विग्नर-वेइल ट्रांसफॉर्म: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Mapping between functions in the quantum phase space}}
{{short description|Mapping between functions in the quantum phase space}}[[क्वांटम यांत्रिकी]] में, '''विग्नर-वेइल ट्रांसफॉर्म''' अथवा '''वेइल-विग्नर ट्रांसफॉर्म''' ([[हरमन वेइल]] और [[यूजीन विग्नर]] के पश्चात्) श्रोडिंगर चित्र में क्वांटम प्रावस्था-समष्टि सूत्रीकरण और [[ हिल्बर्ट स्थान |हिल्बर्ट समष्टि]] [[ऑपरेटर (गणित)|संकारकों (गणित)]] में फलनों के मध्य व्युत्क्रम मैपिंग है।
{{Redirect|वेइल ट्रांसफॉर्म|सामान्य सापेक्षता में ट्रांसफॉर्मेशन|वेइल ट्रांसफॉर्मेशन}}


[[क्वांटम यांत्रिकी]] में, '''विग्नर-वेइल ट्रांसफॉर्म''' या '''वेइल-विग्नर ट्रांसफॉर्म''' ([[हरमन वेइल]] और [[यूजीन विग्नर]] के पश्चात्) श्रोडिंगर चित्र में क्वांटम [[चरण स्थान सूत्रीकरण|प्रावस्था-समष्टि सूत्रीकरण]] और [[ हिल्बर्ट स्थान |हिल्बर्ट समष्टि]] [[ऑपरेटर (गणित)|संकारकों (गणित)]] में फलनों के मध्य व्युत्क्रम मैपिंग है।
अधिकांशतः प्रावस्था-समष्‍टि पर फलनों से लेकर संकारकों तक की मैपिंग को '''वेइल ट्रांसफॉर्म''' अथवा '''वेइल परिमाणीकरण''' कहा जाता है, जबकि प्रावस्था-समष्‍टि पर संकारकों से फलनों तक की व्युत्क्रम मैपिंग को '''विग्नर ट्रांसफॉर्म''' कहा जाता है। यह मैपिंग मूल रूप से 1927 में हरमन वेइल द्वारा संकारकों के लिए सममित प्रावस्था-समष्‍टि फलनों को मैप करने के प्रयास में प्रस्तुत की गई थी, जिसे ''वेइल परिमाणीकरण'' के रूप में भी जाना जाता है।<ref>
 
अधिकांशतः प्रावस्था-समष्‍टि पर फलनों से लेकर संकारकों तक की मैपिंग को वेइल ट्रांसफॉर्म या वेइल परिमाणीकरण कहा जाता है, जबकि प्रावस्था-समष्‍टि पर संकारकों से फलनों तक की व्युत्क्रम मैपिंग को विग्नर ट्रांसफॉर्म कहा जाता है। यह मैपिंग मूल रूप से 1927 में हरमन वेइल द्वारा संकारकों के लिए सममित प्रावस्था-समष्‍टि फलनों को मैप करने के प्रयास में प्रस्तुत की गई थी, जिसे ''वेइल परिमाणीकरण'' के रूप में भी जाना जाता है।<ref>
{{cite journal
{{cite journal
  |last=Weyl |first=H.
  |last=Weyl |first=H.
Line 18: Line 15:
वेइल-विग्नर ट्रांसफॉर्म प्रावस्था-समष्‍टि और संकारक अभ्यावेदन के मध्य उचित रूप से परिभाषित इंटीग्रल ट्रांसफॉर्म है, और क्वांटम यांत्रिकी के कार्यचालन में अंतर्दृष्टि प्रदान करता है। अत्यंत महत्वपूर्ण तथ्य यह है कि विग्नर अर्ध-संभाव्यता वितरण क्वांटम [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] का विग्नर ट्रांसफॉर्म है, और, इसके विपरीत, घनत्व आव्यूह विग्नर फलन का वेइल ट्रांसफॉर्म है।
वेइल-विग्नर ट्रांसफॉर्म प्रावस्था-समष्‍टि और संकारक अभ्यावेदन के मध्य उचित रूप से परिभाषित इंटीग्रल ट्रांसफॉर्म है, और क्वांटम यांत्रिकी के कार्यचालन में अंतर्दृष्टि प्रदान करता है। अत्यंत महत्वपूर्ण तथ्य यह है कि विग्नर अर्ध-संभाव्यता वितरण क्वांटम [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] का विग्नर ट्रांसफॉर्म है, और, इसके विपरीत, घनत्व आव्यूह विग्नर फलन का वेइल ट्रांसफॉर्म है।


कंसिस्टेंट परिमाणीकरण योजना के अन्वेषण में वेइल के मूल विचारों के विपरीत, यह मैप केवल क्वांटम यांत्रिकी के भीतर अभ्यावेदन में परिवर्तन के समान है; इसे क्लासिकल को क्वांटम राशियों से संयोजित करने की आवश्यकता नहीं है। उदाहरण के लिए, प्रावस्था-समष्‍टि फलन स्पष्ट रूप से प्लैंक के स्थिरांक ħ पर निर्भर हो सकता है, जैसा कि कोणीय गति से संयोजित कुछ परिचित स्थितियों में होता है। यह व्युत्क्रम अभ्यावेदन परिवर्तन किसी को प्रावस्था-समष्‍टि में क्वांटम यांत्रिकी को व्यक्त करने की अनुमति देता है, जिस प्रकार 1940 के दशक में हिलब्रांड जे. ग्रोएनवॉल्ड और जोस एनरिक मोयल द्वारा इसकी सराहना की गयी थी।<ref>
कंसिस्टेंट परिमाणीकरण योजना के अन्वेषण में वेइल के मूल विचारों के विपरीत, यह मैप केवल क्वांटम यांत्रिकी के भीतर अभ्यावेदन में परिवर्तन के समान है; इसे क्लासिकल को क्वांटम राशियों से संयोजित करने की आवश्यकता नहीं है। इस प्रकार उदाहरण के लिए, प्रावस्था-समष्‍टि फलन स्पष्ट रूप से प्लैंक के स्थिरांक ħ पर निर्भर हो सकता है, जैसा कि कोणीय गति से संयोजित कुछ परिचित स्थितियों में होता है। यह व्युत्क्रम अभ्यावेदन परिवर्तन किसी को प्रावस्था-समष्‍टि में क्वांटम यांत्रिकी को व्यक्त करने की अनुमति देता है, जिस प्रकार 1940 के दशक में हिलब्रांड जे. ग्रोएनवॉल्ड और जोस एनरिक मोयल द्वारा इसकी सराहना की गयी थी।<ref>
{{cite journal
{{cite journal
  |last=Groenewold |first=H. J.
  |last=Groenewold |first=H. J.
Line 42: Line 39:


