियो)| ]]
[[Category: रेडियो इलेक्ट्रॉनिक्स]]




==
==


 
[[Category:All accuracy disputes|Antenna (Radio)]]
[[Category: Machine Translated Page]]
[[Category:All articles needing additional references|Antenna (Radio)]]
[[Category:Created On 05/09/2022]]
[[Category:All articles with unsourced statements|Antenna (Radio)]]
[[Category:Articles needing additional references from January 2014|Antenna (Radio)]]
[[Category:Articles with disputed statements from June 2016|Antenna (Radio)]]
[[Category:Articles with disputed statements from November 2018|Antenna (Radio)]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Antenna (Radio)]]
[[Category:Articles with short description|Antenna (Radio)]]
[[Category:Articles with unsourced statements from June 2011|Antenna (Radio)]]
[[Category:Articles with unsourced statements from November 2020|Antenna (Radio)]]
[[Category:CS1]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:CS1 русский-language sources (ru)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates|Antenna (Radio)]]
[[Category:Created On 05/09/2022|Antenna (Radio)]]
[[Category:Exclude in print|Antenna (Radio)]]
[[Category:Infobox templates|electronic component]]
[[Category:Interwiki category linking templates|Antenna (Radio)]]
[[Category:Interwiki link templates|Antenna (Radio)]]
[[Category:Lua-based templates|Antenna (Radio)]]
[[Category:Machine Translated Page|Antenna (Radio)]]
[[Category:Missing redirects|Antenna (Radio)]]
[[Category:Multi-column templates|Antenna (Radio)]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Antenna (Radio)]]
[[Category:Pages using div col with small parameter|Antenna (Radio)]]
[[Category:Pages with empty portal template|Antenna (Radio)]]
[[Category:Pages with script errors|Antenna (Radio)]]
[[Category:Portal-inline template with redlinked portals|Antenna (Radio)]]
[[Category:Portal templates with redlinked portals|Antenna (Radio)]]
[[Category:Short description with empty Wikidata description|Antenna (Radio)]]
[[Category:Sidebars with styles needing conversion|Antenna (Radio)]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Antenna (Radio)]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats|Antenna (Radio)]]
[[Category:Templates that add a tracking category|Antenna (Radio)]]
[[Category:Templates that are not mobile friendly|Antenna (Radio)]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Antenna (Radio)]]
[[Category:Templates using under-protected Lua modules|Antenna (Radio)]]
[[Category:Wikimedia Commons templates|Antenna (Radio)]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates|Antenna (Radio)]]
[[Category:एंटेना (रेडियो)| ]]
[[Category:रेडियो इलेक्ट्रॉनिक्स|Antenna (Radio)]]

Latest revision as of 14:37, 29 November 2022

Antenna
Antenna.jpg
A stack of "fishbone" and Yagi–Uda television antennas
Working principleElectromagnetic radiation
आविष्कार कियाHeinrich Hertz
First production 1886
Electronic symbol
IEEE 315 Fundamental Items Symbols (55).svg IEEE 315 Fundamental Items Symbols (56).svg
विद्युत क्षेत्र रेखाओं को दिखाते हुए रेडियो तरंगों को विकीर्ण करने वाले अर्ध-तरंग द्विध्रुवीय एंटीना का एनिमेशन। केंद्र में एंटीना दो ऊर्ध्वाधर धातु की छड़ें हैं जो एक रेडियो ट्रांसमीटर से जुड़ी हैं (दिखाया नहीं गया)। ट्रांसमीटर छड़ों पर एक प्रत्यावर्ती धारा लागू करता है, जो उन पर बारी-बारी से धनात्मक आवेश (+) और ऋणात्मक आवेश (-) चार्ज करता है। विद्युत क्षेत्र के लूप ऐन्टेना को छोड़ते हैं और प्रकाश की गति से दूर जाते हैं; ये रेडियो तरंगें हैं। इस एनिमेशन में एक्शन को काफी धीमा दिखाया गया है।

रेडियो अभियान्त्रिकी में, एंटीना या एरियल अंतरिक्ष के माध्यम से फैलने वाली रेडियो तरंगों और धातु में चलने वाली विद्युत धाराओं के बीच इंटरफ़ेस द्वारा जुड़ा होता है, जिसका उपयोग ट्रांसमीटर या रिसीवर के साथ किया जाता है।।[1] दूरसंचार में, एक रेडियो ट्रांसमीटर ऐन्टेना के टर्मिनलों को एक विद्युत प्रवाह की आपूर्ति प्रदान करता है, और एंटीना विद्युत चुम्बकीय तरंगों के रूप में धारा से ऊर्जा को विकीर्ण करता है। रेडियो में, एक एंटीना अपने टर्मिनलों पर विद्युत प्रवाह उत्पन्न करने के लिए रेडियो तरंग की कुछ शक्ति को रोकता है, जिसे एक रिसीवर पर प्रवर्धित करने के लिए लागू किया जाता है। एंटीना सभी रेडियो उपकरणों के आवश्यक घटक हैं।[2]

एक एंटीना चालकता संचालित तत्व की एक सरणी है, जो विद्युत रूप से ट्रांसमीटर से जुड़ा होता है। एंटीना को सभी क्षैतिज दिशाओं में समान रूप से सर्वदिशात्मक रूप में रेडियो तरंगों को प्रसारित और प्राप्त करने के लिए डिज़ाइन किया जाता है, या अधिमानतः एक विशेष दिशात्मक एंटीना , या उच्च-लाभ, या "बीम" एंटीना में ऐसे घटक सम्मिलित हो सकते हैं जो ट्रांसमीटर, परवलयिक एंटीना, हॉर्न एंटीना या निष्क्रिय रेडिएटर से जुड़े नहीं होते हैं, जो रेडियो तरंगों को बीम या अन्य वांछित विकिरण पैटर्न में निर्देशित करने का काम करते हैं। संचारण करते समय मजबूत प्रत्यक्षता और अच्छी दक्षता ऐसे एंटीना के साथ प्राप्त करना कठिन होता है जो आधे तरंगदैर्ध्य से बहुत छोटे होते हैं।

पहला एंटीना 1888 में जर्मन भौतिक विज्ञानी हेनरिक हर्ट्ज द्वारा जेम्स क्लर्क मैक्सवेल के विद्युत चुम्बकीय सिद्धांत द्वारा तरंगों के अस्तित्व को सिद्ध करने के लिए अपने अग्रणी प्रयोगों के लिए बनाया गया था। हर्ट्ज़ ने संचारण और रिसीविंग दोनों के लिए परवलयिक परावर्तकों के केंद्र बिंदु पर द्विध्रुवीय एंटीना रखा था। 1895 से शुरू होकर, गुग्लील्मो मार्कोनी ने लंबी दूरी तय की और वायरलेस टेलीग्राफी के लिए व्यावहारिक एंटीना का विकास शुरू किया, जिसके लिए उन्हें नोबेल पुरस्कार मिला। [4]

शब्दावली

एंटीना के लिए इलेक्ट्रॉनिक प्रतीक

एंटीना और एरियल शब्द का परस्पर उपयोग किया जाता है। कभी-कभी समकक्ष शब्द "एरियल" का प्रयोग विशेष रूप से एक ऊंचा क्षैतिज तार एंटीना के लिए किया जाता है। वायरलेस उपकरण के सापेक्ष एंटीना शब्द की उत्पत्ति का श्रेय इतालवी रेडियो अग्रणी गुग्लिल्मो मार्कोनी को दिया जाता है। 1895 की गर्मियों में, मार्कोनी ने बोलोग्ना के पास अपने पिता की संपत्ति पर अपने वायरलेस सिस्टम का परीक्षण शुरू किया और जल्द ही एक पोल से निलंबित लंबे तार वाले एरियल के साथ प्रयोग करना शुरू कर दिया।[2]

इटालियन भाषा में एक टेंट पोल को एल 'एंटीना सेंट्रल के रूप में जाना जाता है, और तार वाले पोल को केवल एल' एंटीना कहा जाता है। उस समय तक वायरलेस विकिरण संचारण और अभिग्रहण तत्व को "टर्मिनल" के रूप में जाना जाता था। अपनी प्रमुखता के कारण, मार्कोनी द्वारा एंटीना शब्द का उपयोग वायरलेस शोधकर्ताओं, उत्साही और आम जनता के बीच फैल गया।[3][4][5]

एंटीना वास्तविकता में विद्युतवाही घटकों आरएफ के अतिरिक्त समर्थन संरचना, संलग्नक आदि सहित पूरी असेंबली को व्यापक रूप से संदर्भित कर सकता है। एंटीना में न केवल निष्क्रिय धातु प्राप्त करने वाले तत्व सम्मिलित होते हैं, विशेष रूप से सूक्ष्म तरंग आवृत्तियों पर, बल्कि एकीकृत पूर्व प्रवर्धक या मिश्रण मे भी सम्मिलित होते है।

अवलोकन

अटाकामा लार्ज मिलीमीटर/सबमिलीमीटर एरे।[6]

किसी भी रेडियो ट्रांसमीटर द्वारा विद्युत चुम्बकीय क्षेत्र के विद्युत संयोजन को जोड़ने के लिए एंटीना की आवश्यकता होती है।[7] रेडियो तरंगें विद्युत चुम्बकीय तरंगें हैं जो प्रकाश की गति से हवा के माध्यम से या अंतरिक्ष के माध्यम से संकेतों को बिना किसी संचरण हानि के पहुचाती हैं।

एक ऑटोमोबाइल का व्हिप एंटीना, एक सर्वदिशात्मक एंटीना का एक सामान्य उदाहरण।

एंटीना को सर्वदिशात्मक रूप में वर्गीकृत किया जाता है, जहां सभी क्षैतिज दिशाओं में लगभग समान रूप से ऊर्जा विकीर्ण करता है, या दिशात्मक होता है, जहां रेडियो तरंगें किसी दिशाओं में केंद्रित होती हैं। एक बीम एंटीना एकदिशीय होती है, जिसे दूसरे प्रक्षेपण स्थल की अधिकतम प्रतिक्रिया के लिए तैयार किया जाता है, जबकि कई अन्य एंटीना का उद्देश्य विभिन्न दिशाओं में स्टेशनों को समायोजित करना है, चूंकि एंटीना पारस्परिकता विद्युत चुंबकत्व का पालन करते हैं, वही विकिरण आकृति प्रसारण के साथ-साथ रेडियो तरंगों मे भी लागू होते है। एक काल्पनिक एंटीना जो सभी ऊर्ध्वाधर और सभी क्षैतिज कोणों में समान रूप से विकिरण करता है, एक समदैशिक विकिरक कहलाता है, चूंकि ये व्यवहार में उपलब्ध नहीं हो सकते हैं और न ही वे विशेष रूप से वांछित होंते है। अधिकांश स्थलीय संचार, क्षैतिज दिशा के पक्ष में आकाश या जमीन की ओर विकिरण को कम करता है, एक द्विध्रुवीय एंटीना उन्मुख क्षैतिज रूप से परिचालक की दिशा में कोई ऊर्जा नहीं भेजता है - इसे नल एंटीना कहा जाता है - लेकिन अधिकांश अन्य दिशाओं में प्रयोग करने योग्य होते है। ऐसे कई द्विध्रुवीय तत्वों को एक क्षैतिज दिशा के पक्ष में यागी-उड़ा जैसे एंटीना सरणी में जोड़ा जा सकता है, इस प्रकार इसे बीम एंटीना कहा जाता है।

द्विध्रुवीय एंटीना, जो कि अधिकांश एंटीना डिजाइनों का आधार है, इसके दो टर्मिनलों पर समान लेकिन विपरीत वोल्टेज और धाराएं लागू होती हैं। लंबवत एंटीना एकध्रुव एंटीना है, जो की जमीन या कोई बड़ी प्रवाहकीय सतह एक द्विध्रुवीय परिचालक की भूमिका निभाती है। चूंकि एकध्रुव एंटीना एक प्रवाहकीय सतह पर निर्भर रहते हैं, इसलिए उन्हें पृथ्वी की सतह पर अनुमान लगाने के लिए उन्हें समतल ज़मीन के साथ लगाया जाता है।

विद्युत क्षेत्र का आरेख ('blue') और चुंबकीय क्षेत्र ('red') जो एक द्विध्रुवीय एंटीना द्वारा विकिरणित होते हैं ( 'ब्लैक' रॉड्स) संचारके दौरान।

अधिक जटिल एंटीना, इसकी प्रत्यक्षता को बढ़ाते हैं। एंटीना संरचना में अतिरिक्त तत्व, जिन्हें सीधे ट्रांसमीटर से जोड़ने की आवश्यकता नहीं होती है, ये इसकी दिशात्मकता को बढ़ाते हैं। ऐन्टेना लब्धि अंतरिक्ष के एक विशेष ठोस कोण में विकिरणित शक्ति की एकाग्रता का वर्णन करता है। प्रवर्धक "लाभ" के साथ तुलना करके शक्ति में शुद्ध वृद्धि करता है, इसके विपरीत, एंटीना लाभ के लिए, वांछित दिशा में बढ़ी हुई शक्ति अवांछित दिशाओं में कम की गई शक्ति की कीमत पर होती है। प्रवर्धको के विपरीत, एंटीना विद्युत रूप से "निष्क्रिय विकिरक" उपकरण होते हैं जो कुल शक्ति का संरक्षण करते हैं, और बिजली स्रोत ट्रांसमीटर से वितरित कुल शक्ति में कोई वृद्धि नहीं होती है, केवल उस निश्चित कुल का बेहतर वितरण होता है।

एक चरणबद्ध सरणी में दो या दो से अधिक सरल एंटीना होते हैं जो विद्युत नेटवर्क के माध्यम से एक साथ जुड़े होते हैं। इसमें अधिकांशतः एक निश्चित दूरी के साथ कई समानांतर द्विध्रुवीय एंटीना सम्मिलित होते हैं। नेटवर्क द्वारा पेश किए गए सापेक्ष चरण के आधार पर, द्विध्रुवीय एंटेना का एक ही संयोजन "ब्रॉडसाइड सरणी" या "अंत-अग्नि सरणी" के रूप में काम कर सकता है। एंटीना सरणियाँ किसी भी मूल (सर्वदिशात्मक या कमजोर दिशात्मक) एंटीना प्रकार को नियोजित कर सकती हैं, जैसे कि द्विध्रुवीय, लूप या स्लॉट एंटेना। ये तत्व प्रायः समान होते हैं।

