आईसीटीसीपी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
''मैं सी<sub>T</sub>C<sub>P</sub>'', ''ICtCp'', या ''ITP'' Rec में निर्दिष्ट एक रंग प्रतिनिधित्व प्रारूप है। 2100| रिक. ITU-R BT.2100 मानक जिसका उपयोग [[उच्च गतिशील रेंज]] (HDR) और [[विस्तृत रंग सरगम]] ​​(WCG) इमेजरी के लिए [[वीडियो]] और [[डिजिटल फोटोग्राफी]] प्रणाली में रंगीन छवि पाइपलाइन के एक भाग के रूप में किया जाता है।<ref name="Recommendation2100">{{cite web|url=https://www.itu.int/rec/R-REC-BT.2100/|title=BT.2100-2: Image parameter values for high dynamic range television for use in production and international programme exchange|date=July 2018|website=[[ITU-R]]}}</ref> इसे [[डॉल्बी प्रयोगशालाएँ]] द्वारा विकसित किया गया था<ref name="DolbyICtCpPaperApril2016Dolby" /> एबनेर और फेयरचाइल्ड द्वारा ''आईपीटी''  कलर स्पेस से।<ref name=":0">{{Cite journal|last=Ebner|first=Fritz|date=1998-07-01|title=आईपीटी रंग स्थान की व्युत्पत्ति और मॉडलिंग रंग एकरूपता और विकास|url=https://scholarworks.rit.edu/theses/2858|journal=Theses}}</ref><ref name=":1">F.Ebner, M.D.Fairchild, Development and testing of a color space (IPT) with improved hue uniformity. In: Proceedings of The Sixth Color Imaging Conference, 8-13, 1998 </ref> प्रारूप एक संबद्ध [[आरजीबी]] रंग स्थान से एक [[समन्वय परिवर्तन]] द्वारा प्राप्त होता है जिसमें दो आव्युह परिवर्तन और एक मध्यवर्ती नॉनलाइनियर ट्रांसफर वेरिएबल सम्मिलित होता है जिसे अनौपचारिक रूप से [[गामा सुधार]] | गामा पूर्व-सुधार के रूप में जाना जाता है। परिवर्तन I, C नामक तीन सिग्नल उत्पन्न करता है<sub>T</sub>, और सी<sub>P</sub>. आईसी<sub>T</sub>C<sub>P</sub>परिवर्तन का उपयोग [[अवधारणात्मक क्वांटाइज़र]] (पीक्यू) या हाइब्रिड लॉग-गामा (एचएलजी) गैर-रैखिकता कार्यों से प्राप्त आरजीबी संकेतों के साथ किया जा सकता है, किन्तु यह सामान्यतः पीक्यू वेरिएबल (जिसे डॉल्बी द्वारा भी विकसित किया गया था) से जुड़ा हुआ है।
'''''IC<sub>T</sub>C<sub>P</sub>''''', '''''ICtCp''''', या ''ITP'' Rec में निर्दिष्ट एक रंग प्रतिनिधित्व प्रारूप है। [[Rec. ITU-R BT.2100]]  मानक जिसका उपयोग [[उच्च गतिशील रेंज]] (HDR) और [[विस्तृत रंग सरगम]] ​​(WCG) इमेजरी के लिए [[वीडियो]] और [[डिजिटल फोटोग्राफी]] प्रणाली में रंगीन छवि पाइपलाइन के एक भाग के रूप में किया जाता है।<ref name="Recommendation2100">{{cite web|url=https://www.itu.int/rec/R-REC-BT.2100/|title=BT.2100-2: Image parameter values for high dynamic range television for use in production and international programme exchange|date=July 2018|website=[[ITU-R]]}}</ref> इसे [[डॉल्बी प्रयोगशालाएँ]] द्वारा विकसित किया गया था<ref name="DolbyICtCpPaperApril2016Dolby">{{cite news|url=https://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf|title=What Is ICtCp – Introduction?|access-date=2016-04-20|publisher=Dolby}}</ref> एबनेर और फेयरचाइल्ड द्वारा ''आईपीटी''  कलर स्पेस से।<ref name=":0">{{Cite journal|last=Ebner|first=Fritz|date=1998-07-01|title=आईपीटी रंग स्थान की व्युत्पत्ति और मॉडलिंग रंग एकरूपता और विकास|url=https://scholarworks.rit.edu/theses/2858|journal=Theses}}</ref><ref name=":1">F.Ebner, M.D.Fairchild, Development and testing of a color space (IPT) with improved hue uniformity. In: Proceedings of The Sixth Color Imaging Conference, 8-13, 1998 </ref> प्रारूप एक संबद्ध [[आरजीबी]] रंग स्थान से एक [[समन्वय परिवर्तन]] द्वारा प्राप्त होता है जिसमें दो आव्युह परिवर्तन और एक मध्यवर्ती नॉनलाइनियर ट्रांसफर वेरिएबल सम्मिलित होता है जिसे अनौपचारिक रूप से गामा पूर्व-सुधार के रूप में जाना जाता है। परिवर्तन I, CT और CP नामक तीन सिग्नल उत्पन्न करता है। आईसीटीसीपी परिवर्तन का उपयोग [[अवधारणात्मक क्वांटाइज़र]] (पीक्यू) या हाइब्रिड लॉग-गामा (एचएलजी) गैर-रैखिकता कार्यों से प्राप्त आरजीबी संकेतों के साथ किया जा सकता है, लेकिन यह सामान्यतः पीक्यू वेरिएबल (जिसे डॉल्बी द्वारा भी विकसित किया गया था) से जुड़ा हुआ है।


