अपारदर्शिता (प्रकाशिकी): Difference between revisions
No edit summary |
m (17 revisions imported from alpha:अपारदर्शिता_(प्रकाशिकी)) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Property of an object or substance that is impervious to light}} | {{Short description|Property of an object or substance that is impervious to light}} | ||
[[File:Opacity Translucency Transparency.svg|thumb|250px|right|1. अपारदर्शिता, 2. पारदर्शिता, और 3. पारदर्शिता की तुलना; प्रत्येक पैनल के पीछे स्टारहै।]]'''अपारदर्शिता''' विद्युत चुम्बकीय [[विकिरण]] या अन्य प्रकार के विकिरण, विशेषकर दृश्य प्रकाश के प्रति अभेद्यता का माप है। विकिरण हस्तांतरण में, यह [[संचरण माध्यम]] में विकिरण के अवशोषण और प्रकीर्णक का वर्णन करता है, जैसे कि [[प्लाज्मा (भौतिकी)]], [[ढांकता हुआ|परावैद्युत]], विकिरण ढाल, कांच, आदि। अपारदर्शी वस्तु न तो पारदर्शिता (प्रकाशिकी) है (सभी प्रकाश को निकलने की अनुमति देती है) न ही पारभासी (कुछ प्रकाश को निकलने की अनुमति देता है)। जब प्रकाश दो पदार्थों के बीच इंटरफ़ेस से टकराता है, तो सामान्यतः कुछ परावर्तित हो सकता है, कुछ अवशोषित हो सकता है, कुछ बिखर सकता है, और बाकी संचारित हो सकता है ([[अपवर्तन]] भी देखें)। परावर्तन विसरित परावर्तन हो सकता है, उदाहरण के लिए सफेद दीवार से परावर्तित होने वाला प्रकाश, या स्पेक्युलर परावर्तन, उदाहरण के लिए दर्पण से परावर्तित होने वाला प्रकाश। अपारदर्शी पदार्थ कोई प्रकाश प्रसारित नहीं करता है, और इसलिए इसे परावर्तित, प्रकीर्णक या अवशोषित करता है। नियमित या विसरित प्रतिबिंब और प्रकाश के संचरण की धारणा से संबंधित दृश्य उपस्थिति की अन्य श्रेणियां, सम्मिलित पहलुओं के बीच अस्पष्टता, पारदर्शिता और पारभासी सहित तीन चर के साथ एक क्रम प्रणाली में सेसिया (दृश्य उपस्थिति) की अवधारणा के अनुसार आयोजित की गई हैं। दर्पण और [[ प्रंगार काला |कार्बन ब्लैक]] दोनों अपारदर्शी हैं। अपारदर्शिता विचाराधीन प्रकाश की [[आवृत्ति]] पर निर्भर करती है। उदाहरण के लिए, कुछ प्रकार के कांच, दृश्य प्रकाश में पारदर्शी होते हुए भी, [[पराबैंगनी]] प्रकाश के लिए अधिक सीमा तक अपारदर्शी होते हैं। ठंडी [[गैस]] की अवशोषण रेखाओं में अधिक चरम आवृत्ति-निर्भरता दिखाई देती है। अपारदर्शिता को कई विधियों से परिमाणित किया जा सकता है; उदाहरण के लिए, [[अपारदर्शिता का गणितीय विवरण]] लेख देखें। | |||
[[File:Opacity Translucency Transparency.svg|thumb|250px|right|1. अपारदर्शिता, 2. पारदर्शिता, और 3. पारदर्शिता की तुलना; प्रत्येक पैनल के पीछे | |||
अवशोषण ([[विद्युत चुम्बकीय विकिरण]]), | अवशोषण ([[विद्युत चुम्बकीय विकिरण]]), प्रतिबिंब (भौतिकी), और प्रकाश प्रकीर्णन सहित विभिन्न प्रक्रियाएं अपारदर्शिता का कारण बन सकती हैं। | ||