लॉग आवर्ती ऐन्टेना और आवृत्ति अनाश्रित ऐन्टेना, बैंडविथ की एक विस्तृत श्रृंखला पर परिचालन करने के लिए स्व-समानता को नियोजित करते हैं। सबसे परिचित उदाहरण लॉग-आवर्ती द्विध्रुव सरणी है, जिसे एक एंडफायर सरणी में प्रगतिशील लंबाई के साथ जुड़े हुए द्विध्रुव तत्वों की संख्या (विशिष्ट रूप से 10 से 20) के रूप में देखा जा सकता है, जो इसे दिशात्मक बनाता है; यह विशेष रूप से टेलीविजन अधिग्रहण के लिए रूफटॉप एंटीना के रूप में उपयोग करता है। दूसरी ओर, एक यागी-उड़ा एंटीना, कुछ हद तक समान दिखने के साथ विद्युत संयोजन के साथ केवल एक द्विध्रुवीय तत्व होता है; अन्य परजीवी तत्व उच्च दिशात्मक ऐन्टेना प्राप्त करने के लिए विद्युत चुम्बकीय क्षेत्र के साथ कप्यूटर के मध्य डाटा भेजने की एक सीमा के साथ कार्य करते हैं ।

परवलयिक परावर्तक या हॉर्न एंटीना जैसे द्वारक ऐन्टेना का उपयोग करके और भी अधिक दिशात्मकता प्राप्त की जा सकती है। चूंकि ऐन्टेना में उच्च दिशात्मकता तरंग दैर्ध्य की तुलना में इसके बड़े होने पर निर्भर करती है, उच्च दिशात्मक एंटेना (इस प्रकार उच्च एंटीना लाभ के साथ) उच्च आवृत्तियों (यूएचएफ और ऊपर) पर अधिक व्यावहारिक हो जाते हैं।

कम आवृत्तियों पर जैसे (एएम) प्रसारण, दिशात्मकता प्राप्त करने के लिए ऊर्ध्वाधर टावरों की सरणियों का उपयोग किया जाता है[8] अधिग्रहण के लिए एक लंबे बैवरेज ऐंटिना में महत्वपूर्ण दिशात्मकता हो सकती है। गैर दिशात्मक पोर्टेबल उपयोग के लिए, एक छोटा ऊर्ध्वाधर एंटीना या छोटा चुंबकीय लूप एंटीना अच्छी तरह से काम करता है, जिसमें मुख्य डिजाइन चुनौती प्रतिबाधा मिलान की होती है। एक लंबवत एंटीना के साथ एंटीना के आधार पर एक लोडिंग कॉइल को प्रतिबाधा के प्रतिक्रियाशील घटक को रद्द करने के लिए नियोजित किया जा सकता है; इस उद्देश्य के लिए छोटे लूप एंटेना को समानांतर कैपेसिटर के साथ ट्यून किया जाता है।

एक एंटीना लीड-इन संचरण लाइन , या फीड लाइन है, जो एंटीना को ट्रांसमीटर से जोड़ती है। "एंटीना फ़ीड" एंटीना को ट्रांसमीटर से जोड़ने वाले सभी घटकों को संदर्भित कर सकता है, जैसे संचारलाइन के अतिरिक्त एक प्रतिबाधा मिलान नेटवर्क के साथ "एपर्चर एंटीना" में, जैसे कि एक परवलयिक डिश, "फ़ीड" एक बुनियादी विकिरण वाले एंटीना को भी संदर्भित कर सकता है, जो प्रतिबिंबित तत्वों की पूरी प्रणाली में अंतः स्थापित होता है जिसे उस एंटीना प्रणाली में एक सक्रिय तत्व माना जा सकता है। एक प्रवाहकीय संचारलाइन के स्थान पर एक सूक्ष्म तरंग एंटीना को सीधे वेवगाइड से भी फीड किया जा सकता है।

एक एंटीना प्रतिरूप, या या ग्राउंड प्लेन, प्रवाहकीय सामग्री की एक संरचना है, जो जमीन के लिए सुधार या स्थानापन्न करती है। एक मोनोपोल एंटीना में, यह प्राकृतिक जमीन के कार्य में सहायता करता है, विशेष रूप से जहां प्राकृतिक जमीन की विशेषताओं की विविधताएं या सीमाएं इसके उचित कार्य में हस्तक्षेप करती हैं। ऐसी संरचना सामान्यतः एक असंतुलित ट्रांसमिशन लाइन जैसे समाक्षीय केबल के रिटर्न कनेक्शन से जुड़ी होती है।

कुछ द्वारक ऐन्टेना में एक विद्युत चुम्बकीय तरंग अपवर्तक एक घटक है जो इसके आकार और स्थिति के कारण विद्युत चुम्बकीय तरंग के कुछ हिस्सों को चुनिंदा रूप से अग्रिम करने के लिए कार्य करता है। दूसरी तरफ के सापेक्ष तरंग की स्थानिक विशेषताओं को बदल देता है। उदाहरण के लिए, यह तरंग को फोकस में ला सकता है या अन्य तरीकों से तरंगाग्र को बदल सकता है, यह एक ऑप्टिकल लेंस का रेडियो समकक्ष है जो सामान्यतः एंटीना सिस्टम की सक्रियता को अधिकतम करने के लिए होता है।

एक युग्मन नेटवर्क एक निष्क्रिय नेटवर्क है जो सामान्यतः पर अधिष्ठापन और कैपेसिटिव परिपथ तत्वों का एक संयोजन है जो एंटीना और ट्रांसमीटर के बीच प्रतिबाधा मिलान के लिए उपयोग किया जाता है। इसका उपयोग संचारलाइन के स्थायी तरंग अनुपात को कम करके, और इसके इष्टतम संचालन के लिए आवश्यक मानक प्रतिरोधक प्रतिबाधा के साथ ट्रांसमीटर को प्रस्तुत करने के लिए फ़ीड लाइन पर नुकसान को कम करने के लिए किया जाता है। फ़ीड बिंदु स्थानों का चयन किया जाता है, और एंटीना ट्यूनर घटकों के समान विद्युत रूप से एंटीना तत्वों को प्रतिबाधा मिलान में सुधार के लिए एंटीना संरचना में ही सम्मिलित किया जाता है।

पारस्परिकता

एंटीना की यह मूलभूत संपत्ति है जो कि अगले खंड में वर्णित एंटीना की विद्युत विशेषताओं, जैसे लाभ, विकिरण पैटर्न, प्रतिबाधा, बैंडविड्थ, दोलित्र आवृत्ति और ध्रुवीकरण, के समान हैं चाहे एंटीना संचारण कर रहा हो या प्राप्त कर रहा हो। [11] [12।[9][10] उदाहरण के लिए, अधिग्रहण के लिए उपयोग किए जाने पर एंटीना का "रिसीविंग पैटर्न" (दिशा के कार्य के रूप में संवेदनशीलता) ऐन्टेना के विकिरण पैटर्न के समान होता है जब यह संचालित होता है और रेडिएटर के रूप में कार्य करता है। यह वैद्युत चुंबकिकी के पारस्परिकता प्रमेय का परिणाम है।।[10] इसलिए, एंटीना गुणों की चर्चा में सामान्यतः शब्दावली प्राप्त करने और प्रसारित करने के बीच कोई भेद नहीं किया जाता है, और एंटीना को संचारण या प्राप्त करने के रूप में देखा जा सकता है, जो भी अधिक सुविधाजनक होता।

उपरोक्त पारस्परिकता संपत्ति के लिए एक आवश्यक शर्त यह है कि ऐन्टेना और संचार माध्यम में सामग्री रैखिक और पारस्परिक होती हैं। पारस्परिक या द्विपक्षीय का अर्थ है कि सामग्री की एक दिशा में विद्युत प्रवाह या चुंबकीय क्षेत्र के लिए समान प्रतिक्रिया होती है, जैसा कि विपरीत दिशा में क्षेत्र या धारा के लिए होता है।। एंटीना में उपयोग की जाने वाली अधिकांश सामग्रियां इन शर्तों को पूरा करती हैं, लेकिन कुछ सूक्ष्म तरंग एंटीना उच्च-तकनीकी घटकों का उपयोग करते हैं जैसे कि पृथक्कारक और सर्क्युलेटर्स, जो फेराइट जैसी गैर-पारस्परिक सामग्रियों से बने होते हैं।[9][10] इनका उपयोग एंटीना को संचारण की तुलना में प्राप्त करने पर एक अलग व्यवहार देने के लिए किया जा सकता है,[9] जो राडार जैसे अनुप्रयोगों में उपयोगी हो सकता है।

दोलित्र ऐंटेना

अधिकांश एंटीना डिजाइन दोलित्र सिद्धांत पर आधारित होते हैं। यह इलेक्ट्रॉनों के व्यवहार पर निर्भर करता है, जो उन सतहों को प्रतिबिंबित करते है जहां परावैद्युत निरंतर परिवर्तन होता है, जिस तरह से प्रकाशीय गुणों में परिवर्तन होने पर प्रकाश प्रतिबिंबित होता है। इन डिजाइनों में, परावर्तक सतह चालकता के अंत मे जाती है, सामान्यतः एक पतली धातु के तार या रॉड, जो सरलतम स्थिति में एक छोर पर एक फ़ीड बिंदु होता है जहां यह एक ट्रांसमिशन लाइन से जुड़ा होता है। चालकता, या तत्व, वांछित संकेत के विद्युत क्षेत्र के साथ गठबंधन किया जाता है, सामान्य रूप से इसका अर्थ है कि यह एंटीना से स्रोत (या प्रसारण एंटीना के स्थिति में रिसीवर) की रेखा से लंबवत है।

रेडियो सिग्नल का विद्युत घटक चालकता में वोल्टेज को प्रेरित करता है। यह एक विद्युत प्रवाह को संकेत के तात्कालिक क्षेत्र की दिशा में बहने के कारण बनता है। जब परिणामी धारा चालकता के अंत तक पहुँचती है, तो यह परावर्तित हो जाती है, जो कि चरण में 180-डिग्री परिवर्तन के बराबर है। यदि चालकता 14 लंबे तरंग दैर्ध्य है , फ़ीड बिंदु से धारा 90 डिग्री चरण परिवर्तन से गुजरेगी तब तक यह चालकता के अंत तक नहीं पहुंचती है, 180 डिग्री से परावर्तित होती है, और फिर वापस यात्रा करते समय एक और 90 डिग्री मे परावर्तित होती है। इसका मतलब है कि इसमें कुल 360 डिग्री चरण परिवर्तन हुआ है, इसे मूल सिग्नल पर वापस कर दिया गया है। इस प्रकार तत्व में धारा उस पल में स्रोत से बनाए जा रहे धारा में जुड़ जाता है। यह प्रक्रिया चालकता में एक खड़ी लहर बनाती है, जिसमें फीड पर अधिकतम धारा होता है।[11]

सामान्य अर्ध-तरंग द्विध्रुव संभवतः सबसे व्यापक रूप से उपयोग किया जाने वाला ऐन्टेना डिज़ाइन है। इसमें दो 1/4 तरंग दैर्ध्य तत्व होते हैं जो अंत-से-अंत तक व्यवस्थित होते हैं, और अनिवार्य रूप से एक ही अक्ष के साथ स्थित होते हैं, प्रत्येक एक दो-चालकता संचरण तार के एक तरफ खिलाते हैं। दो तत्वों की भौतिक व्यवस्था उन्हें 180 डिग्री चरण से बाहर रखती है, जिसका अर्थ है कि किसी भी क्षण में एक तत्व संचरण लाइन में धारा चला रहा है जबकि दूसरा इसे बाहर खींच रहा है। मोनोपोल ऐन्टेना अनिवार्य रूप से अर्ध-तरंग द्विध्रुव का एक आधा हिस्सा है, एक एकल 1/4 तरंग दैर्ध्य तत्व है जो दूसरी तरफ जमीन या समकक्ष ग्राउंड प्लेन (या काउंटरपोइज़) से जुड़ा है। मोनोपोल, जो द्विध्रुव के आधे आकार के होते हैं, लंबी-तरंग दैर्ध्य रेडियो संकेतों के लिए आम हैं जहां एक द्विध्रुव अव्यावहारिक रूप से बड़ा होगा। एक अन्य सामान्य डिज़ाइन मुड़ा हुआ द्विध्रुव है जिसमें दो या अधिक अर्ध-तरंग द्विध्रुव होते हैं जो अगल-बगल रखे जाते हैं और उनके सिरों पर जुड़े होते हैं लेकिन इनमें से केवल एक ही संचालित होता है।

डिजाइन ऑपरेटिंग आवृत्ति, एफओ, और एंटीना पर इस वांछित पैटर्न के साथ स्थायी तरंग रूपों को सामान्य रूप से इस आकार के लिए डिज़ाइन किया गया है। चूंकि, उस तत्व को 3 एफओ (जिसकी तरंग दैर्ध्य 1⁄3एफओ की है) के साथ भी एक स्थायी तरंग पैटर्न बन जाता है। इस प्रकार, एंटीना तत्व भी दोलित्र होता है जब इसकी लंबाई तरंग दैर्ध्य की 3⁄4 होती है। यह 1⁄4 तरंगदैर्घ्य के सभी विषम गुणजों के लिए सत्य है। यह एंटीना की लंबाई और फीड पॉइंट के संदर्भ में डिजाइन के कुछ लचीलेपन की अनुमति देता है। इस तरह से उपयोग किए जाने वाले एंटीना को सामंजस्यपूर्ण रूप से संचालित करने के लिए जाना जाता है।[12] दोलित्र ऐंटेना सामान्यतः पर एक रैखिक चालक, या ऐसे तत्वों की जोड़ी का उपयोग करते हैं, जिनमें से प्रत्येक लंबाई में तरंग दैर्ध्य का लगभग एक चौथाई होता है (चौथाई तरंग दैर्ध्य का एक विषम गुणक भी दोलित्र होगा)। एंटीना जिन्हें तरंग दैर्ध्य बलिदान दक्षता की तुलना में छोटा होना आवश्यक है और बहुत दिशात्मक नहीं हो सकते हैं। चूंकि तरंगदैर्घ्य उच्च आवृत्तियों (यूएचएफ, सूक्ष्म तरंग) पर इतने छोटे होते हैं कि छोटे भौतिक आकार प्राप्त करने के लिए प्रदर्शन बंद कर दिया जाता है, सामान्यतः पर इसकी आवश्यकता नहीं होती है।