I (तीव्रता) घटक एक [[लूमा (वीडियो)]] घटक है जो वीडियो की चमक का प्रतिनिधित्व करता है, और C<sub>T</sub>और सी<sub>P</sub>नीले-पीले (रंग अंधापन से नामित) और लाल-हरे (रंग अंधापन से नामित) [[क्रोमिनेंस]] घटक हैं।<ref name="DolbyICtCpPaperApril2016Dolby">{{cite news|url=https://www.dolby.com/us/en/technologies/dolby-vision/ICtCp-white-paper.pdf|title=What Is ICtCp – Introduction?|access-date=2016-04-20|publisher=Dolby}}</ref> एबनेर ने इमेज प्रोसेसिंग ट्रांसफॉर्म के संक्षिप्त रूप में आईपीटी का भी उपयोग किया।<ref name=":0" />
I ("तीव्रता") घटक एक [[लूमा (वीडियो)]] घटक है जो वीडियो की चमक का प्रतिनिधित्व करता है, और C<sub>T</sub>और C<sub>P</sub> नीले-पीले (ट्रिटानोपिया से नामित) और लाल-हरे (प्रोटानोपिया से नामित) [[क्रोमिनेंस]] घटक हैं।<ref name="DolbyICtCpPaperApril2016Dolby" /> एबनेर ने "इमेज प्रोसेसिंग ट्रांसफॉर्म" के संक्षिप्त रूप में आईपीटी का भी उपयोग किया।<ref name=":0" />


आईसी<sub>T</sub>C<sub>P</sub>रंग प्रतिनिधित्व योजना वैचारिक रूप से एलएमएस रंग स्थान से संबंधित है, आरजीबी से आईसी में रंग परिवर्तन के रूप में<sub>T</sub>C<sub>P</sub> इसे पहले 3×3 आव्युह परिवर्तन के साथ आरजीबी को एलएमएस में परिवर्तित करके, फिर नॉनलाइनरिटी वेरिएबल को प्रयुक्त करके, और फिर नॉनलाइनर सिग्नल को आईसी में परिवर्तित करके परिभाषित किया गया है।<sub>T</sub>C<sub>P</sub>एक और 3×3 आव्युह परिवर्तन का उपयोग करना।<ref name="SMPTE2084HDR2014">{{cite web|title=ST 2084:2014|url=https://www.smpte.org/standards/document-index/st|publisher=[[Society of Motion Picture and Television Engineers]]}}</ref> मैं सी<sub>T</sub>C<sub>P</sub> विस्तारित [[विस्तारित प्रदर्शन पहचान डेटा]] 4:4:4, 4:2:2 और 4:2:0 [[क्रोमा सबसैंपलिंग]] के समर्थन के साथ [[YCbCr]] डिजिटल प्रारूप के रूप में परिभाषित किया गया था। CTA-861-H (इसका कारणहै कि सीमित सीमा में 10 बिट मोड 0) , 1, 2, 3, 1020, 1021, 1022, 1023 मान आरक्षित हैं)।<ref>{{Cite web|title=A DTV Profile for Uncompressed High Speed Digital Interfaces (ANSI/CTA-861-H)|url=https://shop.cta.tech/products/a-dtv-profile-for-uncompressed-high-speed-digital-interfaces-cta-861-h|access-date=2021-03-11|website=Consumer Technology Association®|language=en}}</ref>[[File:ICtCp top view.png|500x500px|फ्रेमलेस|दाएं]]
आईसीटीसीपी रंग प्रतिनिधित्व योजना वैचारिक रूप से एलएमएस रंग स्थान से संबंधित है, क्योंकि आरजीबी से आईसीटीसीपी में रंग परिवर्तन को पहले आरजीबी को 3×3 आव्युह परिवर्तन के साथ एलएमएस में परिवर्तित करके, फिर गैर-रैखिकता फ़ंक्शन को लागू करके, और फिर गैर-रेखीय संकेतों को परिवर्तित करके परिभाषित किया जाता है। एक और 3×3 आव्युह परिवर्तन का उपयोग करके आईसीटीसीपी में।[5] ICTCP को CTA-861-H में 4:4:4, 4:2:2 और 4:2:0 [[क्रोमा सबसैंपलिंग]] के समर्थन के साथ [[YCC]] डिजिटल प्रारूप के रूप में परिभाषित किया गया था (इसका कारण  है कि सीमित सीमा में 10 बिट मोड 0, 1, 2) , 3, 1020, 1021, 1022, 1023 मान आरक्षित हैं)।<ref>{{Cite web|title=A DTV Profile for Uncompressed High Speed Digital Interfaces (ANSI/CTA-861-H)|url=https://shop.cta.tech/products/a-dtv-profile-for-uncompressed-high-speed-digital-interfaces-cta-861-h|access-date=2021-03-11|website=Consumer Technology Association®|language=en}}</ref>
 