== सामान्य अवलोकनीय के वेइल परिमाणीकरण की परिभाषा ==
== सामान्य अवलोकनीय के वेइल परिमाणीकरण की परिभाषा ==
निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक {{math|''(q,p)''}} हैं और {{math|''f''}} प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों P और Q को उचित करते हैं। हम मानते हैं कि घातांक संकारक <math>e^{iaQ}</math> और <math>e^{ibP}</math> वेइल संबंधों का अलघुकरणीय प्रतिनिधित्व बनाते हैं जिससे स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता का आश्वासन) स्थिर रहे।
निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक {{math|''(q,p)''}} हैं और {{math|''f''}} प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों P और Q को उचित करते हैं। इस प्रकार हम मानते हैं कि घातांक संकारक <math>e^{iaQ}</math> और <math>e^{ibP}</math> वेइल संबंधों का अलघुकरणीय प्रतिनिधित्व बनाते हैं जिससे स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता का आश्वासन) स्थिर रहे।


===मूल सूत्र===
===मूल सूत्र===


फलन {{mvar|f}} का '''वेइल ट्रांसफॉर्म''' (या '''वेइल परिमाणीकरण''') हिल्बर्ट समष्टि में निम्नलिखित संकारक द्वारा दिया गया है,<ref name="Zachos" />  
फलन {{mvar|f}} का '''वेइल ट्रांसफॉर्म''' (अथवा '''वेइल परिमाणीकरण''') हिल्बर्ट समष्टि में निम्नलिखित संकारक द्वारा दिया गया है,<ref name="Zachos" />  
{{Equation box 1
{{Equation box 1
|indent =::
|indent =::
Line 55: Line 52:
|border colour = #0073CF
|border colour = #0073CF
|background colour=#F9FFF7}}
|background colour=#F9FFF7}}
पूर्णतया, ħ प्लैंक स्थिरांक है।
इस प्रकार पूर्णतया, ħ प्लैंक स्थिरांक है।


उपरोक्त सूत्र में सर्वप्रथम {{mvar|p}} और {{mvar|q}} समाकलों को निष्पादित करना अनुदेशात्मक है, जिसमें ऑपरेटर <math>e^{i(aQ+bP)}</math> को त्यागते समय फलन {{mvar|f}} के सामान्य फूरियर ट्रांसफॉर्म <math>\tilde{f}</math> की गणना करने का प्रभाव होता है। उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है-<ref>{{harvnb|Hall|2013}} Section 13.3</ref>
उपरोक्त सूत्र में सर्वप्रथम {{mvar|p}} और {{mvar|q}} समाकलों को निष्पादित करना अनुदेशात्मक है, जिसमें ऑपरेटर <math>e^{i(aQ+bP)}</math> को त्यागते समय फलन {{mvar|f}} के सामान्य फूरियर ट्रांसफॉर्म <math>\tilde{f}</math> की गणना करने का प्रभाव होता है। उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है-<ref>{{harvnb|Hall|2013}} Section 13.3</ref>
Line 100: Line 97:
'''अवलोकनीय बहुपद का वेइल परिमाणीकरण'''
'''अवलोकनीय बहुपद का वेइल परिमाणीकरण'''


जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर अत्यंत सामान्य अवलोकनीय वेइल परिमाणीकरण उत्तम प्रकार से अध्ययन करते हैं, वे सरल अवलोकनों पर गणना के लिए अधिक सुविधाजनक नहीं हैं, जैसे कि वे जो <math>q</math> और <math>p</math> में बहुपद हैं। जिसके पश्चात् के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल परिमाणीकरण नॉनकम्यूटिंग संकारकों <math>Q</math> और <math>P</math> के पूर्ण रूप से सममित क्रम का प्रतिनिधित्व करता है।
जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर अत्यंत सामान्य अवलोकनीय वेइल परिमाणीकरण का उत्तम प्रकार से अध्ययन करते हैं, इस प्रकार से वे सरल अवलोकनों पर गणना के लिए अधिक सुविधाजनक नहीं हैं, जैसे कि वे जो <math>q</math> और <math>p</math> में बहुपद हैं। जिसके पश्चात् के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल परिमाणीकरण नॉनकम्यूटिंग संकारकों <math>Q</math> और <math>P</math> के पूर्ण रूप से सममित क्रम का प्रतिनिधित्व करता है।


उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक '''L<sup>2</sup>''' का विग्नर मैप न केवल वास्तविक कोणीय गति का वर्ग है, अपितु इसमें ऑफसेट शब्द {{math|&minus;3''ħ''<sup>2</sup>/2}} भी सम्मिलित है, जो ग्राउंड-स्टेट [[बोह्र मॉडल]] की लुप्त न होने वाले कोणीय गति के लिए उत्तरदायी है।
उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक '''L<sup>2</sup>''' का विग्नर मैप न केवल वास्तविक कोणीय गति का वर्ग है, अपितु इसमें ऑफसेट शब्द {{math|&minus;3''ħ''<sup>2</sup>/2}} भी सम्मिलित है, जो ग्राउंड-स्टेट [[बोह्र मॉडल]] की लुप्त न होने वाले कोणीय गति के लिए उत्तरदायी है।
Line 113: Line 110:
उदाहरण के लिए, हमारे निकट है-
उदाहरण के लिए, हमारे निकट है-
:<math>6 p^2 q^2 ~~ \longmapsto ~~ P^2 Q^2 + Q^2  P^2 + PQPQ+PQ^2P+QPQP+QP^2Q.</math>
:<math>6 p^2 q^2 ~~ \longmapsto ~~ P^2 Q^2 + Q^2  P^2 + PQPQ+PQ^2P+QPQP+QP^2Q.</math>
यद्यपि यह परिणाम वैचारिक रूप से स्वाभाविक है, किन्तु <math>k</math> और <math>l</math> के अधिक होने पर यह गणना के लिए सुविधाजनक नहीं है। ऐसी स्थितियों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं-<ref>McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", ''Proc Nat Acad Sci USA'' '''19''' 674, [https://www.jstor.org/stable/85974?seq=1#page_scan_tab_contents online] .</ref>
यद्यपि यह परिणाम वैचारिक रूप से स्वाभाविक है, किन्तु <math>k</math> और <math>l</math> के अधिक होने पर यह गणना के लिए सुविधाजनक नहीं है। इस प्रकार की स्थितियों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं-<ref>McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", ''Proc Nat Acad Sci USA'' '''19''' 674, [https://www.jstor.org/stable/85974?seq=1#page_scan_tab_contents online] .</ref>
:<math>  p^m q^n ~~ \longmapsto ~~ {1 \over 2^n}  
:<math>  p^m q^n ~~ \longmapsto ~~ {1 \over 2^n}  
\sum_{r=0}^{n} {n \choose r}  
\sum_{r=0}^{n} {n \choose r}  
Q^r  P^m  Q^{n-r}={1 \over 2^m}\sum_{s=0}^{m} {m \choose s} P^s Q^{n}P^{m-s}.</math>
Q^r  P^m  Q^{n-r}={1 \over 2^m}\sum_{s=0}^{m} {m \choose s} P^s Q^{n}P^{m-s}.</math>
यह अभिव्यक्ति उपरोक्त पूर्ण रूप से सममित अभिव्यक्ति से <math>p^2 q^2</math> की इस स्थिति के लिए स्पष्ट रूप से भिन्न उत्तर देती है। यद्यपि, इसमें कोई विरोधाभास नहीं है, क्योंकि विहित रूपान्तरण संबंध ही संकारक के लिए से अधिक अभिव्यक्ति की अनुमति देते हैं। (पाठक को संकारक <math>P^2Q^2</math>, <math>QP^2Q</math>, और <math>Q^2P^2</math> के संदर्भ में <math>p^2q^2</math> की स्थिति के लिए पूर्ण रूप से सममित सूत्र को पुनः लिखने और मैककॉय के सूत्र में प्रथम अभिव्यक्ति को <math>m=n=2</math> के साथ सत्यापित करने के लिए कम्यूटेशन संबंधों का उपयोग करना अनुदेशात्मक लग सकता है।)
यह अभिव्यक्ति उपरोक्त पूर्ण रूप से सममित अभिव्यक्ति से <math>p^2 q^2</math> की इस स्थिति के लिए स्पष्ट रूप से भिन्न उत्तर देती है। यद्यपि, इसमें कोई विरोधाभास नहीं है, क्योंकि विहित रूपान्तरण संबंध ही संकारक के लिए अधिक अभिव्यक्ति की अनुमति देते हैं। (पाठक को संकारक <math>P^2Q^2</math>, <math>QP^2Q</math>, और <math>Q^2P^2</math> के संदर्भ में <math>p^2q^2</math> की स्थिति के लिए पूर्ण रूप से सममित सूत्र को पुनः लिखने और मैककॉय के सूत्र में प्रथम अभिव्यक्ति को <math>m=n=2</math> के साथ सत्यापित करने के लिए कम्यूटेशन संबंधों का उपयोग करना अनुदेशात्मक लग सकता है।)


यह व्यापक रूप से माना जाता है कि वेइल परिमाणीकरण, सभी परिमाणीकरण योजनाओं के मध्य, क्वांटम पक्ष पर कम्यूटेटर के वास्तविक पक्ष पर पॉइसन ब्रैकेट को मैप करने के जितना संभव हो उतना निकट आता है। (ग्रोएनवॉल्ड के प्रमेय के प्रकाश में, त्रुटिहीन अनुरूपता असंभव है।) उदाहरण के लिए, मोयल ने दर्शाया है-
इस प्रकार यह व्यापक रूप से माना जाता है कि वेइल परिमाणीकरण, सभी परिमाणीकरण योजनाओं के मध्य, क्वांटम पक्ष पर कम्यूटेटर के वास्तविक पक्ष पर पॉइसन ब्रैकेट को मैप करने के जितना संभव हो उतना निकट आता है। (ग्रोएनवॉल्ड के प्रमेय के प्रकाश में, त्रुटिहीन अनुरूपता असंभव है।) उदाहरण के लिए, मोयल ने दर्शाया है-
:'''प्रमेय''': यदि <math>f(q,p)</math> अधिकतम 2 और घात वाला बहुपद है, और <math>g(q,p)</math> आरबिटरेरी बहुपद है, तो हमारे निकट <math>\Phi(\{f,g\})=\frac{1}{i\hbar}[\Phi(f),\Phi(g)]</math> है।
:'''प्रमेय''': यदि <math>f(q,p)</math> अधिकतम '''2''' और घात वाला बहुपद है, और <math>g(q,p)</math> आरबिटरेरी बहुपद है, तो हमारे निकट <math>\Phi(\{f,g\})=\frac{1}{i\hbar}[\Phi(f),\Phi(g)]</math> है।


===सामान्य फलनों का वेइल परिमाणीकरण===
===सामान्य फलनों का वेइल परिमाणीकरण===
* यदि {{math|''f''}} वास्तविक-मान फलन है, तब इसकी वेइल-मैप छवि {{math|''Φ''[''f'']}} सेल्फ-एडजॉइंट है।
* यदि {{math|''f''}} वास्तविक-मान फलन है, तब इसकी वेइल-मैप छवि {{math|''Φ''[''f'']}} सेल्फ-एडजॉइंट है।
* यदि {{math|''f''}} [[ श्वार्ट्ज स्थान |श्वार्ट्ज समष्टि]] का अवयव है, तो {{math|''Φ''[''f'']}} [[ ट्रेस-वर्ग |ट्रेस-वर्ग]] है।
* यदि {{math|''f''}} [[ श्वार्ट्ज स्थान |श्वार्ट्ज समष्टि]] का अवयव है, तो {{math|''Φ''[''f'']}} ट्रेस-वर्ग है।
* अधिक सामान्य रूप से, {{math|''Φ''[''f'']}} सघन रूप से परिभाषित [[अनबाउंड ऑपरेटर|अनबाउंड संकारक]] है।
* अधिक सामान्य रूप से, {{math|''Φ''[''f'']}} सघन रूप से परिभाषित [[अनबाउंड ऑपरेटर|अनबाउंड संकारक]] है।
* यह मैप {{math|''Φ''[''f'']}} श्वार्ट्ज समष्टि पर (वर्ग-समाकलनीय फलनों की उप-समष्टि के रूप में) है।
* यह मैप {{math|''Φ''[''f'']}} श्वार्ट्ज समष्टि पर (वर्ग-समाकलनीय फलनों की उप-समष्टि के रूप में) है।


==विरूपण परिमाणीकरण==
==विरूपण परिमाणीकरण==
सहज रूप से, गणितीय वस्तु का [[विरूपण सिद्धांत]] समान प्रकार की वस्तुओं का सदस्य है जो कुछ पैरामीटरों पर निर्भर करता है।
सहज रूप से, गणितीय वस्तु का विरूपण सिद्धांत समान प्रकार की वस्तुओं का सदस्य है जो कुछ पैरामीटरों पर निर्भर करता है।