अपनी दोलित्र आवृत्ति पर संचालित अर्ध तरंग द्विध्रुव पर खड़ी तरंगें। तरंगों को रंग की पट्टियों (red for thevoltage, V और blue for current, I) द्वारा ग्राफिक रूप से दिखाया जाता है, जिनकी चौड़ाई ऐन्टेना पर उस बिंदु पर मात्रा के आयाम के समानुपाती होता है।


धारा और वोल्टेज वितरण

क्वाटर-वेव तत्व चालकता के साथ सम्मलित स्टैंडिंग वेव के कारण एक श्रृंखला-दोलित्र विद्युत तत्व का अनुसरण करना हैं। दोलित्र आवृत्ति पर, अप्रगामी तरंग में फीड पर धारा पीक और विद्युत संचालन बिंदु न्यूनतम होता है। विद्युत शब्दों में, इसका मतलब है कि तत्व में न्यूनतम प्रतिक्रिया है, जो की न्यूनतम विद्युत संचालन के लिए अधिकतम धारा उत्पन्न करता है। यह आदर्श स्थिति है, क्योंकि यह न्यूनतम इनपुट के लिए अधिकतम उत्पादन करता है, उच्चतम संभावित दक्षता का उत्पादन करता है। एक आदर्श (दोष रहित) श्रृंखला-प्रतिध्वनि परिपथ के विपरीत, ऐन्टेना के विकिरण प्रतिरोध के साथ-साथ किसी भी वास्तविक विद्युत नुकसान के कारण एक परिमित प्रतिरोध (फीड-पॉइंट पर अपेक्षाकृत छोटे वोल्टेज के अनुरूप) रहता है।

याद रखें कि विद्युत गुणों में परिवर्तन होने पर धारा प्रतिबिंबित होगा। प्राप्त सिग्नल को संचरण लाइन में कुशलता से स्थानांतरित करने के लिए, यह महत्वपूर्ण है कि संचरण लाइन में ऐन्टेना पर इसके संपर्क बिंदु के समान प्रतिबाधा हो, अन्यथा कुछ संकेत ऐन्टेना के पीछे की ओर परिलक्षित होंगे; इसी तरह ट्रांसमीटर की सिग्नल पावर का हिस्सा ट्रांसमीटर पर वापस दिखाई देगा, अगर विद्युत प्रतिबाधा में कोई बदलाव होता है, जहां फीडलाइन एंटीना से जुड़ती है। यह प्रतिबाधा मिलान की अवधारणा, एंटीना और संचरण लाइन की समग्र प्रणाली के डिजाइन की ओर जाता है ताकि प्रतिबाधा जितना संभव हो उतना करीब हो, जिससे इन नुकसानों को कम किया जा सके। प्रतिबाधा मिलान एक परिपथ द्वारा पूरा किया जाता है जिसे एंटीना ट्यूनर या ट्रांसमीटर और एंटीना के बीच प्रतिबाधा मिलान नेटवर्क कहा जाता है। फीडलाइन और एंटीना के बीच प्रतिबाधा मैच को फीडलाइन पर स्टैंडिंग वेव रेशियो (एसडब्ल्यूआर) नामक एक पैरामीटर द्वारा मापा जाता है।

तरंगदैर्घ्य 1 मीटर वाले संकेतों के साथ काम करने के लिए डिज़ाइन किए गए है, आधे-लहर द्विध्रुवीय पर विचार करें, जिसका अर्थ है कि एंटीना टिप से टिप तक लगभग 50 सेमी होगा। यदि तत्व की लंबाई-से-व्यास अनुपात 1000 है, तो इसमें लगभग 63 ओम प्रतिरोधक की अंतर्निहित प्रतिबाधा होगी। उपयुक्त संचारवायर या बलून का उपयोग करके, हम न्यूनतम सिग्नल प्रतिबिंब सुनिश्चित करने के लिए उस प्रतिरोध से मेल खाते हैं। उस एंटीना को 1 एम्पीयर के धारा के साथ फीड करने के लिए 63 वोल्ट की आवश्यकता होगी, और एंटीना 63 वाट (नुकसान को अनदेखा करते हुए) रेडियो फ़्रीक्वेंसी पावर का विकिरण करेगा। अब उस स्थिति पर विचार करें जब एंटीना को 1.25 मीटर की तरंग दैर्ध्य के साथ एक संकेत दिया जाता है; इस स्थिति में सिग्नल से प्रेरित धारा सिग्नल के साथ एंटीना के फीडपॉइंट आउट-ऑफ-फेज पर पहुंच जाएगा, जिससे नेट धारा गिर जाएगा जबकि वोल्टेज वही रहेगा। विद्युत रूप से यह एक बहुत ही उच्च प्रतिबाधा प्रतीत होता है। एंटीना और संचारलाइन में अब समान प्रतिबाधा नहीं है, और सिग्नल आउटपुट को कम करते हुए वापस एंटीना में परिलक्षित होगा। इसे एंटीना और संचारलाइन के बीच मिलान प्रणाली को बदलकर संबोधित किया जा सकता है, लेकिन यह समाधान केवल नई डिज़ाइन आवृत्ति पर ही अच्छा काम करता है।

परिणाम यह है कि दोलित्र ऐंटेना कुशलता से संचारलाइन में सिग्नल को तभी फीड करेगा जब स्रोत सिग्नल की आवृत्ति एंटीना की डिज़ाइन आवृत्ति के करीब हो, या दोलित्र गुणकों में से एक हो। यह दोलित्र एंटीना डिज़ाइन को स्वाभाविक रूप से संकीर्ण-बैंड बनाता है: केवल दोलित्र के आसपास केंद्रित आवृत्तियों की एक छोटी श्रृंखला के लिए उपयोगी होता है।

विद्युत रूप से छोटे एंटीना

लोडिंग कॉइल के साथ विशिष्ट केंद्र-लोडेड मोबाइल सीबी एंटीना

एकध्रुव या द्विध्रुव एंटीना के उपयोग की अनुमति देने के लिए सरल प्रतिबाधा मिलान तकनीकों का उपयोग करना संभव होता है, 1/ 4  या 1/ 2 तरंग दैर्ध्य पर, क्रमशः, जिस पर वे दोलित्र होते हैं। जैसे ही इन एंटीना को छोटा बनाया जाता है (किसी दी गई आवृत्ति के लिए) उनकी प्रतिबाधा एक श्रृंखला संधारित्र प्रतिक्रिया से हावी हो जाती है; एक उपयुक्त आकार के लोडिंग कॉइल को जोड़कर रेडियो एंटीना, "लोडिंग कॉइल" - समान और विपरीत प्रतिक्रिया के साथ एक श्रृंखला अधिष्ठापन - ऐन्टेना की कैपेसिटिव रिएक्शन को केवल एक शुद्ध प्रतिरोध छोड़कर रद्द किया जा सकता है।

कभी-कभी ऐसी प्रणाली (एंटीना प्लस मैचिंग नेटवर्क) की परिणामी विद्युत दोलित्र आवृत्ति को विद्युत लंबाई की अवधारणा का उपयोग करके वर्णित किया जाता है, इसलिए इसकी दोलित्र आवृत्ति की तुलना में कम आवृत्ति पर उपयोग किए जाने वाले ऐन्टेना को विद्युत रूप से लघु ऐन्टेना कहा जाता है[13]

उदाहरण के लिए, 30 मेगाहर्ट्ज (10 मीटर तरंग दैर्ध्य) पर एक वास्तविक अनुनादक 1/ 4 तरंग एकध्रुव लगभग 2.5 मीटर लंबा होगा, और केवल 1.5 मीटर ऊंचे एंटीना का उपयोग करने के लिए लोडिंग कॉइल को जोड़ने की आवश्यकता होगी। तब यह कहा जा सकता है कि कॉइल ने 2.5 मीटर की विद्युत लंबाई प्राप्त करने के लिए एंटीना को लंबा कर दिया है। चूंकि, प्राप्त परिणामी प्रतिरोधक प्रतिबाधा की तुलना में काफी कम होगी 1/ 4 तरंग दोलित्र एकध्रुव, अधिकांशतः वांछित संचरण लाइन के लिए और प्रतिबाधा मिलान की आवश्यकता होती है। हमेशा छोटे एंटीना के लिए (अधिक विद्युत लम्बाई की आवश्यकता होती है) विकिरण प्रतिरोध कम हो जाता है (लगभग एंटीना लंबाई के वर्ग के अनुसार), जिससे विद्युत दोलित्र से दूर शुद्ध प्रतिक्रिया के कारण बेमेल हो जाता है। या यह भी कहा जा सकता है कि एंटीना सिस्टम के समतुल्य दोलित्र परिपथ में उच्च क्यू कारक होता है और इस प्रकार कम बैंडविड्थ होता है,[13] जो प्रेषित सिग्नल के तरंग के लिए अपर्याप्त भी हो सकता है। लोडिंग कॉइल के कारण कॉपर की हानि, कम विकिरण प्रतिरोध के सापेक्ष, कम दक्षता की आवश्यकता होती है, जो एक संचारण एंटीना के लिए बहुत चिंता का विषय हो सकता है, लेकिन बैंडविड्थ प्रमुख कारक है[dubious ][dubious ] जो एंटीना के आकार को 1 मेगाहर्ट्ज और कम आवृत्तियों पर सेट करता है।

सरणियाँ और परावर्तक

लॉग-पीरियोडिक (फिशबोन) सरणी एंटीना जैसे इस स्टैक का व्यापक रूप से बहुत उच्च आवृत्ति और अल्ट्रा उच्च आवृत्ति आवृत्तियों पर उपयोग किया जाता है।

संचारण ऐन्टेना से दूरी के एक समारोह के रूप में दीप्तिमान प्रवाह व्युत्क्रम-वर्ग कानून के अनुसार भिन्न होता है, क्योंकि यह संचरित तरंग के ज्यामितीय विचलन का वर्णन करता है। किसी आने वाले प्रवाह के लिए, प्राप्त एंटीना द्वारा अधिग्रहित शक्ति उसके प्रभावी क्षेत्र के समानुपाती होती है। यह पैरामीटर आने वाली तरंग के प्रवाह की तुलना में एक प्राप्त एंटीना द्वारा कैप्चर की गई विद्युत शक्ति की मात्रा की तुलना करता है प्रति वर्ग मीटर वाट में सिग्नल की शक्ति घनत्व के संदर्भ में मापा जाता है। एक अर्ध-लहर द्विध्रुव का प्रभावी क्षेत्र लगभग 0.13 . होता है। λ2 चौड़ी दिशा से देखा जाता है। यदि अधिक लाभ की आवश्यकता है तो कोई केवल एंटीना को बड़ा नहीं बना सकता है। एक प्राप्त एंटीना के प्रभावी क्षेत्र पर बाधा के कारण विस्तृत प्रभावी क्षेत्र या एपर्चर, कोई यह देखता है कि पहले से ही कुशल एंटीना डिज़ाइन के लिए, लाभ प्रभावी क्षेत्र बढ़ाने का एकमात्र तरीका एंटीना के लाभ को दूसरी दिशा में कम करना है।

यदि एक अर्ध-तरंग द्विध्रुवीय बाहरी परिपथ से जुड़ा नहीं है, बल्कि फीडपॉइंट पर छोटा हो जाता है, तो यह एक दोलित्र अर्ध-लहर तत्व बन जाता है जो एक प्रभावशाली रेडियो तरंग के जवाब में कुशलता से एक स्थायी तरंग उत्पन्न करता है। क्योंकि उस शक्ति को अवशोषित करने के लिए कोई भार नहीं है, यह संभवतः एक चरण बदलाव के साथ सारी शक्ति को पुन: प्रसारित करता है जो तत्व की सटीक लंबाई पर गंभीर रूप से निर्भर है। इस प्रकार ट्रांसमीटर से विद्युत रूप से जुड़े तत्व के विकिरण पैटर्न और फीडपॉइंट प्रतिबाधा को प्रभावित करने के लिए ट्रांसमीटर के सिग्नल की दूसरी प्रति संचारित करने के लिए इस तरह के चालकता की व्यवस्था की जा सकती है। इस तरह से उपयोग किए जाने वाले एंटीना तत्वों को निष्क्रिय रेडिएटर्स के रूप में जाना जाता है।

एक यागी-उड़ा सरणी एक दिशा में लाभ बढ़ाने के लिए निष्क्रिय तत्वों का उपयोग करती है। कई समानांतर लगभग अर्ध-तरंग तत्व एक बूम के साथ विशिष्ट स्थितियों पर एक दूसरे के समानांतर स्थित होते हैं; बूम केवल समर्थन के लिए है और विद्युत रूप से सम्मिलित नहीं है। केवल एक तत्व ट्रांसमीटर से विद्युत रूप से जुड़ा होता है, जबकि शेष तत्व निष्क्रिय होते हैं। यागी काफी बड़ा लाभ पैदा करता है (निष्क्रिय तत्वों की संख्या के आधार पर) और व्यापक रूप से एक दिशात्मक एंटीना के रूप में उपयोग किया जाता है जिसमें एंटीना रोटर के साथ अपने बीम की दिशा को नियंत्रित करने के लिए उपयोग किया जाता है। यह एक सीमित बैंडविड्थ होने से ग्रस्त है, इसके उपयोग को कुछ अनुप्रयोगों तक सीमित करता है।