[[File:ICtCp top view.png|500x500px|फ्रेमलेस|दाएं]]


=='''व्युत्पत्ति'''==
=='''व्युत्पत्ति'''==

Revision as of 11:59, 23 November 2023

ICTCP, ICtCp, या ITP Rec में निर्दिष्ट एक रंग प्रतिनिधित्व प्रारूप है। Rec. ITU-R BT.2100 मानक जिसका उपयोग उच्च गतिशील रेंज (HDR) और विस्तृत रंग सरगम ​​(WCG) इमेजरी के लिए वीडियो और डिजिटल फोटोग्राफी प्रणाली में रंगीन छवि पाइपलाइन के एक भाग के रूप में किया जाता है।[1] इसे डॉल्बी प्रयोगशालाएँ द्वारा विकसित किया गया था[2] एबनेर और फेयरचाइल्ड द्वारा आईपीटी कलर स्पेस से।[3][4] प्रारूप एक संबद्ध आरजीबी रंग स्थान से एक समन्वय परिवर्तन द्वारा प्राप्त होता है जिसमें दो आव्युह परिवर्तन और एक मध्यवर्ती नॉनलाइनियर ट्रांसफर वेरिएबल सम्मिलित होता है जिसे अनौपचारिक रूप से गामा पूर्व-सुधार के रूप में जाना जाता है। परिवर्तन I, CT और CP नामक तीन सिग्नल उत्पन्न करता है। आईसीटीसीपी परिवर्तन का उपयोग अवधारणात्मक क्वांटाइज़र (पीक्यू) या हाइब्रिड लॉग-गामा (एचएलजी) गैर-रैखिकता कार्यों से प्राप्त आरजीबी संकेतों के साथ किया जा सकता है, लेकिन यह सामान्यतः पीक्यू वेरिएबल (जिसे डॉल्बी द्वारा भी विकसित किया गया था) से जुड़ा हुआ है।

I ("तीव्रता") घटक एक लूमा (वीडियो) घटक है जो वीडियो की चमक का प्रतिनिधित्व करता है, और CTऔर CP नीले-पीले (ट्रिटानोपिया से नामित) और लाल-हरे (प्रोटानोपिया से नामित) क्रोमिनेंस घटक हैं।[2] एबनेर ने "इमेज प्रोसेसिंग ट्रांसफॉर्म" के संक्षिप्त रूप में आईपीटी का भी उपयोग किया।[3]

