Śrīnivāsa Rāmānujan: Difference between revisions

From Vigyanwiki
(External Links added)
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 75: Line 75:
== References ==
== References ==


<references />
[[Category:Articles with hCards]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Indian Mathematicians]]
[[Category:Mathematics]]
[[Category:Mathematics]]
[[Category:Indian Mathematicians]]
[[Category:Navigational boxes| ]]
<references />
[[Category:Navigational boxes without horizontal lists]]
[[Category:Organic Articles English]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 14:41, 29 November 2022

Śrīnivāsa Rāmānujan
Srinivasa Ramanujan - OPC - 2 (cleaned).jpg
जन्म22 December 1887
Erode
मर गया26 April 1920 (aged 32)
Kumbakonam
पुरस्कारFellow of the Royal Society

Śrīnivāsa Rāmānujan  born Śrīnivāsa Rāmānujan  Aiyangar,  (22 December 1887 – 26 April 1920)[1] was an Indian mathematician who lived during the British Rule in India. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable.

Contributions

Rāmānujan  number :The number 1729. It is known as Rāmānujan  number. It is the smallest number which can be expressed as the sum of two cubes in two different ways.

1729 = 13+ 123= 93+ 103

Infinite Series for π[2]  : Śrīnivāsa Rāmānujan discovered infinite series for π in1910 . The series

Theory of Equations : He derived the formula to solve biquadratic equations.

Asymptotic Formula : He worked on partition of numbers. Using Partition function p(n) derived a number of formulae in order to calculate the partition of numbers

Ramanujan's magic square :

22 12 18 87
88 17 9 25
10 24 89 16
19 86 23 11
  • Sum of numbers of any row is 139
  • Sum of numbers of any column is 139
  • Sum of numbers of any diagonal is 139
  • Sum of corner numbers is 139
  • Top row represents the date of birth Rāmānujan

Ramanujan’s Congruences :

He discovered the congruences

See Also

श्रीनिवास रामानुजन्

External Links

References

  1. "Śrīnivāsa Rāmānujan".
  2. "Srinivasa Ramanujan's Contributions in Mathematics" (PDF).