निष्क्रिय रेडिएटर्स के साथ एक संचालित ऐन्टेना तत्व का उपयोग करने के अतिरिक्त, एक सरणी ऐन्टेना का निर्माण किया जा सकता है जिसमें कई तत्व ट्रांसमीटर द्वारा पावर स्प्लिटर्स और संचार लाइनों की एक प्रणाली के माध्यम से सापेक्ष चरणों में संचालित होते हैं ताकि एक एकल में आरएफ शक्ति को केंद्रित किया जा सके। दिशा। क्या अधिक है, एक चरणबद्ध सरणी को " कर्णनीय " बनाया जा सकता है, अर्थात, प्रत्येक तत्व पर लागू चरणों को बदलकर विकिरण पैटर्न को ऐन्टेना तत्वों को भौतिक रूप से स्थानांतरित किए बिना स्थानांतरित किया जा सकता है। एक आम सरणी ऐन्टेना लॉग-आवधिक द्विध्रुव सरणी है जो यागी के समान दिखती है (बूम के साथ समानांतर तत्वों की संख्या के साथ) लेकिन संचालन में पूरी तरह से भिन्न है क्योंकि सभी तत्व एक फेज रिवर्सल के साथ निकटवर्ती तत्व से विद्युत रूप से जुड़े होते हैं। ; लॉग-आवधिक सिद्धांत का उपयोग करके यह एक बहुत बड़े बैंडविड्थ पर अपनी प्रदर्शन विशेषताओं (लाभ और प्रतिबाधा) को बनाए रखने की अनूठी संपत्ति प्राप्त करता है।

जब एक रेडियो तरंग एक बड़ी संवाहक शीट से टकराती है तो यह परावर्तित होती है (विद्युत क्षेत्र के चरण के उलट होने के साथ) जैसे दर्पण प्रकाश को दर्शाता है।अन्यथा गैर-दिशात्मक ऐन्टेना के पीछे इस तरह के एक परावर्तक को रखने से यह सुनिश्चित होगा कि इसकी दिशा में जाने वाली शक्ति वांछित दिशा की ओर पुनर्निर्देशित हो जाती है, ऐन्टेना का लाभ कम से कम 2 के कारक से बढ़ जाता है। इसी तरह, एक कोणी परावर्तक यह सुनिश्चित कर सकता है ऐन्टेना की समस्त शक्ति अंतरिक्ष के केवल एक चतुर्थांश में केंद्रित होती है जिसके परिणामस्वरूप लाभ में वृद्धि होती है। व्यावहारिक रूप से, परावर्तक को एक ठोस धातु शीट होने की आवश्यकता नहीं है, लेकिन इसमें ऐन्टेना के ध्रुवीकरण के साथ संरेखित छड़ों का एक पर्दा सम्मिलित हो सकता है; यह परावर्तक के वजन और वायु भार को बहुत कम करता है। रेडियो तरंगों के स्पेक्युलर परावर्तन को एक परवलयिक परावर्तक एंटीना में भी नियोजित किया जाता है, जिसमें एक घुमावदार परावर्तक सतह प्रभाव एक तथाकथित फ़ीड एंटीना की ओर आने वाली लहर को केंद्रित करता है; इसका परिणाम ऐन्टेना प्रणाली में एक प्रभावी क्षेत्र के साथ होता है जिसकी तुलना स्वयं परावर्तक के आकार से की जा सकती है। ज्यामितीय प्रकाशिकी से अन्य अवधारणाओं को भी ऐन्टेना प्रौद्योगिकी में नियोजित किया जाता है, जैसे कि लेंस ऐन्टेना के साथ।।

विशेषताएं

ऐन्टेना का शक्ति लाभ (या केवल "लाभ") भी ऐन्टेना की दक्षता को ध्यान में रखता है, और अधिकांशतः योग्यता का प्राथमिक आंकड़ा होता है। एंटीना को कई प्रदर्शन उपायों की विशेषता होती है, जो एक उपयोगकर्ता किसी विशेष एप्लिकेशन के लिए एंटीना को चुनने या डिजाइन करने से संबंधित होता है। ऐन्टेना के आसपास के स्थान में दिशात्मक विशेषताओं का एक प्लॉट इसका विकिरण पैटर्न है।

बैंडविड्थ

आवृत्ति विस्तार या बैंडविड्थ जिस पर एक एंटीना काम करता है जैसे लॉग-आवधिक एंटीना में या संकीर्ण एक छोटे लूप एंटीना के रूप में; इस सीमा के बाहर एंटीना प्रतिबाधा संचार लाइन और ट्रांसमीटर के लिए एक खराब मेल बन जाती है। एंटीना का उपयोग इसकी डिजाइन आवृत्ति से काफी दूर इसके विकिरण पैटर्न को प्रभावित करता है, इसके निर्देश लाभ को कम करता है।

सामान्यतः एक एंटीना में फीड-पॉइंट प्रतिबाधा नहीं होती है, जो एक ट्रांसमिशन लाइन से मेल खाती है; एंटीना टर्मिनलों और ट्रांसमिशन लाइन के बीच एक मेल नेटवर्क एंटीना को पावर ट्रांसफर में सुधार करता है। एक गैर-समायोज्य मिलान नेटवर्क ऐन्टेना प्रणाली के प्रयोग करने योग्य बैंडविड्थ को और अधिक सीमित कर देता है। एंटीना बनाने के लिए पतले तारों के अतिरिक्त ट्यूबलर तत्वों का उपयोग करना वांछनीय होता है; ये अधिक बैंडविड्थ की अनुमति देंते है, या एक मोटे तत्व का अनुकरण करने के लिए कई पतले तारों को एक पिंजरे में समूहीकृत किया जाता है। यह दोलित्र की बैंडविड्थ का विस्तारित करता है।

अव्यावसायिक रेडियो एंटीना जो कई आवृत्ति बैंड पर काम करते हैं जो एक दूसरे से व्यापक रूप से अलग होते हैं, समानांतर में उन विभिन्न आवृत्तियों पर दोलित्र तत्वों को जोड़ सकते हैं। ट्रांसमीटर की अधिकांश शक्ति दोलित्र तत्व में प्रवाहित होगी जबकि अन्य उच्च प्रतिबाधा प्रस्तुत करते हैं। एक अन्य समाधान ट्रैप, समानांतर दोलित्र परिपथ का उपयोग करता है जो लंबे एंटीना तत्वों में बनाए गए ब्रेक में रखे जाते हैं। जब ट्रैप की विशेष दोलित्र आवृत्ति पर उपयोग किया जाता है तो ट्रैप एक बहुत ही उच्च प्रतिबाधा (समानांतर प्रतिध्वनि) प्रस्तुत करता है जो ट्रैप के स्थान पर तत्व को प्रभावी ढंग से काटता है; यदि सही ढंग से तैनात किया गया है, तो काटे गए तत्व ट्रैप आवृत्ति पर एक उचित दोलित्र एंटीना बनाता है। काफी अधिक या कम आवृत्तियों पर ट्रैप टूटे हुए तत्व की पूरी लंबाई को नियोजित करने की अनुमति देता है, लेकिन एक दोलित्र आवृत्ति के साथ ट्रैप द्वारा जोड़े गए शुद्ध प्रतिक्रिया द्वारा स्थानांतरित किया जाता है।

एक दोलित्र एंटीना तत्व की बैंडविड्थ विशेषताओं को इसके क्यू कारक के अनुसार चित्रित किया जा सकता है| Q जहां सम्मिलित प्रतिरोध विकिरण प्रतिरोध है, जो दोलित्र एंटीना से मुक्त स्थान तक ऊर्जा के उत्सर्जन का प्रतिनिधित्व करता है।

एक संकीर्ण बैंड एंटीना का क्यू 15 जितना ऊंचा हो सकता है। दूसरी ओर, मोटे तत्वों का उपयोग करने वाले समान ऑफ-गुंजायमान आवृत्ति पर प्रतिक्रिया बहुत कम होती है, जिसके परिणामस्वरूप क्यू कम से कम 5 होता है। ये दो एंटीना दोलित्र आवृत्ति पर समान रूप से प्रदर्शन कर सकता है, लेकिन दूसरा एंटीना एक पतले चालकता से युक्त एंटीना के रूप में 3 गुना चौड़ा बैंडविड्थ पर प्रदर्शन करेगा।

अधिक व्यापक आवृत्ति रेंज में उपयोग के लिए एंटीना आगे की तकनीकों का उपयोग करके प्राप्त किए जाते हैं। एक मिलान नेटवर्क का समायोजन, सिद्धांत रूप में, किसी भी एंटीना को किसी भी आवृत्ति पर मिलान करने की अनुमति दे सकता है। इस प्रकार अधिकांश एएम प्रसारण रिसीवर में निर्मित छोटे लूप एंटीना में एक बहुत ही संकीर्ण बैंडविड्थ होता है, लेकिन समानांतर समाई का उपयोग करके ट्यून किया जाता है जिसे रिसीवर ट्यूनिंग के अनुसार समायोजित किया जाता है। दूसरी ओर, लॉग-आवधिक एंटीना किसी एकल आवृत्ति पर दोलित्र नहीं होते हैं, लेकिन किसी भी आवृत्ति रेंज पर समान विशेषताओं (फीडपॉइंट प्रतिबाधा सहित) को प्राप्त करने के लिए बनाया जा सकता है। इसलिए इन्हें टेलीविजन एंटीना के रूप में सामान्यतः पर (दिशात्मक लॉग-आवधिक द्विध्रुवीय सरणियों के रूप में) उपयोग किया जाता है।

लाभ एक पैरामीटर है जो ऐन्टेना के विकिरण पैटर्न की दिशा की डिग्री को मापता है। एक उच्च-लाभ वाला एंटीना अपनी अधिकांश शक्ति को एक विशेष दिशा में विकीर्ण करेगा, जबकि एक कम-लाभ वाला एंटीना एक विस्तृत कोण पर विकिरण करेगा। ऐन्टेना लाभ, या ऐन्टेना के शक्ति लाभ को तीव्रता (भौतिकी) (शक्ति प्रति इकाई सतह क्षेत्र) के अनुपात के रूप में परिभाषित किया गया है। ऐन्टेना द्वारा अपने अधिकतम आउटपुट की दिशा में विकिरणित, एक मनमाना दूरी पर, तीव्रता से विभाजित एक काल्पनिक आइसोट्रोपिक रेडिएटर द्वारा समान दूरी पर विकिरण किया जाता है जो सभी दिशाओं में समान शक्ति का विकिरण करता है। यह आयाम रहित अनुपात सामान्यतः पर डेसिबल में लघुगणकीय रूप से व्यक्त किया जाता है, इन इकाइयों को डेसिबल-आइसोट्रोपिक (डीबीआई) कहा जाता है।

लाभ को मापने के लिए उपयोग की जाने वाली दूसरी इकाई एंटीना द्वारा विकीर्ण की गई शक्ति का आधा-लहर द्विध्रुवीय एंटीना द्वारा विकीर्ण की गई शक्ति का अनुपात है। ; इन इकाइयों को डेसीबल-द्विध्रुवीय (dBd) कहते हैं।

चूंकि अर्ध-तरंग द्विध्रुव का लाभ 2.15 dBi है और उत्पाद का लघुगणक योगात्मक है, dBi में लाभ dBd में लाभ से केवल 2.15 डेसिबल अधिक है

उच्च-लाभ वाले एंटीना में लंबी दूरी और बेहतर सिग्नल गुणवत्ता का लाभ होता है, लेकिन अन्य एंटीना पर ध्यान से लक्षित होना चाहिए। उच्च-लाभ वाले एंटीना का एक उदाहरण एक परवलयिक एंटीना है जैसे उपग्रह टेलीविजन एंटीना। कम लाभ वाले एंटीना की सीमा कम होती है, लेकिन एंटीना का उन्मुखीकरण अपेक्षाकृत महत्वहीन होता है। लो-गेन एंटीना का एक उदाहरण पोर्टेबल रेडियो और कॉर्डलेस फोन पर पाया जाने वाला व्हिप एंटीना है।एंटीना गेन विद्युत् चुम्बकिकी के साथ भ्रमित नहीं होना चाहिए, एक अलग पैरामीटर जो सिस्टम के फ्रंट-एंड पर रखे एक प्रवर्धक उपकरण के कारण सिग्नल पावर में वृद्धि को मापता है, जैसे कि कम-शोर एम्पलीफायर ।

प्रभावी क्षेत्र या एपर्चर

एंटीना प्रभावी क्षेत्र छिद्र् से गुजरने वाली विद्युत चुम्बकीय तरंग की शक्ति को व्यक्त करता है जो एंटीना अपने टर्मिनलों को वितरित करता है, जिसे समकक्ष क्षेत्र के संदर्भ में व्यक्त किया जाता है। उदाहरण के लिए, यदि किसी दिए गए स्थान से गुजरने वाली रेडियो तरंग का प्रवाह 1 pW/m . है2 (10-12 वाट प्रति वर्ग मीटर) और एक एंटीना का प्रभावी क्षेत्र 12 m . है2, तब एंटीना रिसीवर को 12 pW रेडियो फ़्रीक्वेंसी पावर प्रदान करेगा (30 माइक्रोवोल्ट रूट माध्य वर्ग 75 ओम पर)। चूंकि प्राप्त करने वाला एंटीना सभी दिशाओं से प्राप्त संकेतों के प्रति समान रूप से संवेदनशील नहीं होता है, इसलिए प्रभावी क्षेत्र स्रोत की दिशा का एक कार्य है।