आईसीटीसीपी रंग प्रतिनिधित्व योजना वैचारिक रूप से एलएमएस रंग स्थान से संबंधित है, क्योंकि आरजीबी से आईसीटीसीपी में रंग परिवर्तन को पहले आरजीबी को 3×3 आव्युह परिवर्तन के साथ एलएमएस में परिवर्तित करके, फिर गैर-रैखिकता फ़ंक्शन को लागू करके, और फिर गैर-रेखीय संकेतों को परिवर्तित करके परिभाषित किया जाता है। एक और 3×3 आव्युह परिवर्तन का उपयोग करके आईसीटीसीपी में।[5] ICTCP को CTA-861-H में 4:4:4, 4:2:2 और 4:2:0 क्रोमा सबसैंपलिंग के समर्थन के साथ YCC डिजिटल प्रारूप के रूप में परिभाषित किया गया था (इसका कारण है कि सीमित सीमा में 10 बिट मोड 0, 1, 2) , 3, 1020, 1021, 1022, 1023 मान आरक्षित हैं)।[5]

दाएं

व्युत्पत्ति

मैं सीTCPRec द्वारा परिभाषित किया गया है। 2100 को रैखिक आरजीबी से निम्नानुसार प्राप्त किया जा रहा है:[1]

  1. BT.2100 RGB से LMS कलर स्पेस की गणना करें:
  2. गैर-रैखिकता द्वारा एलएमएस को सामान्यीकृत करें:
    • यदि अवधारणात्मक क्वांटाइज़र का उपयोग किया जाता है:
    • यदि हाइब्रिड लॉग-गामा का उपयोग किया जाता है:
  3. आईसी की गणना करेंTCP:
    • पीक्यू के लिए:
    • ऑप्टो-इलेक्ट्रॉनिक ट्रांसफर वेरिएबल के लिए:

उपर्युक्त सभी तीन आव्युह व्युत्पन्न किए गए थे (केवल पहले 2 प्रलेखित व्युत्पत्तियाँ हैं [2] आईपीटी में आव्युह से. एचएलजी आव्युह को पीक्यू आव्युह की तरह ही प्राप्त किया जा सकता है, जिसमें एकमात्र अंतर क्रोमा पंक्तियों की स्केलिंग का है। उलटा डिकोडिंग आईसीTCPआव्युह आईटीयू-टी श्रेणी एच अनुपूरक 18 में निर्दिष्ट हैं।[6]

मैं सीTCP परिभाषित किया गया है कि संपूर्ण BT.2020 स्पेस I के लिए [0, 1] और दो क्रोमा घटकों के लिए [-0.5, +0.5] की सीमा में फिट बैठता है। संबंधित समान रंग स्थान ITP का उपयोग ΔE में किया जाता हैITP (Rec. 2124) तराजू सीT एकरूपता बहाल करने के लिए 0.5 से।[7] एचएलजी और पीक्यू दोनों के लिए ज़िमग (एफएफएमपीईजी के हिस्से के रूप में ज़िमग सहित) और रंग-विज्ञान में आईसीटीसीपी के लिए समर्थन है।

आईपीटी में

आईसी से पूर्ववर्तीTCP, एबनेर और फेयरचाइल्ड 'आईपीटी' रंग उपस्थिति मॉडल (1998), में इनपुट → एलएमएस → गैर-रैखिकता → आईपीटी की अधिकतर समान परिवर्तन पाइपलाइन है।[3][8] अंतर यह है कि यह अपने इनपुट को अधिक सामान्य CIEXYZ ट्रिस्टिमुलस कलर स्पेस में परिभाषित करता है और परिणामस्वरूप LMS के लिए अधिक पारंपरिक हंट-पॉइंटर-एस्टेवेज़ (D65 के लिए) आव्युह होता है। गैर-रैखिकता एक गामा सुधार#वीडियो डिस्प्ले के लिए पावर नियम है|0.43 का निश्चित गामा, आरएलएबी द्वारा उपयोग किए जाने वाले गामा के अधिक करीब है। यहां दूसरा आव्युह आईसी से थोड़ा भिन्न हैTCPआव्युह, मुख्य रूप से तीव्रता के लिए एस (नीला शंकु) भी मानता है, किन्तु आईसीTCPइसमें रोटेशन आव्युह (त्वचा टोन को संरेखित करने के लिए) और अदिश आव्युह (-0.5 से 0.5 क्षेत्र के अंदर पूर्ण बीटी.2020 सरगम ​​​​को फिट करने के लिए स्केल किया गया) को इस आव्युह से गुणा किया गया है:[2][9]

  1. एलएमएस की गणना करें (देखें LMS color space § Hunt, RLAB D65 के लिए, थोड़ा भिन्न[3]):
  2. गैर-रैखिकता (एल'एम'एस'): एल, एम, एस घटकों में से प्रत्येक के लिए गामा सुधार:


आईपीटीपीक्यूसी2

IPTPQc2 डॉल्बी विजन प्रोफाइल 5 बीएल+आरपीयू (ईएल के बिना) द्वारा उपयोग किया जाने वाला एक अन्य संबंधित कलरस्पेस है।[10] नाम में c2 का अर्थ है कि एक क्रॉस टॉक आव्युह का उपयोग c = 2% के साथ किया जाता है। यह पूर्ण श्रेणी परिमाणीकरण (10 बिट वीडियो के लिए 0-1023, कोई मान आरक्षित नहीं) का उपयोग करता है। इसे अधिकांशतः IPTPQc2/IPT के रूप में भी जाना जाता है, क्योंकि आव्युह वास्तव में 1998 के IPT पेपर के समान ही है, बस उलटे प्रतिनिधित्व में।[11] इस प्रारूप पर दस्तावेज़ीकरण इसकी मालिकाना प्रकृति के कारण दुर्लभ है, किन्तु एक पेटेंट है[12] IPT-PQ (अवधारणात्मक रूप से परिमाणित IPT) रंग स्थान पर ऐसा प्रतीत होता है कि डॉल्बी ने प्रत्येक एलएमएस घटक के लिए पारंपरिक पावर फ़ंक्शन को 1998 के आईपीटी पेपर से पीक्यू फ़ंक्शन में बदलकर डोमेन को पीक्यू में कैसे बदल दिया।[speculation?] आव्युह इस प्रकार है:

उपयोग किए गए आव्युह व्युत्क्रम पर ध्यान दें और 1091 नंबर में पेटेंट में एक त्रुटि की गई थी आव्युह का (उलटा होने के पश्चात् का आव्युह पेटेंट में सही है)। इसके अतिरिक्त, इस प्रारूप में कोई गैर-रैखिकता नहीं है, और इसे BT.2020-आधारित माना जाता है।[13]

दूसरा चरण, डायनामिक रेंज एडजस्टमेंट मॉडलिंग (रीशेपिंग)।[14]), को पेटेंट में भी परिभाषित किया गया है।

इसका उपयोग डिज़्नी+, एप्पल टीवी+ और NetFlix द्वारा किया जाता है।

रीशेपिंग और एमएमआर (किन्तु कोई एनएलक्यू और डायनेमिक मेटाडेटा नहीं) के साथ आईपीटीपीक्यूसी2 का डिकोडर लिबप्लेसबो में उपलब्ध है।[15]

एमपीवी (मीडिया प्लेयर) में सभी चरणों को डिकोड करने के लिए समर्थन जोड़ा गया था।

विशेषताएँ

मैं सीTCPइसमें लगभग स्थिर चमक होती है, जो YCbCr|YC की तुलना में क्रोमा सबसैंपलिंग में सुधार करती हैBCR.[16] मैं सीTCPYC की तुलना में रंग की रैखिकता में भी सुधार होता हैBCR, जो संपीड़न प्रदर्शन और रंग वॉल्यूम मानचित्रण में सहायता करता है।[17][18] जब अनुकूली पुनर्आकार आईसी के साथ जोड़ा जाता हैTCPसंपीड़न प्रदर्शन को 10% तक सुधार सकता है।[19] CIEDE2000 रंग परिमाणीकरण त्रुटियों के लिए, 10-बिट आईसीTCP11.5 बिट YC के सामान्तर होगाBCR,[2]इसीलिए रंग में अंतर#Rec. आईटीयू-आर बीटी.2124 या ΔEITP|ΔEITPमानक को ITU-R Rec के रूप में प्रस्तुत किया गया था। बीटी.2124[20] और कैलमैन में पहले से ही उपयोग किया जा रहा है। आईसी के साथ ल्यूमिनेंस स्थिरता में सुधार होता हैTCP, जिसमें ल्यूमा (वीडियो) और एन्कोडेड चमक के मध्य 0.998 का ​​ल्यूमिनेंस पियर्सन सहसंबंध गुणांक है, जबकि YCBCRइसका चमकदार संबंध 0.819 है।[2] उत्तम स्थिर चमक रंग प्रसंस्करण कार्यों जैसे क्रोमा सबसैंपलिंग और सरगम मानचित्रण के लिए एक लाभ है, जहां केवल रंग अंतर की जानकारी बदली जाती है।[2]