यहां, यह नियम प्रदान करता है कि अवलोकनीय के वास्तविक क्रमविनिमेय बीजगणित को अवलोकनीय के क्वांटम अकम्यूटेटिव बीजगणित में किस प्रकार से विकृत किया जाए।
यहां, यह नियम प्रदान करता है कि अवलोकनीय के वास्तविक क्रमविनिमेय बीजगणित को अवलोकनीय के क्वांटम अकम्यूटेटिव बीजगणित में किस प्रकार से विकृत किया जाए।


विरूपण सिद्धांत में मूल व्यवस्था बीजगणितीय संरचना ([[झूठ बीजगणित|लाइ बीजगणित]]) से प्रारम्भ करनी है और यह प्रश्न करना है कि क्या समान संरचनाओं के अधिक पैरामीटर सदस्य उपस्थित है, जैसे कि पैरामीटर के प्रारंभिक मान के लिए किसी की संरचना वही है (लाइ बीजगणित) जिसके साथ यह प्रारम्भ हुआ था? (इसका प्राचीन उदाहरण प्राचीन जगत में एराटोस्थनीज की यह अनुभूति हो सकती है कि समतल पृथ्वी विरूपण पैरामीटर 1/R<sub>⊕</sub> के साथ गोलाकार पृथ्वी के रूप में विकृत हो सकती है।) उदाहरण के लिए, कोई अविनिमेय टोरस को किसी माध्यम से विरूपण परिमाणीकरण के रूप में परिभाषित कर सकता है <small>★</small>-सभी अभिसरण सूक्ष्मताओं को स्पष्ट रूप से संबोधित करने के लिए गुणनफल होता है (सामान्तयः इसे औपचारिक विरूपण परिमाणीकरण में संबोधित नहीं किया जाता है)। इस प्रकार किसी समष्टि पर फलनों का बीजगणित उस समष्टि की ज्यामिति को निर्धारित करता है, स्टार गुणनफल के अध्ययन से उस समष्टि के अविनिमेय ज्यामिति विरूपण का अध्ययन होता है।
विरूपण सिद्धांत में मूल व्यवस्था बीजगणितीय संरचना ([[झूठ बीजगणित|लाइ बीजगणित]]) से प्रारम्भ करनी है और यह प्रश्न करना है कि क्या समान संरचनाओं के अधिक पैरामीटर सदस्य उपस्थित है, जैसे कि पैरामीटर के प्रारंभिक मान के लिए किसी की संरचना वही है (लाइ बीजगणित) जिसके साथ यह प्रारम्भ हुआ था? (इसका प्राचीन उदाहरण प्राचीन जगत में एराटोस्थनीज की यह अनुभूति हो सकती है कि समतल पृथ्वी विरूपण पैरामीटर 1/R<sub>⊕</sub> के साथ गोलाकार पृथ्वी के रूप में विकृत हो सकती है।) उदाहरण के लिए, कोई अविनिमेय टोरस को किसी माध्यम से विरूपण परिमाणीकरण के रूप में परिभाषित कर सकता है <small>★</small>- इस प्रकार सभी अभिसरण सूक्ष्मताओं को स्पष्ट रूप से संबोधित करने के लिए गुणनफल होता है (सामान्तयः इसे औपचारिक विरूपण परिमाणीकरण में संबोधित नहीं किया जाता है)। इस प्रकार किसी समष्टि पर फलनों का बीजगणित उस समष्टि की ज्यामिति को निर्धारित करता है, स्टार गुणनफल के अध्ययन से उस समष्टि के अविनिमेय ज्यामिति विरूपण का अध्ययन होता है।


उपरोक्त समतल प्रावस्था-समष्‍टि उदाहरण के संदर्भ में, {{math|''f''<sub>1</sub>, ''f''<sub>2</sub> ∈ ''C''<sup>∞</sup>(ℜ<sup>2</sup>)}} फलनों के युग्म का स्टार गुणनफल (मोयल गुणनफल, वास्तव में ग्रोएनवॉल्ड द्वारा 1946 में प्रस्तुत किया गया था), <small>★</small><sub>''ħ''</sub> द्वारा निर्दिष्ट किया गया है-
उपरोक्त समतल प्रावस्था-समष्‍टि उदाहरण के संदर्भ में, {{math|''f''<sub>1</sub>, ''f''<sub>2</sub> ∈ ''C''<sup>∞</sup>(ℜ<sup>2</sup>)}} फलनों के युग्म का स्टार गुणनफल (मोयल गुणनफल, वास्तव में ग्रोएनवॉल्ड द्वारा 1946 में प्रस्तुत किया गया था), '''<small>★</small><sub>''ħ''</sub>''' द्वारा निर्दिष्ट किया गया है-


<math>\Phi [f_1 \star f_2] = \Phi [f_1]\Phi [f_2].\,</math>
<math>\Phi [f_1 \star f_2] = \Phi [f_1]\Phi [f_2].\,</math>
Line 184: Line 181:
\exp \left (2i{qp\over\hbar}\right ) ,
\exp \left (2i{qp\over\hbar}\right ) ,
</math>
</math>
ये सूत्र उन निर्देशांकों पर आधारित हैं जिनमें [[पॉइसन बायवेक्टर]] स्थिर है। आरबिटरेरी रूप से [[पॉइसन मैनिफ़ोल्ड]] पर सामान्य सूत्र के लिए, सीएफ. कोंटसेविच परिमाणीकरण सूत्र है।
ये सूत्र उन निर्देशांकों पर आधारित हैं जिनमें पॉइसन बायवेक्टर स्थिर है। इस प्रकार आरबिटरेरी रूप से [[पॉइसन मैनिफ़ोल्ड]] पर सामान्य सूत्र के लिए, cf. कोंटसेविच परिमाणीकरण सूत्र माना जाता है।


इसका प्रतिसममितिकरण <small>★</small>-गुणनफल [[मोयल ब्रैकेट]], पॉइसन ब्रैकेट का उचित क्वांटम विरूपण, और क्वांटम यांत्रिकी के अधिक सामान्य हिल्बर्ट-समष्टि सूत्रीकरण में क्वांटम [[कम्यूटेटर]] की प्रावस्था-समष्‍टि आइसोमोर्फ (विग्नर ट्रांसफॉर्म) उत्पन्न करती है। इस प्रकार, यह इस प्रावस्था-समष्‍टि सूत्रीकरण में अवलोकनीय वस्तुओं के गतिशील समीकरणों की आधारशिला प्रदान करता है।
इसका प्रतिसममितिकरण <small>★</small>-गुणनफल [[मोयल ब्रैकेट]], पॉइसन ब्रैकेट का उचित क्वांटम विरूपण, और क्वांटम यांत्रिकी के अधिक सामान्य हिल्बर्ट-समष्टि सूत्रीकरण में क्वांटम [[कम्यूटेटर]] की प्रावस्था-समष्‍टि आइसोमोर्फ (विग्नर ट्रांसफॉर्म) उत्पन्न करती है। इस प्रकार, यह इस प्रावस्था-समष्‍टि सूत्रीकरण में अवलोकनीय वस्तुओं के गतिशील समीकरणों की आधारशिला प्रदान करता है।