पारस्परिकता विद्युत चुंबकत्व के कारण संचारण के लिए उपयोग किए जाने वाले एंटीना का लाभ प्राप्त करने के लिए उपयोग किए जाने पर इसके प्रभावी क्षेत्र के समानुपाती होना चाहिए। तांबे के नुकसान के बिना एक एंटीना पर विचार करें, यानी, जिसकी एंटीना दक्षता 100% है। यह दिखाया जा सकता है कि इसका प्रभावी क्षेत्र सभी दिशाओं में औसत के बराबर होना चाहिए λ2/4π, तरंग दैर्ध्य वर्ग द्वारा विभाजित . लाभ को इस तरह परिभाषित किया गया है कि 100% एंटीना दक्षता वाले सभी दिशाओं पर औसत लाभ 1 के बराबर है। इसलिए, प्रभावी क्षेत्र Aeff लाभ की दृष्टि से G किसी दिए गए दिशा में दिया गया है:

100% से कम की दक्षता वाले एंटीना के लिए, प्रभावी क्षेत्र और लाभ दोनों उसी राशि से कम हो जाते हैं। इसलिए, लाभ और प्रभावी क्षेत्र के बीच उपरोक्त संबंध अभी भी कायम है। इस प्रकार ये एक ही मात्रा को व्यक्त करने के दो अलग-अलग तरीके हैं। Aeff एक निर्दिष्ट लाभ एंटीना द्वारा प्राप्त की जाने वाली शक्ति की गणना करते समय विशेष रूप से सुविधाजनक होते है, जैसा कि उपरोक्त उदाहरण द्वारा दिखाया गया है।

विकिरण पैटर्न

(आभासी) यागी-उद-एंटीना के क्षैतिज क्रॉस सेक्शन के ध्रुवीय भूखंड। Outline बिंदुओं को ISO एमिटर की तुलना में 3 dB फ़ील्ड पावर से जोड़ता है।

एंटीना का विकिरण पैटर्न दूर-क्षेत्र में विभिन्न कोणों पर एंटीना द्वारा उत्सर्जित रेडियो तरंगों की सापेक्ष क्षेत्र का एक प्लॉट है। यह सामान्यतः पर एक त्रि-आयामी ग्राफ, या क्षैतिज और ऊर्ध्वाधर क्रॉस सेक्शन के ध्रुवीय भूखंडों द्वारा दर्शाया जाता है। एक आदर्श समदैशिक विकिरक का पैटर्न, जो सभी दिशाओं में समान रूप से विकिरण करता है, एक गोले जैसा दिखेगा। कई गैर-दिशात्मक एंटीना, जैसे एकध्रुव एंटीना और द्विध्रुवीय एंटीना, सभी क्षैतिज दिशाओं में समान शक्ति का उत्सर्जन करते हैं, उच्च और निचले कोणों पर बिजली गिरती है; इसे एक सर्वदिशात्मक एंटीना कहा जाता है और जब आलेखित किया जाता है तो यह टोरस्र्स या डोनट जैसा दिखता है।

कई एंटीना का विकिरण विभिन्न कोणों पर दीर्घतम या लोब का एक पैटर्न दिखाता है, जो "नल" से अलग होता है, कोण जहां विकिरण शून्य हो जाता है। इसका कारण यह है कि एंटीना के विभिन्न हिस्सों द्वारा उत्सर्जित रेडियो तरंगें सामान्यतः हस्तक्षेप करती हैं, जिससे कोणों पर मैक्सिमा होता है जहां रेडियो तरंगें चरण बिंदुओं पर पहुंचती हैं, और शून्य विकिरण पर रेडियो तरंगें चरण से बाहर आती हैं। एक विशेष दिशा में रेडियो तरंगों को प्रोजेक्ट करने के लिए डिज़ाइन किए गए एक दिशात्मक एंटीना में, उस दिशा में लोब को दूसरों की तुलना में बड़ा बनाया जाता है और इसे "मुख्य लोब" कहा जाता है। अन्य लोब सामान्यतः अवांछित विकिरण का प्रतिनिधित्व करते हैं और उन्हें "साइडलोब" कहा जाता है। मुख्य लोब के माध्यम से अक्ष को "प्रमुख अक्ष" या "दूरदर्शिता अक्ष" कहा जाता है।

यागी एंटीना के ध्रुवीय आरेख (और इसलिए दक्षता और लाभ) सख्त होते हैं यदि एंटीना को एक संकीर्ण आवृत्ति रेंज के लिए ट्यून किया जाता है, उदहारण वाइडबैंड की तुलना में समूहीकृत एंटीना। इसी तरह, क्षैतिज रूप से ध्रुवीकृत यागियों के ध्रुवीय भूखंड, लंबवत ध्रुवीकृत की तुलना में सख्त होते हैं।[14]


क्षेत्र क्षेत्र

ऐन्टेना के आसपास के स्थान को तीन संकेंद्रित क्षेत्रों में विभाजित किया जा सकता है: प्रतिक्रियाशील निकट-क्षेत्र (जिसे आगमनात्मक निकट-क्षेत्र भी कहा जाता है), विकिरण निकट-क्षेत्र (फ्रेस्नेल क्षेत्र) और दूर-क्षेत्र (फ्राउनहोफर) क्षेत्र। ये प्रत्येक क्षेत्र संरचना की पहचान करने के लिए उपयोगी होते हैं, चूंकि उनके बीच संक्रमण क्रमिक होते हैं, और कोई सटीक सीमा नहीं होती है।

दूर-क्षेत्र अपने आकार को अनदेखा करने के लिए ऐन्टेना से काफी दूर है: यह माना जा सकता है कि विद्युत चुम्बकीय तरंग विशुद्ध रूप से एक विकिरणित समतल तरंग है (विद्युत और चुंबकीय क्षेत्र एक दूसरे के लंबवत दिशा में होते है )। यह विकिरणित क्षेत्र के गणितीय विश्लेषण को सरल करता है।

दक्षता

एक ट्रांसमिटिंग एंटीना की क्षमता ऐन्टेना टर्मिनलों द्वारा अवशोषित शक्ति के लिए वास्तव में विकीर्ण (सभी दिशाओं में) शक्ति का अनुपात है। ऐन्टेना टर्मिनलों को आपूर्ति की गई शक्ति जो विकीर्ण नहीं होती है, ऊष्मा में परिवर्तित हो जाती है। सामान्यतः ऐन्टेना के परिचालक में नुकसान प्रतिरोध के माध्यम से होता है, या परवलयिक एंटीना के परावर्तक और फ़ीड हॉर्न के बीच नुकसान होता है।

एंटीना दक्षता प्रतिबाधा मिलान से अलग होती है, जो किसी दिए गए ट्रांसमीटर का उपयोग करके विकिरणित शक्ति की मात्रा को भी कम कर सकती है। यदि एक स्टैंडिंग वेव रेशियो मीटर 150 डब्ल्यू की घटना शक्ति और 50 डब्ल्यू परावर्तित शक्ति को पढ़ता है, तो इसका मतलब है कि 100 डब्ल्यू वास्तव में एंटीना द्वारा अवशोषित कर लिया गया है । उस शक्ति का कितना हिस्सा वास्तव में विकिरणित किया गया है, यह सीधे ऐन्टेना टर्मिनलों पर विद्युत माप के माध्यम से निर्धारित नहीं किया जा सकता है, उदाहरण के लिए क्षेत्र को सावधानीपूर्वक माप की आवश्यकता होगी। एक ऐन्टेना के नुकसान प्रतिरोध और दक्षता की गणना एक बार क्षेत्र की ताकत ज्ञात होने के बाद, एंटीना को आपूर्ति की गई शक्ति से तुलना करके की जा सकती है।

हानि प्रतिरोध सामान्यतः फीडपॉइंट प्रतिबाधा को प्रभावित करेगा, और इसके प्रतिरोधी घटक को जोड़ देगा।। इस प्रतिरोध में विकिरण प्रतिरोध का योग सम्मिलित होगाRrad और नुकसान प्रतिरोधRloss. यदि एक धाराIएक एंटीना के टर्मिनलों तक पहुंचाया जाता है, फिर की शक्तिIRrad विकीर्ण कि जाएगी और एक IRloss की शक्ति ऊष्मा के रूप में नष्ट हो जाएगी। इसलिए, एक एंटीना की दक्षता बराबर होती है Rrad/(Rrad + Rloss). केवल कुल प्रतिरोधRrad +Rloss सीधे मापा जा सकता है।

रेसिप्रोसिटी के अनुसार, प्राप्त एंटीना के रूप में उपयोग किए जाने वाले एंटीना की दक्षता ऊपर वर्णित एक संचारण एंटीना के रूप में इसकी दक्षता के समान है। एक एंटीना एक रिसीवर (उचित प्रतिबाधा मिलान के साथ) को जो शक्ति देगा, वह उसी राशि से कम हो जाती है। कुछ प्राप्त करने वाले अनुप्रयोगों में, बहुत अक्षम एंटीना प्रदर्शन पर बहुत कम प्रभाव डाल सकते हैं। कम आवृत्तियों पर, उदाहरण के लिए, वायुमंडलीय या मानव निर्मित शोर एंटीना की अक्षमता को छुपा सकता है। उदाहरण के लिए, सीसीआईआर प्रतिनिधि 258-3 इंगित करता है कि 40 मेगाहर्ट्ज पर एक आवासीय सेटिंग में मानव निर्मित शोर थर्मल शोर तल से लगभग 28 डीबी ऊपर है। परिणामस्वरूप, 20 dB नुकसान वाले एंटीना का सिस्टम शोर प्रदर्शन पर बहुत कम प्रभाव पड़ेगा। ऐन्टेना के भीतर नुकसान इच्छित सिग्नल और हस्तक्षेप को समान रूप से प्रभावित करेगा, जिससे सिग्नल से शोर अनुपात (एसएनआर) में कोई कमी नहीं होगी।

एंटीना जो आकार में तरंग दैर्ध्य का एक महत्वपूर्ण अंश नहीं हैं, उनके छोटे विकिरण प्रतिरोध के कारण अनिवार्य रूप से अक्षम हैं। AM प्रसारण रेडियो में एक छोटा लूप एंटीना सम्मिलित होता है AM प्रसारण रिसेप्शन के लिए एंटीना प्राप्त करता है जिसमें बेहद खराब दक्षता होती है। इसका रिसीवर के प्रदर्शन पर बहुत कम प्रभाव पड़ता है, लेकिन इसके लिए रिसीवर के इलेक्ट्रॉनिक्स द्वारा अधिक से अधिक प्रवर्धन की आवश्यकता होती है। इस छोटे घटक की तुलना एएम प्रसारण स्टेशनों पर समान आवृत्ति पर संचारण के लिए उपयोग किए जाने वाले बड़े और बहुत ऊंचे टावरों से करें, जहां कम एंटीना दक्षता के प्रत्येक प्रतिशत बिंदु में पर्याप्त लागत होती है।

एंटीना लाभ या शक्ति लाभ की परिभाषा में पहले से ही एंटीना की दक्षता का प्रभाव सम्मिलित है। इसलिए, यदि कोई किसी दी गई शक्ति के ट्रांसमीटर का उपयोग करके एक रिसीवर की ओर एक संकेत विकीर्ण करने की कोशिश कर रहा है, तो उसे दक्षता पर विचार करने के अतिरिक्त केवल विभिन्न एंटीना के लाभ की तुलना करने की आवश्यकता है। यह बहुत अधिक (विशेष रूप से सूक्ष्म तरंग) आवृत्तियों पर प्राप्त करने वाले एंटीना के लिए भी सच है, जहां बिंदु एक संकेत प्राप्त करना है जो रिसीवर तापमान की तुलना में मजबूत होते है। चूंकि, विभिन्न दिशाओं से हस्तक्षेप को अस्वीकार करने के इरादे से सिग्नल प्राप्त करने के लिए उपयोग किए जाने वाले दिशात्मक एंटीना के स्थिति में, जैसा कि ऊपर चर्चा की गई है, अब एंटीना दक्षता से कोई संबंध नहीं है। इस स्थिति में, ऐन्टेना लाभ को उद्धृत करने के अतिरिक्त, किसी को निर्देश लाभ, या केवल प्रत्यक्षता के बारे में अधिक चिंतित होना चाहिए जिसमें एंटीना दक्षता का प्रभाव सम्मिलित नहीं है। ऐन्टेना के निर्देशक लाभ की गणना ऐन्टेना की दक्षता से विभाजित प्रकाशित लाभ से की जा सकती है। समीकरण रूप में, लाभ = प्रत्यक्षता × दक्षता।

ध्रुवीकरण

ऐन्टेना की ओरिएंटेशन और भौतिक संरचना इसके द्वारा प्रेषित रेडियो तरंग के विद्युत क्षेत्र के ध्रुवीकरण (तरंगों) को निर्धारित करती है। उदाहरण के लिए, एक रैखिक चालकता (जैसे एक द्विध्रुवीय एंटीना या व्हिप एंटीना) से बना एक एंटीना लंबवत रूप से उन्मुख होता है, जिसके परिणामस्वरूप ऊर्ध्वाधर ध्रुवीकरण होगा; अगर उसकी तरफ घुमाया जाए तो उसी एंटीना का ध्रुवीकरण क्षैतिज होगा।

प्रतिबिंब सामान्यतः पर ध्रुवीकरण को प्रभावित करते हैं। आयनमंडल से परावर्तित रेडियो तरंगें तरंग के ध्रुवीकरण को बदल सकती हैं। लाइन-ऑफ़-विज़न प्रचार के लिए | लाइन-ऑफ़-विज़न संचार या जमीनी लहर प्रोपगेशन, क्षैतिज या लंबवत ध्रुवीकृत प्रसारण सामान्यतः पर प्राप्त स्थान पर समान ध्रुवीकरण स्थिति में रहते हैं। क्षैतिज रूप से ध्रुवीकृत तरंग (या वीजा-विपरीत) प्राप्त करने के लिए एक लंबवत ध्रुवीकृत एंटीना का उपयोग करने से अपेक्षाकृत खराब रिसेप्शन होता है।