उपयोग

मैं सीTCPHEVC वीडियो कोडिंग मानक में समर्थित है।[21] यह एक डिजिटल वाईसीसी प्रारूप भी है और इसे सीटीए-861-एच के हिस्से के रूप में विस्तारित डिस्प्ले आइडेंटिफिकेशन डेटा के कलरमेट्री ब्लॉक में सिग्नल किया जा सकता है।

संदर्भ

  1. 1.0 1.1 "BT.2100-2: Image parameter values for high dynamic range television for use in production and international programme exchange". ITU-R. July 2018.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 "What Is ICtCp – Introduction?" (PDF). Dolby. Retrieved 2016-04-20.
  3. 3.0 3.1 3.2 3.3 Ebner, Fritz (1998-07-01). "आईपीटी रंग स्थान की व्युत्पत्ति और मॉडलिंग रंग एकरूपता और विकास". Theses.
  4. F.Ebner, M.D.Fairchild, Development and testing of a color space (IPT) with improved hue uniformity. In: Proceedings of The Sixth Color Imaging Conference, 8-13, 1998
  5. "A DTV Profile for Uncompressed High Speed Digital Interfaces (ANSI/CTA-861-H)". Consumer Technology Association® (in English). Retrieved 2021-03-11.
  6. "आईटीयू-टी अनुशंसा डेटाबेस". ITU (in English). hdl:11.1002/1000/13441. Retrieved 2020-11-14.{{cite web}}: CS1 maint: url-status (link)
  7. "Recommendation ITU-R BT.2124-0 Objective metric for the assessment of the potential visibility of colour differences in television" (PDF). January 2019.
  8. Ebner, Fritz; Fairchild, Mark D. (1998-01-01). "बेहतर रंग एकरूपता के साथ कलर स्पेस (आईपीटी) का विकास और परीक्षण". Color and Imaging Conference. 1998 (1): 8–13.closed access
  9. Xue, Yang (1 November 2008). "Uniform color spaces based on CIECAM02 and IPT color difference equations". RITTheses: 7.
  10. Dolby. "Dolby Vision Profiles and Levels Version 1.3.2 - Specification" (PDF). Archived from the original (PDF) on 29 September 2020. Retrieved 27 April 2021.
  11. "Dolby Vision with wrong colors · Issue #7326 · mpv-player/mpv". GitHub (in English).
  12. US patent 20180131938A1, Lu, Taoran; Pu, Fangjun & Yin, Peng et al., "आईपीटी-पीक्यू कलर स्पेस में सिग्नल को दोबारा आकार देना और कोडिंग करना", published 2018-05-10, issued 2019-11-19, assigned to Dolby Laboratories Licensing Corp 
  13. "testing-av/testing-video: IPTPQc2.java". GitHub (in English).
  14. "ईटीएम संदर्भ सॉफ्टवेयर में रिशेपर पैरामीटर व्युत्पत्ति प्रक्रिया का विवरण". phenix.it-sudparis.eu. Retrieved 2020-11-14.
  15. "colorspace: add support for Dolby Vision (!207) · Merge requests · VideoLAN / libplacebo". GitLab (in English). Retrieved 2021-12-11.
  16. "ICtCp बनाम YCbCr में सबसैंपलिंग" (PDF). Dolby Laboratories, Inc. Archived from the original (PDF) on 20 September 2020. {{cite web}}: |archive-date= / |archive-url= timestamp mismatch (help)
  17. "उच्च गतिशील रेंज और वाइड कलर गैमट वीडियो वितरण के लिए आईटीपी कलर स्पेस और इसका संपीड़न प्रदर्शन". ZTE.
  18. Cotton, Andrew; Thompson, Simon (2018). "Scene-light conversions: the key to enabling live HDR production". SMPTE 2018. pp. 10–11. doi:10.5594/M001822. ISBN 978-1-61482-960-7. S2CID 188363770.
  19. "आईसीटीसीपी रंग स्थान का मूल्यांकन और एचडीआर और डब्ल्यूसीजी के लिए एक अनुकूली रिशेपर". IEEE. 2018. doi:10.1109/MCE.2017.2714696. S2CID 4800923. {{cite journal}}: Cite journal requires |journal= (help)
  20. "BT.2124: Objective metric for the assessment of the potential visibility of colour differences in television". www.itu.int. Retrieved 24 June 2020.
  21. Peng Yin; Chad Fogg; Gary J. Sullivan; Alexis Michael Tourapis (2016-03-19). "एचईवीसी में आईसीटीसीपी समर्थन के लिए मसौदा पाठ (ड्राफ्ट 1)". JCT-VC. Retrieved 2016-04-20.