इसके परिणामस्वरूप क्वांटम यांत्रिकी का पूर्ण प्रावस्था-समष्‍टि सूत्रीकरण होता है, यह ''पूर्ण रूप से हिल्बर्ट-समष्टि संकारक प्रतिनिधित्व के समान है'', जिसमें स्टार-गुणन समानांतर संकारक गुणन को आइसोमोर्फिक रूप से सम्मिलित करता है।<ref name="Zachos" />
इसके परिणामस्वरूप क्वांटम यांत्रिकी का पूर्ण प्रावस्था-समष्‍टि सूत्रीकरण होता है, '''''पूर्ण रूप से हिल्बर्ट-समष्टि संकारक प्रतिनिधित्व के समान है''''', जिसमें स्टार-गुणन समानांतर संकारक गुणन को आइसोमोर्फिक रूप से सम्मिलित करता है।<ref name="Zachos" />


प्रावस्था-समष्‍टि परिमाणीकरण में प्रत्याशा मान हिल्बर्ट समष्‍टि में घनत्व आव्यूह के साथ {{mvar|Φ}} संकारक अवलोकनों को ज्ञात करने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं: वे विग्नर अर्ध-संभावना वितरण के साथ उपरोक्त {{mvar|f}} जैसे अवलोकन योग्य वस्तुओं के प्रावस्था-समष्‍टि समाकल द्वारा प्राप्त किए जाते हैं जो प्रभावी रूप से परिमाण के रूप में कार्य करते हैं।
प्रावस्था-समष्‍टि परिमाणीकरण में प्रत्याशा मान हिल्बर्ट समष्‍टि में घनत्व आव्यूह के साथ {{mvar|Φ}} संकारक अवलोकनों को ज्ञात करने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं: वे विग्नर अर्ध-संभावना वितरण के साथ उपरोक्त {{mvar|f}} जैसे अवलोकन योग्य वस्तुओं के प्रावस्था-समष्‍टि समाकल द्वारा प्राप्त किए जाते हैं जो प्रभावी रूप से परिमाण के रूप में कार्य करते हैं।


इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (वास्तविक यांत्रिकी की समान सीमा) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर {{math|''ħ''/''S''}} के साथ वास्तविक यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. [[पत्राचार सिद्धांत]]) के रूप में क्वांटम यांत्रिकी के प्रमाण की सुविधा प्रदान करता है। (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर ''v/c'' के साथ सापेक्षतावादी यांत्रिकी में न्यूटोनियन का विरूपण सम्मिलित है; या विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण सम्मिलित है। इसके विपरीत, [[समूह संकुचन]] लुप्त-पैरामीटर अपरिवर्तित सिद्धांतों को [[शास्त्रीय सीमा|वास्तविक सीमाओं]] की ओर ले जाता है।)
इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (वास्तविक यांत्रिकी की समान सीमा) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर {{math|''ħ''/''S''}} के साथ वास्तविक यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. [[पत्राचार सिद्धांत]]) के रूप में क्वांटम यांत्रिकी के प्रमाण की सुविधा प्रदान करता है। (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर ''v/c'' के साथ सापेक्षतावादी यांत्रिकी में न्यूटोनियन का विरूपण सम्मिलित है; अथवा विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण सम्मिलित है। इसके विपरीत, [[समूह संकुचन]] लुप्त-पैरामीटर अपरिवर्तित सिद्धांतों को [[शास्त्रीय सीमा|वास्तविक सीमाओं]] की ओर ले जाता है।)


वास्तविक अभिव्यक्तियाँ, अवलोकन और संक्रियाओं (जैसे पॉइसन कोष्ठक) को {{mvar|ħ}}-निर्भर क्वांटम संशोधनों द्वारा संशोधित किया जाता है, जिस प्रकार यांत्रिकी में प्रयुक्त होने वाले विनिमेय गुणन को क्वांटम यांत्रिकी की विशेषता वाले अविनिमेय स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।
वास्तविक अभिव्यक्तियाँ, अवलोकन और संक्रियाओं (जैसे पॉइसन कोष्ठक) को {{mvar|ħ}}-निर्भर क्वांटम संशोधनों द्वारा संशोधित किया जाता है, जिस प्रकार यांत्रिकी में प्रयुक्त होने वाले विनिमेय गुणन को क्वांटम यांत्रिकी की विशेषता वाले अविनिमेय स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।


इसके नाम के पश्चात् भी, सामान्तयः विरूपण परिमाणीकरण सफल परिमाणीकरण (भौतिकी) का गठन नहीं करता है, अर्थात् वास्तविक से क्वांटम सिद्धांत उत्पन्न करने की विधि का गठन नहीं करता है। वर्तमान में, यह हिल्बर्ट समष्टि से प्रावस्था समष्टि में मात्र प्रतिनिधित्व परिवर्तन के समान है।
इसके नाम के पश्चात् भी, सामान्तयः विरूपण परिमाणीकरण सफल परिमाणीकरण (भौतिकी) का गठन नहीं करता है, अर्थात् वास्तविक से क्वांटम सिद्धांत उत्पन्न करने की विधि का गठन नहीं करता है। वर्तमान में, यह हिल्बर्ट समष्टि से प्रावस्था समष्टि में मात्र प्रतिनिधित्व परिवर्तन के समान है।
  {{main|प्रावस्था-समष्टि सूत्रीकरण}}
==सामान्यीकरण==
==सामान्यीकरण==
अधिक व्यापकता में, वेइल परिमाणीकरण का अध्ययन उन स्थितियों में किया जाता है जहां प्रावस्था-समष्‍टि [[सिंपलेक्टिक मैनिफ़ोल्ड]] है, या संभवतः पॉइसन मैनिफोल्ड है। संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित सम्मिलित हैं।
अधिक व्यापकता में, वेइल परिमाणीकरण का अध्ययन उन स्थितियों में किया जाता है जहां प्रावस्था-समष्‍टि [[सिंपलेक्टिक मैनिफ़ोल्ड]] है, अथवा संभवतः पॉइसन मैनिफोल्ड है। इस प्रकार संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित सम्मिलित हैं।