एक एंटीना के ध्रुवीकरण को कभी-कभी इसकी ज्यामिति से सीधे अनुमान लगाया जा सकता है। जब एक संदर्भ स्थान से देखे गए एंटीना के चालकता एक पंक्ति के साथ दिखाई देते हैं, तो एंटीना का ध्रुवीकरण उसी दिशा में रैखिक होगा। अधिक सामान्य स्थिति में, ऐन्टेना के ध्रुवीकरण को कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स के माध्यम से निर्धारित किया जाना चाहिए। उदाहरण के लिए, पृथ्वी पर दूर के स्थान से क्षैतिज रूप से (हमेशा की तरह) घुड़सवार एक टर्नस्टाइल एंटीना एक क्षैतिज रेखा खंड के रूप में प्रकट होता है, इसलिए वहां प्राप्त विकिरण क्षैतिज रूप से ध्रुवीकृत होता है। लेकिन एक हवाई जहाज से नीचे के कोण पर देखा जाता है, वही एंटीना इस आवश्यकता को पूरा नहीं करता है; वास्तव में इसका विकिरण उस दिशा से देखने पर अण्डाकार रूप से ध्रुवीकृत होता है। कुछ एंटीना में संचरण की आवृत्ति के साथ ध्रुवीकरण की स्थिति बदल जाएगी। एक वाणिज्यिक एंटीना का ध्रुवीकरण एक आवश्यक विनिर्देश (तकनीकी मानक) है।

सबसे सामान्य स्थिति में, ध्रुवीकरण अंडाकार रूप से ध्रुवीकृत होता है, जिसका अर्थ है कि प्रत्येक चक्र में विद्युत क्षेत्र वेक्टर एक अंडाकार का पता लगाता है। दो विशेष स्थिति हैं रैखिक ध्रुवीकरण (दीर्घवृत्त एक रेखा में ढह जाता है) जैसा कि ऊपर चर्चा की गई है, और परिपत्र ध्रुवीकरण (जिसमें अंडाकार के दो अक्ष बराबर हैं)। रैखिक ध्रुवीकरण में रेडियो तरंग का विद्युत क्षेत्र एक दिशा में दोलित्र करता है। वृत्ताकार ध्रुवीकरण में, रेडियो तरंग का विद्युत क्षेत्र प्रसार की धुरी के चारों ओर घूमता है। वृत्ताकार या अण्डाकार रूप से ध्रुवीकृत रेडियो तरंगें हैं वृत्ताकार ध्रुवीकरण#बाएं/दाएं हाथ की परंपराएं|प्रसार नियम की दिशा में अंगूठे का उपयोग करके दाएं हाथ या बाएं हाथ के रूप में नामित। ध्यान दें कि गोलाकार ध्रुवीकरण के लिए, ऑप्टिकल शोधकर्ता विपरीत दाहिने हाथ के नियम का उपयोग करते हैं[citation needed] रेडियो इंजीनियरों द्वारा उपयोग किए जाने वाले से।

इष्टतम रिसेप्शन के लिए प्रेषित तरंग के ध्रुवीकरण से मेल खाने के लिए प्राप्त करने वाले एंटीना के लिए यह सबसे अच्छा है। अन्यथा संकेत शक्ति का नुकसान होगा: जब एक रैखिक रूप से ध्रुवीकृत एंटीना के सापेक्ष कोण पर रैखिक रूप से ध्रुवीकृत विकिरण प्राप्त करता है, तो कॉस की शक्ति का नुकसान होगा2θ. एक गोलाकार ध्रुवीकृत एंटीना का उपयोग समान रूप से लंबवत या क्षैतिज रैखिक ध्रुवीकरण से मेल खाने के लिए किया जा सकता है, जिसमें 3 डेसिबल सिग्नल कमी होती है। चूंकि यह विपरीत अभिविन्यास के एक गोलाकार ध्रुवीकृत संकेत के लिए अंधा होगा।

प्रतिबाधा मिलान

रिसीवर या ट्रांसमीटर के प्रतिबाधा के जटिल संयुग्म के लिए अधिकतम पावर ट्रांसफर के लिए एंटीना सिस्टम (जैसा कि संचारलाइन में देखा जाता है) के प्रतिबाधा से मेल खाने की आवश्यकता होती है। एक ट्रांसमीटर के स्थिति में, चूंकि, वांछित मिलान प्रतिबाधा ट्रांसमीटर के गतिशील आउटपुट प्रतिबाधा के अनुरूप नहीं हो सकती है, जैसा कि थेवेनिन के प्रमेय के रूप में विश्लेषण किया गया है, बल्कि संचारण के कुशल और सुरक्षित संचालन के लिए आवश्यक डिज़ाइन मान (सामान्यतः पर 50 ओम) है। परिपथ री इच्छित प्रतिबाधा सामान्यतः पर प्रतिरोधी होती है, लेकिन एक ट्रांसमीटर (और कुछ रिसीवर) में मैच को मोड़ने के लिए एक निश्चित मात्रा में प्रतिक्रिया को रद्द करने के लिए सीमित अतिरिक्त समायोजन हो सकते हैं।

जब एंटीना और ट्रांसमीटर (या रिसीवर) के बीच एक संचारलाइन का उपयोग किया जाता है, तो सामान्यतः पर एक एंटीना सिस्टम पसंद होता है जिसका प्रतिबाधा प्रतिरोधी होता है और लगभग उस संचारलाइन की विशेषता प्रतिबाधा के समान होता है, प्रतिबाधा से मेल खाने के अतिरिक्त ट्रांसमीटर (या रिसीवर) उम्मीद करता है। मैच को स्टैंडिंग वेव्स (स्टैंडिंग वेव रेशियो; एसडब्ल्यूआर के माध्यम से मापा जाता है) के आयाम को कम करने की मांग की जाती है, जो लाइन पर एक बेमेल उठता है, और संचारलाइन के नुकसान में वृद्धि होती है।

एंटीना पर एंटीना ट्यूनिंग

ऐन्टेना ट्यूनिंग, ऐन्टेना को संशोधित करने के सीमित में, सामान्यतः पर केवल ऐन्टेना टर्मिनलों पर देखी गई किसी भी प्रतिक्रिया को रद्द करने के लिए संदर्भित करता है, केवल एक प्रतिरोधक प्रतिबाधा को छोड़कर जो वास्तव में वांछित प्रतिबाधा ( संचारलाइन की) हो सकती है या नहीं भी हो सकती है।

यद्यपि एक ऐन्टेना को विशुद्ध रूप से प्रतिरोधक फीडपॉइंट प्रतिबाधा (जैसे कि आधा तरंग दैर्ध्य का 97% द्विध्रुवीय) के लिए डिज़ाइन किया जा सकता है, यह उस आवृत्ति पर बिल्कुल सही नहीं हो सकता है जिस पर अंततः इसका उपयोग किया जाता है। ज्यादातर स्थितियों में, सिद्धांत रूप में ऐन्टेना की भौतिक लंबाई को शुद्ध प्रतिरोध प्राप्त करने के लिए काटा जा सकता है, चूंकि यह संभवतः ही कभी सुविधाजनक होता है। दूसरी ओर, एक विपरीत अधिष्ठापन या समाई का उपयोग क्रमशः अवशिष्ट कैपेसिटिव या आगमनात्मक प्रतिक्रिया को रद्द करने के लिए किया जा सकता है, और एंटीना को कम करने से अधिक सुविधाजनक हो सकता है।

एंटीना विद्युत प्रतिक्रिया को लम्प्ड तत्वों का उपयोग करके हटाया जा सकता है, जैसे कि संधारित्र या प्रारंभ करनेवाला ्स, एंटीना को घुमाने वाले मुख्य पथ में, अधिकांशतः फीडपॉइंट के पास, या फीडपॉइंट रिएक्शन को रद्द करने के लिए एंटीना के संचालन निकाय में कैपेसिटिव या अपरिवर्तनीय संरचनाओं को सम्मिलित करके - जैसे कि ओपन-एंडेड स्पोक रेडियल वायर, या लूपेड पैरेलल वायर - इसलिए सेंसु स्ट्रिक्टो एंटीना को रेजोनेंस के लिए ट्यून करते हैं। उन प्रतिक्रिया-बेअसर करने वाले ऐड-ऑन के अतिरिक्त, किसी भी प्रकार के एंटीना में उनके फीडपॉइंट पर एक बालुना सम्मिलित हो सकता है ताकि प्रतिबाधा के प्रतिरोधक भाग को फीडलाइन की विशेषता प्रतिबाधा से अधिक मेल खाने के लिए बदल दिया जा सके।

रेडियो पर रेखा मिलान

एंटीना ट्यूनिंग सार्थक गर्मी , एक प्रतिबाधा मिलान उपकरण द्वारा किया जाता है (कुछ अनुपयुक्त रूप से "एंटीना ट्यूनर" या पुराने, अधिक उपयुक्त शब्द एंटीना ट्यूनर का नाम दिया गया है) केवल प्रतिक्रिया को हटाने से परे है और इसमें फीडलाइन और रेडियो से मेल खाने के लिए शेष प्रतिरोध को बदलना सम्मिलित है।

एक अतिरिक्त समस्या शेष प्रतिरोधक प्रतिबाधा को संचारलाइन की विशेषता प्रतिबाधा से मेल कर रही है: एक सामान्य प्रतिबाधा मिलान नेटवर्क ("एंटीना ट्यूनर" या एटीयू) में प्रतिबाधा के दोनों घटकों को ठीक करने के लिए कम से कम दो समायोज्य तत्व होंगे। संचारण के लिए उपयोग किए जाने पर किसी भी प्रतिबाधा मिलान में बिजली की हानि और बिजली प्रतिबंध दोनों होंगे।

वाणिज्यिक एंटीना सामान्यतः पर मानक आवृत्तियों पर मानक 50 ओम (इकाई) समाक्षीय केबल से मेल खाने के लिए डिज़ाइन किए गए हैं; डिज़ाइन अपेक्षा यह है कि एक मिलान नेटवर्क का उपयोग केवल किसी भी अवशिष्ट बेमेल को 'ट्वीक' करने के लिए किया जाएगा।

लोड किए गए छोटे एंटीना के चरम उदाहरण

कुछ स्थितियों में मिलान अधिक चरम तरीके से किया जाता है, न केवल अवशिष्ट प्रतिक्रिया की एक छोटी मात्रा को रद्द करने के लिए, बल्कि एक एंटीना को प्रतिध्वनित करने के लिए, जिसकी दोलित्र आवृत्ति ऑपरेशन की इच्छित आवृत्ति से काफी भिन्न होती है।

छोटा लंबवत "कोड़ा"

उदाहरण के लिए, व्यावहारिक कारणों से एक "व्हिप एंटीना" को एक चौथाई-तरंग दैर्ध्य की तुलना में काफी छोटा बनाया जा सकता है और फिर तथाकथित लोडिंग कॉइल # रेडियो एंटीना का उपयोग करके प्रतिध्वनित किया जा सकता है।

ऐन्टेना के आधार पर भौतिक रूप से बड़े प्रारंभ करनेवाला में एक आगमनात्मक प्रतिक्रिया होती है जो कैपेसिटिव रिएक्शन के विपरीत होती है जो कि छोटे ऊर्ध्वाधर एंटीना में वांछित ऑपरेटिंग आवृत्ति पर होती है। परिणाम लोडिंग कॉइल के फीडपॉइंट पर देखा गया शुद्ध प्रतिरोध है; चूंकि, आगे के उपायों के बिना, वाणिज्यिक समाक्षीय केबल से मेल खाने के लिए प्रतिरोध कुछ हद तक कम होगा।[citation needed]

छोटा "चुंबकीय" लूप

प्रतिबाधा मिलान का एक और चरम स्थिति अपेक्षाकृत कम आवृत्ति पर एक छोटे लूप एंटीना (सामान्यतः पर, लेकिन हमेशा प्राप्त करने के लिए नहीं) का उपयोग करते समय होता है, जहां यह लगभग एक शुद्ध प्रारंभ करनेवाला के रूप में दिखाई देता है। संचालन की आवृत्ति पर संधारित्र के साथ इस तरह के एक प्रारंभ करनेवाला को प्रतिध्वनित करना न केवल प्रतिक्रिया को रद्द करता है (लेकिन जब एक समानांतर संधारित्र के माध्यम से प्रतिध्वनित होता है) एक बेहतर मिलान वाले फीडपॉइंट प्रतिबाधा का उत्पादन करने के लिए एक लूप एंटीना # small_loop_anchor के बहुत छोटे विकिरण प्रतिरोध को बहुत बढ़ाता है।[citation needed] यह अधिकांश AM प्रसारण रिसीवरों में कार्यान्वित किया जाता है, एक फेराइट (चुंबक) रॉड (एक "लूपस्टिक" एंटीना) के चारों ओर एक छोटा लूप एंटीना घाव के साथ, एक संधारित्र द्वारा प्रतिध्वनित होता है जो रिसीवर को एक नई आवृत्ति पर ट्यून करने के साथ-साथ भिन्न होता है, ताकि AM प्रसारण बैंड पर एंटीना प्रतिध्वनि बनाए रखें

जमीन का प्रभाव

जमीनी परावर्तन बहुपथ के सामान्य प्रकारों में से एक है।[15][16][17] विकिरण पैटर्न और यहां तक ​​कि एक एंटीना के ड्राइविंग बिंदु प्रतिबाधा को ढांकता हुआ स्थिरांक और विशेष रूप से आस-पास की वस्तुओं की विद्युत चालकता से प्रभावित किया जा सकता है। स्थलीय एंटीना के लिए, जमीन सामान्यतः पर ऐसी ही एक महत्वपूर्ण वस्तु होती है। जमीन के ऊपर एंटीना की ऊंचाई, साथ ही जमीन के विद्युत गुण (पारगम्यता और चालकता), तब महत्वपूर्ण हो सकते हैं। इसके अतिरिक्त, एक एकध्रुव एंटीना के विशेष स्थिति में, ग्राउंड (या एक कृत्रिम ग्राउंड प्लेन) एंटीना धारा के लिए रिटर्न संयोजन के रूप में कार्य करता है, इस प्रकार एक अतिरिक्त प्रभाव पड़ता है, विशेष रूप से फीड लाइन द्वारा देखी गई प्रतिबाधा पर।

जब कोई विद्युतचुंबकीय तरंग किसी समतल सतह से टकराती है, जैसे कि जमीन, तो तरंग का एक हिस्सा जमीन में संचरित हो जाता है और फ्रेस्नेल गुणांक के अनुसार इसका कुछ हिस्सा परावर्तित हो जाता है। यदि जमीन एक बहुत अच्छा चालकता है तो लगभग सभी तरंग परावर्तित हो जाती है (चरण से 180 डिग्री), जबकि एक (हानिकारक) ढांकता हुआ के रूप में मॉडलिंग की गई जमीन लहर की शक्ति की एक बड़ी मात्रा को अवशोषित कर सकती है। परावर्तित तरंग में शेष शक्ति, और परावर्तन पर चरण परिवर्तन, लहर के आपतन कोण (प्रकाशिकी) और ध्रुवीकरण (तरंगों) पर दृढ़ता से निर्भर करता है। ढांकता हुआ स्थिरांक और चालकता (या बस जटिल ढांकता हुआ स्थिरांक) मिट्टी के प्रकार पर निर्भर है और आवृत्ति का एक कार्य है।

वीएलएफ से उच्च आवृत्ति (< 30 मेगाहर्ट्ज) के लिए, जमीन एक हानिकारक ढांकता हुआ के रूप में व्यवहार करती है,[18] इस प्रकार जमीन को विद्युत प्रतिरोधकता और चालकता दोनों की विशेषता है[19] और पारगम्यता (ढांकता हुआ स्थिरांक) जिसे किसी दिए गए मिट्टी के लिए मापा जा सकता है (लेकिन नमी के स्तर में उतार-चढ़ाव से प्रभावित होता है) या कुछ मानचित्रों से अनुमान लगाया जा सकता है। कम मध्यम तरंग आवृत्तियों पर जमीन मुख्य रूप से एक अच्छे चालकता के रूप में कार्य करती है, जिस पर AM प्रसारण (0.5–1.7 मेगाहर्ट्ज) एंटीना निर्भर करता है।

3-30 मेगाहर्ट्ज के बीच आवृत्तियों पर, क्षैतिज रूप से ध्रुवीकृत एंटीना से ऊर्जा का एक बड़ा हिस्सा जमीन से परावर्तित होता है, जिसमें जमीनी तरंग प्रसार के लिए महत्वपूर्ण चराई कोणों पर लगभग कुल प्रतिबिंब होता है। वह परावर्तित तरंग, अपने चरण के उलट होने के साथ, तरंग दैर्ध्य और ऊंचाई कोण (आकाश तरंग के लिए) में एंटीना की ऊंचाई के आधार पर, प्रत्यक्ष तरंग को या तो रद्द या सुदृढ़ कर सकती है।

दूसरी ओर, लंबवत ध्रुवीकृत विकिरण जमीन से अच्छी तरह से परावर्तित नहीं होता है, सिवाय चराई की घटनाओं या समुद्र के पानी जैसे बहुत उच्च संवाहक सतहों पर।[20] चूंकि, ऊर्ध्वाधर ध्रुवीकरण का उपयोग करते हुए, ग्राउंड वेव प्रसार के लिए महत्वपूर्ण चराई कोण प्रतिबिंब, प्रत्यक्ष तरंग के साथ चरण में है, जो 6 dB तक की वृद्धि प्रदान करता है, जैसा कि नीचे विवरण दिया गया है।

पृथ्वी द्वारा परावर्तित तरंग को छवि एंटीना द्वारा उत्सर्जित माना जा सकता है।

वीएचएफ और उससे ऊपर (> 30 मेगाहर्ट्ज) पर जमीन खराब परावर्तक बन जाती है। चूंकि, शॉर्टवेव आवृत्तियों के लिए, विशेष रूप से ~ 15 मेगाहर्ट्ज से नीचे, यह विशेष रूप से क्षैतिज ध्रुवीकरण और घटना के चराई कोणों के लिए एक अच्छा परावर्तक बना हुआ है। यह महत्वपूर्ण है क्योंकि ये उच्च आवृत्तियां सामान्यतः पर क्षैतिज लाइन-ऑफ-विज़न प्रसार (उपग्रह संचार को छोड़कर) पर निर्भर करती हैं, फिर जमीन लगभग एक दर्पण के रूप में व्यवहार करती है।

जमीनी परावर्तन की शुद्ध गुणवत्ता सतह की स्थलाकृति पर निर्भर करती है। जब सतह की अनियमितताएं तरंग दैर्ध्य की तुलना में बहुत छोटी होती हैं, तो प्रमुख शासन स्पेक्युलर परावर्तन का होता है, और रिसीवर वास्तविक एंटीना और जमीन के नीचे एंटीना की छवि दोनों को प्रतिबिंब के कारण देखता है। लेकिन अगर तरंगदैर्घ्य की तुलना में जमीन में अनियमितताएं छोटी नहीं हैं, तो प्रतिबिंब सुसंगत नहीं होंगे बल्कि यादृच्छिक चरणों से स्थानांतरित हो जाएंगे। कम तरंग दैर्ध्य (उच्च आवृत्तियों) के साथ, सामान्यतः पर ऐसा ही होता है।

जब भी प्राप्त करने या संचारित करने वाले दोनों एंटीना को जमीन से ऊपर (तरंग दैर्ध्य के सापेक्ष) महत्वपूर्ण ऊंचाई पर रखा जाता है, तो जमीन से परावर्तित तरंगें प्रत्यक्ष तरंगों की तुलना में लंबी दूरी तय करती हैं, एक चरण बदलाव को प्रेरित करती हैं जो कभी-कभी महत्वपूर्ण हो सकती हैं। जब इस तरह के एंटीना द्वारा एक आकाश तरंग लॉन्च की जाती है, तो वह चरण बदलाव हमेशा महत्वपूर्ण होता है जब तक कि एंटीना जमीन के बहुत करीब न हो।

विद्युत चुम्बकीय तरंगों के परावर्तन का चरण आपतित तरंग के ध्रुवीकरण पर निर्भर करता है। जमीन के बड़े अपवर्तनांक को देखते हुए (सामान्यतः पर n≈ 2) हवा की तुलना में (n= 1), क्षैतिज रूप से ध्रुवीकृत विकिरण का चरण परावर्तन पर उलट जाता है, दूसरी ओर तरंग के विद्युत क्षेत्र का ऊर्ध्वाधर घटक लगभग चरण में घटना के चराई कोणों पर परिलक्षित होता है। ये चरण बदलाव एक अच्छे विद्युत चालकता के रूप में तैयार किए गए ग्राउंड पर भी लागू होते हैं।

एंटीना में धाराएं चराई के कोणों पर परावर्तित होने पर विपरीत चरण में एक छवि के रूप में दिखाई देती हैं। यह क्षैतिज रूप से ध्रुवीकृत एंटीना (केंद्र) द्वारा उत्सर्जित तरंगों के लिए एक चरण उलट का कारण बनता है, लेकिन लंबवत ध्रुवीकृत एंटीना (बाएं) के लिए नहीं।

इसका मतलब यह है कि एक प्राप्त करने वाला एंटीना उत्सर्जक एंटीना की एक छवि देखता है, लेकिन 'उलट' धाराओं के साथ (दिशा और चरण में विपरीत) यदि उत्सर्जक एंटीना क्षैतिज रूप से उन्मुख है (और इस प्रकार क्षैतिज रूप से ध्रुवीकृत)। चूंकि, प्राप्त धारा उसी निरपेक्ष दिशा और चरण में होगा यदि उत्सर्जक एंटीना लंबवत ध्रुवीकृत हो।

वास्तविक एंटीना जो मूल तरंग को प्रसारित कर रहा है, उसे भी जमीन से अपनी छवि से एक मजबूत संकेत प्राप्त हो सकता है। यह ऐन्टेना तत्व में एक अतिरिक्त धारा को प्रेरित करेगा, किसी दिए गए फीडपॉइंट वोल्टेज के लिए फीडपॉइंट पर धारा को बदल देगा। इस प्रकार ऐन्टेना की प्रतिबाधा, जो कि फीडपॉइंट वोल्टेज और धारा के अनुपात से दी जाती है, जमीन से ऐन्टेना की निकटता के कारण बदल जाती है। यह काफी महत्वपूर्ण प्रभाव हो सकता है जब एंटीना तरंग दैर्ध्य या जमीन के दो के भीतर हो। लेकिन जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, परावर्तित तरंग की कम शक्ति एंटीना को सिद्धांत द्वारा दिए गए अपने स्पर्शोन्मुख फीडपॉइंट प्रतिबाधा तक पहुंचने की अनुमति देती है। कम ऊंचाई पर, एंटीना के प्रतिबाधा पर प्रभाव जमीन से सटीक दूरी के प्रति बहुत संवेदनशील होता है, क्योंकि यह एंटीना में धाराओं के सापेक्ष परावर्तित तरंग के चरण को प्रभावित करता है। एंटीना की ऊंचाई को एक चौथाई तरंग दैर्ध्य से बदलना, फिर प्रतिबिंब के चरण को 180 ° से बदल देता है, एंटीना के प्रतिबाधा पर पूरी तरह से अलग प्रभाव पड़ता है।

जमीनी परावर्तन का ऊर्ध्वाधर तल में शुद्ध दूर क्षेत्र के विकिरण पैटर्न पर एक महत्वपूर्ण प्रभाव पड़ता है, जो कि ऊंचाई कोण के एक कार्य के रूप में होता है, जो इस प्रकार एक लंबवत और क्षैतिज रूप से ध्रुवीकृत एंटीना के बीच भिन्न होता है। ऊंचाई पर एक एंटीना पर विचार करें h जमीन के ऊपर, ऊंचाई कोण पर मानी जाने वाली लहर को प्रेषित करना θ. एक लंबवत ध्रुवीकृत संचरण के लिए प्रत्यक्ष किरण और परावर्तित किरण द्वारा उत्पादित विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का परिमाण है:

इस प्रकार प्राप्त शक्ति अकेले प्रत्यक्ष तरंग के कारण (जैसे कि कब θ= 0), कोज्या के वर्ग के बाद 4 गुना अधिक हो सकती है। इसके अतिरिक्त क्षैतिज रूप से ध्रुवीकृत उत्सर्जन के प्रतिबिंब के लिए साइन इनवर्जन का परिणाम है:

जहाँ पे:

  • वह विद्युत क्षेत्र है जो जमीन न होने पर प्रत्यक्ष तरंग द्वारा प्राप्त किया जाएगा।
  • θ लहर का उन्नयन कोण माना जा रहा है।
  • तरंगदैर्घ्य है।
  • एंटीना की ऊंचाई है (एंटीना और उसकी छवि के बीच की आधी दूरी)।
एंटीना के विकिरण पैटर्न और उनकी छवियां जमीन से परावर्तित होती हैं। बाईं ओर ध्रुवीकरण लंबवत है और हमेशा अधिकतम होता है θ= 0 . यदि ध्रुवीकरण दाईं ओर क्षैतिज है, तो हमेशा शून्य होता है θ = 0 .

जमीन के पास एक दूसरे से यथोचित दूरी पर स्थित संचारण और प्राप्त एंटेना के बीच क्षैतिज प्रसार के लिए, प्रत्यक्ष और परावर्तित किरणों द्वारा तय की गई दूरी लगभग समान होती है। लगभग कोई सापेक्ष चरण बदलाव नहीं होता है यदि उत्सर्जन लंबवत रूप से ध्रुवीकृत होता है, तो दो क्षेत्र (प्रत्यक्ष और परावर्तित) जुड़ते हैं और अधिकतम प्राप्त संकेत होता है। यदि सिग्नल को क्षैतिज रूप से ध्रुवीकृत किया जाता है, तो दो सिग्नल घट जाते हैं और प्राप्त सिग्नल काफी हद तक रद्द हो जाता है। ऊर्ध्वाधर विमान विकिरण पैटर्न छवि में दाईं ओर दिखाए गए हैं। ऊर्ध्वाधर ध्रुवीकरण के साथ हमेशा अधिकतम होता है θ= 0, क्षैतिज प्रसार (बाएं पैटर्न)। क्षैतिज ध्रुवीकरण के लिए, उस कोण पर रद्दीकरण होता है। ध्यान दें कि उपरोक्त सूत्र और ये भूखंड जमीन को एक आदर्श संवाहक मानते हैं। विकिरण पैटर्न के ये भूखंड ऐन्टेना और इसकी 2.5 λ की छवि के बीच की दूरी के अनुरूप हैं। जैसे-जैसे एंटीना की ऊंचाई बढ़ती है, वैसे-वैसे पालियों की संख्या भी बढ़ती जाती है।

θ = 0 के स्थिति के लिए उपरोक्त कारकों में अंतर है कि अधिकांश प्रसारण लंबवत ध्रुवीकरण का उपयोग करते हैं। जमीन के पास रिसीवर्स के लिए, क्षैतिज रूप से ध्रुवीकृत प्रसारण रद्द हो जाते हैं। सर्वोत्तम स्वागत के लिए इन संकेतों के लिए प्राप्त करने वाले एंटेना इसी तरह लंबवत ध्रुवीकृत होते हैं। कुछ अनुप्रयोगों में जहां प्राप्त एंटीना को किसी भी स्थिति में काम करना चाहिए, जैसे मोबाइल फोन में, बेस स्टेशन एंटेना मिश्रित ध्रुवीकरण का उपयोग करते हैं, जैसे कोण पर रैखिक ध्रुवीकरण (ऊर्ध्वाधर और क्षैतिज दोनों घटकों के साथ) या परिपत्र ध्रुवीकरण मे किया जाता है।