==यह भी देखें==
==यह भी देखें==
Line 215: Line 209:
*क्वांटम यांत्रिकी का प्रावस्था-समष्‍टि सूत्रीकरण
*क्वांटम यांत्रिकी का प्रावस्था-समष्‍टि सूत्रीकरण
* कोंटसेविच परिमाणीकरण सूत्र
* कोंटसेविच परिमाणीकरण सूत्र
*गैबोर-विग्नर परिवर्तन
*गैबोर-विग्नर ट्रांसफॉर्म
* [[दोलक प्रतिनिधित्व]]
* [[दोलक प्रतिनिधित्व]]
{{div col end}}
{{div col end}}
Line 241: Line 235:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/11/2023]]
[[Category:Created On 17/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 09:41, 1 December 2023

क्वांटम यांत्रिकी में, विग्नर-वेइल ट्रांसफॉर्म अथवा वेइल-विग्नर ट्रांसफॉर्म (हरमन वेइल और यूजीन विग्नर के पश्चात्) श्रोडिंगर चित्र में क्वांटम प्रावस्था-समष्टि सूत्रीकरण और हिल्बर्ट समष्टि संकारकों (गणित) में फलनों के मध्य व्युत्क्रम मैपिंग है।

अधिकांशतः प्रावस्था-समष्‍टि पर फलनों से लेकर संकारकों तक की मैपिंग को वेइल ट्रांसफॉर्म अथवा वेइल परिमाणीकरण कहा जाता है, जबकि प्रावस्था-समष्‍टि पर संकारकों से फलनों तक की व्युत्क्रम मैपिंग को विग्नर ट्रांसफॉर्म कहा जाता है। यह मैपिंग मूल रूप से 1927 में हरमन वेइल द्वारा संकारकों के लिए सममित प्रावस्था-समष्‍टि फलनों को मैप करने के प्रयास में प्रस्तुत की गई थी, जिसे वेइल परिमाणीकरण के रूप में भी जाना जाता है।[1] अब यह अध्ययन किया जाता है कि वेइल परिमाणीकरण उन सभी गुणों को संतुष्ट नहीं करता है जिनकी निरंतर परिमाणीकरण के लिए आवश्यकता होती है और इसलिए कभी-कभी अभौतिक परिणाम प्राप्त होते हैं। दूसरी ओर, नीचे वर्णित कुछ उत्तम गुणों से ज्ञात होता है कि यदि कोई संकारकों के लिए प्रावस्था-समष्‍टि पर एकल सुसंगत प्रक्रिया मैपिंग फलनों को ज्ञात करता है, तो वेइल परिमाणीकरण उत्तम विकल्प है: इस प्रकार के मैप के सामान्य निर्देशांक का प्रकार भी होता है (ग्रोएनवॉल्ड के प्रमेय का आशय है कि ऐसे किसी भी मैप में वे सभी आदर्श गुण नहीं हो सकते जो कोई चाहता है।)

वेइल-विग्नर ट्रांसफॉर्म प्रावस्था-समष्‍टि और संकारक अभ्यावेदन के मध्य उचित रूप से परिभाषित इंटीग्रल ट्रांसफॉर्म है, और क्वांटम यांत्रिकी के कार्यचालन में अंतर्दृष्टि प्रदान करता है। अत्यंत महत्वपूर्ण तथ्य यह है कि विग्नर अर्ध-संभाव्यता वितरण क्वांटम घनत्व आव्यूह का विग्नर ट्रांसफॉर्म है, और, इसके विपरीत, घनत्व आव्यूह विग्नर फलन का वेइल ट्रांसफॉर्म है।

कंसिस्टेंट परिमाणीकरण योजना के अन्वेषण में वेइल के मूल विचारों के विपरीत, यह मैप केवल क्वांटम यांत्रिकी के भीतर अभ्यावेदन में परिवर्तन के समान है; इसे क्लासिकल को क्वांटम राशियों से संयोजित करने की आवश्यकता नहीं है। इस प्रकार उदाहरण के लिए, प्रावस्था-समष्‍टि फलन स्पष्ट रूप से प्लैंक के स्थिरांक ħ पर निर्भर हो सकता है, जैसा कि कोणीय गति से संयोजित कुछ परिचित स्थितियों में होता है। यह व्युत्क्रम अभ्यावेदन परिवर्तन किसी को प्रावस्था-समष्‍टि में क्वांटम यांत्रिकी को व्यक्त करने की अनुमति देता है, जिस प्रकार 1940 के दशक में हिलब्रांड जे. ग्रोएनवॉल्ड और जोस एनरिक मोयल द्वारा इसकी सराहना की गयी थी।[2][3][4]

सामान्य अवलोकनीय के वेइल परिमाणीकरण की परिभाषा

निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक (q,p) हैं और f प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों P और Q को उचित करते हैं। इस प्रकार हम मानते हैं कि घातांक संकारक और वेइल संबंधों का अलघुकरणीय प्रतिनिधित्व बनाते हैं जिससे स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता का आश्वासन) स्थिर रहे।

मूल सूत्र

फलन f का वेइल ट्रांसफॉर्म (अथवा वेइल परिमाणीकरण) हिल्बर्ट समष्टि में निम्नलिखित संकारक द्वारा दिया गया है,[5]

इस प्रकार पूर्णतया, ħ प्लैंक स्थिरांक है।

उपरोक्त सूत्र में सर्वप्रथम p और q समाकलों को निष्पादित करना अनुदेशात्मक है, जिसमें ऑपरेटर को त्यागते समय फलन f के सामान्य फूरियर ट्रांसफॉर्म की गणना करने का प्रभाव होता है। उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है-[6]

.