दूसरी ओर, एनालॉग टेलीविजन प्रसारण साधारणतयः क्षैतिज रूप से ध्रुवीकृत होते हैं, क्योंकि शहरी क्षेत्रों में इमारतें विद्युत चुम्बकीय तरंगों को प्रतिबिंबित कर सकती हैं और मल्टीपाथ प्रसार के कारण भूत की छवियां बना सकती हैं। क्षैतिज ध्रुवीकरण का उपयोग करना, घोस्टिंग को कम करता है क्योंकि एक भवन के किनारे क्षैतिज ध्रुवीकरण में प्रतिबिंब की मात्रा साधारणतयः लंबवत दिशा से कम होती है। कुछ ग्रामीण क्षेत्रों में लंबवत ध्रुवीकृत एनालॉग टेलीविजन का उपयोग किया गया है। डिजिटल टेरेस्ट्रियल टेलीविजन में बाइनरी ट्रांसमिशन की मजबूती और त्रुटि सुधार के कारण ऐसे प्रतिबिंब कम समस्याग्रस्त होते हैं।

लाइन समीकरणों के साथ एंटीना मॉडलिंग

पहले सन्निकटन में, पतले एंटीना में धारा वितरित होता है
बिल्कुल संचारलाइन की तरह। - सर्गेई अलेक्जेंडर शेलकुनॉफ और हेराल्ड टी. फ्रिस (1952)[21](p 217 (§8.4))

वायर एंटेना में धारा का प्रवाह एकल चालकता ट्रांसमिशन लाइन में काउंटर-प्रॉपेगेटिंग तरंगों के समाधान के समान है, जिसे टेलीग्राफर के समीकरणों का उपयोग करके हल किया जा सकता है।

एंटीना के तत्वों के साथ धाराओं के समाधान संख्यात्मक तरीकों से अधिक आसानी से और सटीक रूप से प्राप्त किए जाते हैं, इसलिए सटीक मॉडलिंग के लिए ट्रांसमिशन-लाइन तकनीकों को काफी हद तक छोड़ दिया गया है, लेकिन वे उपयोगी, सरल अनुमानों का व्यापक रूप से उपयोग किया जाने वाला स्रोत बने हुए हैं जो अच्छी तरह से प्रतिबाधा प्रोफाइल का वर्णन करते हैं। एंटीना[22](pp 7–10)[21](p 232)

संचारलाइनों के विपरीत, एंटीना में धाराएं विद्युत चुम्बकीय क्षेत्र में शक्ति का योगदान करती हैं, जिसे विकिरण प्रतिरोध का उपयोग करके मॉडल किया जा सकता है।[lower-alpha 1]

एक ऐन्टेना तत्व का अंत एकल-चालकता संचारलाइन लाइन के एक असमाप्त अंत तक मेल खाता है जिसके परिणामस्वरूप घटना तरंग के समान एक परावर्तित तरंग होती है, जिसका वोल्टेज घटना तरंग के साथ चरण में होता है इस प्रकार नेट वोल्टेज को दोगुना कर देता है अंत और विपरीत चरण में इसका प्रवाह होता है ( इस प्रकार शुद्ध शून्य धारा, जहां कोई और चालकता नहीं है)। घटना और परावर्तित तरंग का संयोजन, एक संचरण लाइन की तरह, चालकता के अंत में एक धारा नोड के साथ एक स्थायी तरंग बनाता है, और एक वोल्टेज नोड एक-चौथाई तरंग दैर्ध्य अंत से (यदि तत्व कम से कम इतना लंबा है).[22][21]

विद्युत दोलित्र में, एंटीना का फीडपॉइंट उन वोल्टेज नोड्स में से एक पर होता है। संचारलाइन मॉडल से विसंगतियों के कारण, धारा नोड से एक चौथाई तरंग दैर्ध्य वोल्टेज बिल्कुल शून्य नहीं है, लेकिन यह चालकता के अंत में बहुत बड़े वोल्टेज की तुलना में न्यूनतम और छोटा है। उस बिंदु पर एंटीना को खिलाने में अपेक्षाकृत छोटा वोल्टेज सम्मिलित होता है लेकिन बड़ी धारा (दो तरंगों से धाराएं वहां चरण में जुड़ती हैं), इस प्रकार अपेक्षाकृत कम फीडपॉइंट प्रतिबाधा होती है। अन्य बिंदुओं पर एंटीना को खिलाने में एक बड़ा वोल्टेज सम्मिलित होता है, इस प्रकार एक बड़ा प्रतिबाधा, और सामान्यतः पर एक जो मुख्य रूप से प्रतिक्रियाशील होता है, जो उपलब्ध संचारलाइनों के लिए एक भयानक प्रतिबाधा मैच होता है। इसलिए यह सामान्यतः पर एक एंटीना के लिए एक दोलित्र तत्व के रूप में संचालित करने के लिए वांछित होता है, जिसमें प्रत्येक चालकता की लंबाई एक चौथाई तरंग दैर्ध्य (या एक चौथाई तरंग दैर्ध्य के अन्य विषम गुणक) होती है।

उदाहरण के लिए, एक अर्ध-तरंग द्विध्रुवीय में दो ऐसे तत्व होते हैं एक संतुलित संचरण लाइन के प्रत्येक चालकता से जुड़ा होता है लगभग एक चौथाई तरंगदैर्ध्य लंबा होता है। चालकताों के व्यास के आधार पर, इस लंबाई से एक छोटा विचलन द्विध्रुवीय एंटीना विभिन्न लंबाई के द्विध्रुवों की प्रतिबाधा उस बिंदु तक पहुंचने के लिए जहां एंटीना धारा और फीडपॉइंट वोल्टेज बिल्कुल चरण में है। फिर ऐन्टेना एक विशुद्ध रूप से प्रतिरोधक प्रतिबाधा प्रस्तुत करता है, और आदर्श रूप से एक उपलब्ध संचारलाइन की विशेषता प्रतिबाधा के करीब है। चूंकि दोलित्र ऐंटेना का नुकसान यह है कि वे केवल एक मौलिक आवृत्ति पर दोलित्र विशुद्ध रूप से प्रतिरोधी फीडपॉइंट प्रतिबाधा प्राप्त करते हैं, और संभवतः इसके कुछ लयबद्ध। इसलिए दोलित्र ऐंटेना क्यू कारक के आधार पर सीमित बैंडविड्थ के भीतर ही अपना अच्छा प्रदर्शन Q प्रतिध्वनि पर प्राप्त कर सकते हैं।

एंटीना के बीच पारस्परिक प्रतिबाधा और बातचीत

एक संचालित एंटीना तत्व से निकलने वाले विद्युत और चुंबकीय क्षेत्र सामान्यतः आस-पास के एंटीना, तत्वों या अन्य चालकताों में वोल्टेज और धाराओं को प्रभावित करते हैं। यह विशेष रूप से सच है जब चालकता एक ही आवृत्ति पर दोलित्र तत्व (लंबाई में आधा-तरंग दैर्ध्य ) होता है, तो चालकता एक ही सक्रिय या निष्क्रिय एंटीना सरणी का हिस्सा होते हैं।

क्योंकि प्रभावित चालकता निकट-क्षेत्र में हैं, उदाहरण के लिए शुक्र संचरण समीकरण के अनुसार केवल दो एंटीना को संचारण और सिग्नल प्राप्त करने के रूप में नहीं माना जा सकता है, लेकिन यागी-उडा एंटीना पारस्परिक प्रतिबाधा मैट्रिक्स की गणना करनी चाहिए जो दोनों को ध्यान में रखता है वोल्टेज और धाराएं (विद्युत और चुंबकीय दोनों क्षेत्रों के माध्यम से बातचीत)। इस प्रकार एक विशिष्ट ज्यामिति के लिए गणना पारस्परिक बाधाओं का उपयोग करके की गयी है, कोई यागी-उड़ा एंटीना के विकिरण पैटर्न या एंटीना सरणी के प्रत्येक तत्व के लिए धाराओं और वोल्टेज को हल कर सकता है। इस तरह के विश्लेषण से ग्राउंड प्लेन या कॉर्नर रिफ्लेक्टर एंटीना द्वारा रेडियो तरंगों के परावर्तन और इसके आसपास के एंटीना के प्रतिबाधा पर उनके प्रभाव का विस्तार से वर्णन किया जा सकता है।

प्राय: इस तरह के निकट-क्षेत्रीय अंतःक्रियाएँ अवांछित और हानिकारक होती हैं। एक ट्रांसमिटिंग एंटीना के पास यादृच्छिक धातु की वस्तुओं में धारा प्रायः खराब चालकता में होता है, जिससे एंटीना की विशेषताओं में अप्रत्याशित रूप से परिवर्तन के अतिरिक्त आरएफ शक्ति का नुकसान होता है। और सावधान डिजाइन द्वारा, आस-पास के चालकताों के बीच विद्युत संपर्क को कम करना संभव बनता है। उदाहरण के लिए, घूमने वाला दरवाज़ा ऐन्टेना बनाने वाले दो द्विध्रुवों के बीच 90 डिग्री का कोण इन दोनों के बीच कोई अंतःक्रिया सुनिश्चित नहीं करता है, जिससे इन्हें स्वतंत्र रूप से संचालित किया जा सकता है लेकिन वास्तव में घूमने वाले ऐन्टेना डिज़ाइन में द्विध्रुव चरणों में समान संकेत के साथ होता है।

एंटीना प्रकार

एंटीना को ऑपरेटिंग सिद्धांतों या उनके आवेदन द्वारा वर्गीकृत किया जा सकता है। विभिन्न प्राधिकरणों ने एंटीना को संकीर्ण या व्यापक श्रेणियों में रखा। सामान्यतः इनमें सम्मिलित हैं

इन ऐन्टेना प्रकारों और अन्य को संक्षिप्त विवरण लेख, ऐन्टेना प्रकारों के साथ-साथ ऊपर दी गई सूची में प्रत्येक लिंक किए गए लेखों में और उन लेखों में और भी अधिक विवरण में संक्षेपित किया गया है जिनसे वे लिंक करते हैं।

यह भी देखें

फुटनोट

  1. Excepting full-wave loop antennas, radiation resistance is typically small (tens of Ohms) compared to the antenna element's surge impedance (hundreds of Ohms), and since dry air is a very good insulator, the antenna is often modeled as lossless: R′ = G′ = 0 .[22] The essential loss or gain of voltage due to transmission or reception is usually inserted post-hoc, after the transmission line solutions, although it can be approximately modeled as a small value added to the loss resistance R′, at the expense of working with complex numbers.[21]

संदर्भ

  1. Graf, Rudolf F., ed. (1999). "Antenna". Modern Dictionary of Electronics. Newnes. p. 29. ISBN 978-0750698665.
  2. Marconi, G. (11 December 1909). "Wireless Telegraphic Communication". Nobel Lecture. Archived from the original on 4 May 2007.
    "Physics 1901–1921". Nobel Lectures. Amsterdam: Elsevier Publishing Company. 1967. pp. 196–222, 206.
  3. Slyusar, Vadym (20–23 September 2011). The history of radio engineering's term "antenna" (PDF). VIII International Conference on Antenna Theory and Techniques (ICATT’11). Kyiv, Ukraine. pp. 83–85. Archived (PDF) from the original on 24 February 2014.
  4. Slyusar, Vadym (21–24 February 2012). An Italian period on the history of radio engineering's term "antenna" (PDF). 11th International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012). Lviv-Slavske, Ukraine. p. 174. Archived (PDF) from the original on 24 February 2014.
  5. Slyusar, Vadym (June 2011). "Антенна: история радиотехнического термина" [The Antenna: A history of radio engineering’s term] (PDF). ПЕРВАЯ МИЛЯ / Last Mile: Electronics: Science, Technology, Business (in русский). No. 6. pp. 52–64. Archived (PDF) from the original on 24 February 2014.
  6. "Media Advisory: Apply now to attend the ALMA Observatory inauguration". ESO press release. Archived from the original on 6 December 2012. Retrieved 4 December 2012.
  7. Elliott, Robert S. (1981). Antenna Theory and Design (1st ed.). Wyle. p. 3.
  8. Smith, Carl (1969). Standard Broadcast Antenna Systems. Cleveland, Ohio: Smith Electronics. p. 2-1212.
  9. 9.0 9.1 9.2 Lonngren, Karl Erik; Savov, Sava V.; Jost, Randy J. (2007). Fundamentals of Electomagnetics With Matlab (2nd ed.). SciTech Publishing. p. 451. ISBN 978-1891121586.
  10. 10.0 10.1 10.2 Stutzman, Warren L.; Thiele, Gary A. (2012). Antenna Theory and Design (3rd ed.). John Wiley & Sons. pp. 560–564. ISBN 978-0470576649.
  11. Hall 1991, p. 25.
  12. Hall 1991, pp. 31–32.
  13. 13.0 13.1 Slyusar, V.I. (17–21 September 2007). 60 Years of electrically small antenna theory (PDF). 6th International Conference on Antenna Theory and Techniques. Sevastopol, Ukraine. pp. 116–118. Archived (PDF) from the original on 28 August 2017. Retrieved 2 September 2017.
  14. "Aerial Polar Response Diagrams". ATV/Fracarro.
  15. Fixed Broadband Wireless System Design, p. 130, at Google Books
  16. Monopole Antennas, p. 340, at Google Books
  17. Wireless and Mobile Communication, p. 37, at Google Books
  18. Silver, H. Ward; et al., eds. (2011). ARRL Antenna Book. Newington, Connecticut: American Radio Relay League. p. 3‑2. ISBN 978-0-87259-694-8.
  19. "M3 Map of Effective Ground Conductivity in the United States (a Wall-Sized Map), for AM Broadcast Stations". fcc.gov. 11 December 2015. Archived from the original on 18 November 2015. Retrieved 6 May 2018.
  20. Silver 2011, p. 3‑23
  21. 21.0 21.1 21.2 21.3 Schelkunoff, Sergei A.; Friis, Harald T. (July 1966) [1952]. Antennas: Theory and practice. John Wiley & Sons. LCCN 52-5083.
  22. 22.0 22.1 22.2 Raines, Jeremy Keith (2007). Folded Unipole Antennas: Theory and applications. Electronic Engineering (1st ed.). McGraw Hill. ISBN 978-0-07-147485-6; ISBN 0-07-147485-4

The dictionary definition of antenna at Wiktionary



==