इसलिए हम वेइल मैप के संबंध में इस प्रकार विचार कर सकते हैं: हम फलन का सामान्य फूरियर ट्रांसफॉर्म लेते हैं, किन्तु फिर फूरियर व्युत्क्रम सूत्र प्रयुक्त करते समय, हम मूल वास्तविक चर p और q के लिए क्वांटम संकारकों और को प्रतिस्थापित करते हैं, इस प्रकार f का क्वांटम संस्करण प्राप्त होता है।

कम सममित किन्तु अनुप्रयोगों के लिए उपयोगी रूप निम्नलिखित है-

स्थिति प्रतिनिधित्व में

वेइल मैप को इस संकारक के समाकल कर्नेल आव्यूह अवयवों के संदर्भ में भी व्यक्त किया जा सकता है-[7]

व्युत्क्रम मैप

उपरोक्त वेइल मैप का व्युत्क्रम विग्नर मैप है, जो संकारक Φ को मूल प्रावस्था-समष्‍टि कर्नेल फलन f पर पुनः ले जाता है-

उदाहरण के लिए, ऑसिलेटर थर्मल डिस्ट्रीब्यूशन ऑपरेटर का विग्नर मैप है-[5]

यदि कोई उपरोक्त अभिव्यक्ति में को आरबिटरेरी संकारक से प्रतिस्थापित करता है, तो परिणामी फलन f प्लैंक स्थिरांक ħ पर निर्भर हो सकता है, और क्वांटम-मैकेनिकल प्रक्रियाओं का उत्तम प्रकार से वर्णन कर सकता है, किन्तु स्थिति यह है कि नीचे दिए गए मोयल गुणनफल के माध्यम से यह उचित रूप से बना हो।[8]

जिसके परिवर्तन में, विग्नर मैप के वेइल मैप को ग्रोएनवॉल्ड के सूत्र द्वारा संक्षेपित किया गया है[5]-

अवलोकनीय बहुपद का वेइल परिमाणीकरण

जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर अत्यंत सामान्य अवलोकनीय वेइल परिमाणीकरण का उत्तम प्रकार से अध्ययन करते हैं, इस प्रकार से वे सरल अवलोकनों पर गणना के लिए अधिक सुविधाजनक नहीं हैं, जैसे कि वे जो और में बहुपद हैं। जिसके पश्चात् के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल परिमाणीकरण नॉनकम्यूटिंग संकारकों और के पूर्ण रूप से सममित क्रम का प्रतिनिधित्व करता है।

उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक L2 का विग्नर मैप न केवल वास्तविक कोणीय गति का वर्ग है, अपितु इसमें ऑफसेट शब्द −3ħ2/2 भी सम्मिलित है, जो ग्राउंड-स्टेट बोह्र मॉडल की लुप्त न होने वाले कोणीय गति के लिए उत्तरदायी है।

गुण

बहुपदों का वेइल परिमाणीकरण

और के बहुपद फलनों पर वेइल परिमाणीकरण की क्रिया पूर्ण रूप से निम्नलिखित सममित सूत्र द्वारा निर्धारित की जाती है-[9]

सभी सम्मिश्र संख्याओं और के लिए इस सूत्र से, यह दर्शाना कठिन नहीं है कि रूप के फलन पर वेइल परिमाणीकरण के गुणकों और के गुणकों के सभी संभावित क्रमों का औसत देता है।

उदाहरण के लिए, हमारे निकट है-

यद्यपि यह परिणाम वैचारिक रूप से स्वाभाविक है, किन्तु और के अधिक होने पर यह गणना के लिए सुविधाजनक नहीं है। इस प्रकार की स्थितियों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं-[10]

यह अभिव्यक्ति उपरोक्त पूर्ण रूप से सममित अभिव्यक्ति से की इस स्थिति के लिए स्पष्ट रूप से भिन्न उत्तर देती है। यद्यपि, इसमें कोई विरोधाभास नहीं है, क्योंकि विहित रूपान्तरण संबंध ही संकारक के लिए अधिक अभिव्यक्ति की अनुमति देते हैं। (पाठक को संकारक , , और के संदर्भ में की स्थिति के लिए पूर्ण रूप से सममित सूत्र को पुनः लिखने और मैककॉय के सूत्र में प्रथम अभिव्यक्ति को के साथ सत्यापित करने के लिए कम्यूटेशन संबंधों का उपयोग करना अनुदेशात्मक लग सकता है।)

इस प्रकार यह व्यापक रूप से माना जाता है कि वेइल परिमाणीकरण, सभी परिमाणीकरण योजनाओं के मध्य, क्वांटम पक्ष पर कम्यूटेटर के वास्तविक पक्ष पर पॉइसन ब्रैकेट को मैप करने के जितना संभव हो उतना निकट आता है। (ग्रोएनवॉल्ड के प्रमेय के प्रकाश में, त्रुटिहीन अनुरूपता असंभव है।) उदाहरण के लिए, मोयल ने दर्शाया है-

प्रमेय: यदि अधिकतम 2 और घात वाला बहुपद है, और आरबिटरेरी बहुपद है, तो हमारे निकट है।

सामान्य फलनों का वेइल परिमाणीकरण

  • यदि f वास्तविक-मान फलन है, तब इसकी वेइल-मैप छवि Φ[f] सेल्फ-एडजॉइंट है।
  • यदि f श्वार्ट्ज समष्टि का अवयव है, तो Φ[f] ट्रेस-वर्ग है।
  • अधिक सामान्य रूप से, Φ[f] सघन रूप से परिभाषित अनबाउंड संकारक है।
  • यह मैप Φ[f] श्वार्ट्ज समष्टि पर (वर्ग-समाकलनीय फलनों की उप-समष्टि के रूप में) है।

विरूपण परिमाणीकरण

सहज रूप से, गणितीय वस्तु का विरूपण सिद्धांत समान प्रकार की वस्तुओं का सदस्य है जो कुछ पैरामीटरों पर निर्भर करता है।

यहां, यह नियम प्रदान करता है कि अवलोकनीय के वास्तविक क्रमविनिमेय बीजगणित को अवलोकनीय के क्वांटम अकम्यूटेटिव बीजगणित में किस प्रकार से विकृत किया जाए।

विरूपण सिद्धांत में मूल व्यवस्था बीजगणितीय संरचना (लाइ बीजगणित) से प्रारम्भ करनी है और यह प्रश्न करना है कि क्या समान संरचनाओं के अधिक पैरामीटर सदस्य उपस्थित है, जैसे कि पैरामीटर के प्रारंभिक मान के लिए किसी की संरचना वही है (लाइ बीजगणित) जिसके साथ यह प्रारम्भ हुआ था? (इसका प्राचीन उदाहरण प्राचीन जगत में एराटोस्थनीज की यह अनुभूति हो सकती है कि समतल पृथ्वी विरूपण पैरामीटर 1/R के साथ गोलाकार पृथ्वी के रूप में विकृत हो सकती है।) उदाहरण के लिए, कोई अविनिमेय टोरस को किसी माध्यम से विरूपण परिमाणीकरण के रूप में परिभाषित कर सकता है - इस प्रकार सभी अभिसरण सूक्ष्मताओं को स्पष्ट रूप से संबोधित करने के लिए गुणनफल होता है (सामान्तयः इसे औपचारिक विरूपण परिमाणीकरण में संबोधित नहीं किया जाता है)। इस प्रकार किसी समष्टि पर फलनों का बीजगणित उस समष्टि की ज्यामिति को निर्धारित करता है, स्टार गुणनफल के अध्ययन से उस समष्टि के अविनिमेय ज्यामिति विरूपण का अध्ययन होता है।

उपरोक्त समतल प्रावस्था-समष्‍टि उदाहरण के संदर्भ में, f1, f2C(ℜ2) फलनों के युग्म का स्टार गुणनफल (मोयल गुणनफल, वास्तव में ग्रोएनवॉल्ड द्वारा 1946 में प्रस्तुत किया गया था), ħ द्वारा निर्दिष्ट किया गया है-

स्टार गुणनफल सामान्य रूप से क्रमविनिमेय नहीं है, अपितु ħ → 0 की सीमा में फलनों के सामान्य क्रमविनिमेय गुणनफल तक चला जाता है। इस प्रकार, यह C(ℜ2) के क्रमविनिमेय बीजगणित के विरूपण सिद्धांत को परिभाषित करने के लिए कहता है।

उपरोक्त वेइल-मैप उदाहरण के लिए, -गुणनफल को पॉइसन ब्रैकेट के संदर्भ में लिखा जा सकता है-

यहां, Π पॉइसन बाइवेक्टर है, संकारक को इस प्रकार परिभाषित किया गया है कि इसकी घातें हैं-

और

जहाँ {f1, f2} पॉइसन ब्रैकेट है। सामान्तयः,

जहाँ द्विपद गुणांक है।

इस प्रकार, ये उदाहरण[5] गॉसियन हाइपरबोलिक फलन की रचना करते हैं-

या

ये सूत्र उन निर्देशांकों पर आधारित हैं जिनमें पॉइसन बायवेक्टर स्थिर है। इस प्रकार आरबिटरेरी रूप से पॉइसन मैनिफ़ोल्ड पर सामान्य सूत्र के लिए, cf. कोंटसेविच परिमाणीकरण सूत्र माना जाता है।

इसका प्रतिसममितिकरण -गुणनफल मोयल ब्रैकेट, पॉइसन ब्रैकेट का उचित क्वांटम विरूपण, और क्वांटम यांत्रिकी के अधिक सामान्य हिल्बर्ट-समष्टि सूत्रीकरण में क्वांटम कम्यूटेटर की प्रावस्था-समष्‍टि आइसोमोर्फ (विग्नर ट्रांसफॉर्म) उत्पन्न करती है। इस प्रकार, यह इस प्रावस्था-समष्‍टि सूत्रीकरण में अवलोकनीय वस्तुओं के गतिशील समीकरणों की आधारशिला प्रदान करता है।

इसके परिणामस्वरूप क्वांटम यांत्रिकी का पूर्ण प्रावस्था-समष्‍टि सूत्रीकरण होता है, पूर्ण रूप से हिल्बर्ट-समष्टि संकारक प्रतिनिधित्व के समान है, जिसमें स्टार-गुणन समानांतर संकारक गुणन को आइसोमोर्फिक रूप से सम्मिलित करता है।[5]

प्रावस्था-समष्‍टि परिमाणीकरण में प्रत्याशा मान हिल्बर्ट समष्‍टि में घनत्व आव्यूह के साथ Φ संकारक अवलोकनों को ज्ञात करने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं: वे विग्नर अर्ध-संभावना वितरण के साथ उपरोक्त f जैसे अवलोकन योग्य वस्तुओं के प्रावस्था-समष्‍टि समाकल द्वारा प्राप्त किए जाते हैं जो प्रभावी रूप से परिमाण के रूप में कार्य करते हैं।

इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (वास्तविक यांत्रिकी की समान सीमा) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर ħ/S के साथ वास्तविक यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. पत्राचार सिद्धांत) के रूप में क्वांटम यांत्रिकी के प्रमाण की सुविधा प्रदान करता है। (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर v/c के साथ सापेक्षतावादी यांत्रिकी में न्यूटोनियन का विरूपण सम्मिलित है; अथवा विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण सम्मिलित है। इसके विपरीत, समूह संकुचन लुप्त-पैरामीटर अपरिवर्तित सिद्धांतों को वास्तविक सीमाओं की ओर ले जाता है।)

वास्तविक अभिव्यक्तियाँ, अवलोकन और संक्रियाओं (जैसे पॉइसन कोष्ठक) को ħ-निर्भर क्वांटम संशोधनों द्वारा संशोधित किया जाता है, जिस प्रकार यांत्रिकी में प्रयुक्त होने वाले विनिमेय गुणन को क्वांटम यांत्रिकी की विशेषता वाले अविनिमेय स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।

इसके नाम के पश्चात् भी, सामान्तयः विरूपण परिमाणीकरण सफल परिमाणीकरण (भौतिकी) का गठन नहीं करता है, अर्थात् वास्तविक से क्वांटम सिद्धांत उत्पन्न करने की विधि का गठन नहीं करता है। वर्तमान में, यह हिल्बर्ट समष्टि से प्रावस्था समष्टि में मात्र प्रतिनिधित्व परिवर्तन के समान है।

सामान्यीकरण

अधिक व्यापकता में, वेइल परिमाणीकरण का अध्ययन उन स्थितियों में किया जाता है जहां प्रावस्था-समष्‍टि सिंपलेक्टिक मैनिफ़ोल्ड है, अथवा संभवतः पॉइसन मैनिफोल्ड है। इस प्रकार संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित सम्मिलित हैं।

यह भी देखें

संदर्भ

  1. Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID 121036548.
  2. Groenewold, H. J. (1946). "On the Principles of elementary quantum mechanics". Physica. 12 (7): 405–446. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
  3. Moyal, J. E.; Bartlett, M. S. (1949). "Quantum mechanics as a statistical theory". Mathematical Proceedings of the Cambridge Philosophical Society. 45 (1): 99–124. Bibcode:1949PCPS...45...99M. doi:10.1017/S0305004100000487. S2CID 124183640.
  4. Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 1: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
  5. 5.0 5.1 5.2 5.3 5.4 Curtright, T. L.; Fairlie, D. B.; Zachos, C. K. (2014). A Concise Treatise on Quantum Mechanics in Phase Space. World Scientific. ISBN 9789814520430.
  6. Hall 2013 Section 13.3
  7. Hall 2013 Definition 13.7
  8. Kubo, R. (1964). "Wigner Representation of Quantum Operators and Its Applications to Electrons in a Magnetic Field". Journal of the Physical Society of Japan. 19 (11): 2127–2139. Bibcode:1964JPSJ...19.2127K. doi:10.1143/JPSJ.19.2127.
  9. Hall 2013 Proposition 13.3
  10. McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", Proc Nat Acad Sci USA 19 674, online .

अग्रिम पठन