==व्युत्पत्ति== | ==व्युत्पत्ति== | ||
लेट मिडिल इंग्लिश ओपेक, लैटिन ओपेकस से 'डार्क्ड'. वर्तमान वर्तनी (19वीं शताब्दी से पहले दुर्लभ) फ़्रेंच रूप से प्रभावित है। | |||
==रेडियोपेसिटी== | ==रेडियोपेसिटी== | ||
{{Main|रेडियोघनत्व}} | {{Main|रेडियोघनत्व}} | ||
[[एक्स-रे]] की अपारदर्शिता का वर्णन करने के लिए रेडियोपेसिटी का अधिमानतः उपयोग किया जाता है। आधुनिक चिकित्सा में, रेडियोडेंस पदार्थ वे होते हैं जो एक्स-रे या इसी तरह के विकिरण को पारित नहीं होने देते हैं। [[ रेडियोग्राफ़ |रेडियोग्राफ़]] में रेडियोडेंस [[विपरीत माध्यम]] द्वारा क्रांति ला दी गई है, जिसे रक्त प्रवाह, | [[एक्स-रे]] की अपारदर्शिता का वर्णन करने के लिए रेडियोपेसिटी का अधिमानतः उपयोग किया जाता है। आधुनिक चिकित्सा में, रेडियोडेंस पदार्थ वे होते हैं जो एक्स-रे या इसी तरह के विकिरण को पारित नहीं होने देते हैं। [[ रेडियोग्राफ़ |रेडियोग्राफ़]] में रेडियोडेंस [[विपरीत माध्यम]] द्वारा क्रांति ला दी गई है, जिसे रक्त प्रवाह, गैस्ट्रोइंटेस्टाइनल ट्रैक्ट या सेरेब्रल स्पाइनल तरल पदार्थ में पारित किया जा सकता है और सीटी स्कैन या एक्स-रे छवियों को हाइलाइट करने के लिए उपयोग किया जा सकता है। [[ रेडियोलोजी |रेडियोलोजी]] हस्तक्षेप के समय उपयोग किए जाने वाले गाइडवायर या [[स्टेंट]] जैसे विभिन्न उपकरणों के डिजाइन में रेडियोपेसिटी प्रमुख विचारों में से एक है। किसी दिए गए एंडोवास्कुलर डिवाइस की रेडियोपेसिटी महत्वपूर्ण है क्योंकि यह इंटरवेंशनल प्रक्रिया के समय डिवाइस को ट्रैक करने की अनुमति देती है। | ||
==मात्रात्मक परिभाषा== | ==मात्रात्मक परिभाषा== | ||
Line 30: | Line 29: | ||
<math display="block">\text{Opacity} = 100\% \left(1-\frac{I(x)}{I_0} \right)</math> | <math display="block">\text{Opacity} = 100\% \left(1-\frac{I(x)}{I_0} \right)</math> | ||
===प्लैंक और रोसलैंड अपारदर्शिता=== | ===प्लैंक और रोसलैंड अपारदर्शिता=== | ||
यह निश्चित भार योजना का उपयोग करके गणना की गई औसत अस्पष्टता को परिभाषित करने की प्रथा है। प्लैंक अपारदर्शिता (प्लैंक-मीन-अवशोषण-गुणांक के रूप में भी जाना जाता है<ref>Modest, Radiative Heat Transfer, {{ISBN|978-0-12386944-9}}</ref>) सामान्यीकृत प्लैंक ब्लैक-बॉडी विकिरण ऊर्जा घनत्व वितरण का उपयोग करता है, <math> B_{\nu}(T)</math>, भारोत्तोलन | यह निश्चित भार योजना का उपयोग करके गणना की गई औसत अस्पष्टता को परिभाषित करने की प्रथा है। प्लैंक अपारदर्शिता (प्लैंक-मीन-अवशोषण-गुणांक के रूप में भी जाना जाता है<ref>Modest, Radiative Heat Transfer, {{ISBN|978-0-12386944-9}}</ref>) सामान्यीकृत प्लैंक ब्लैक-बॉडी विकिरण ऊर्जा घनत्व वितरण का उपयोग करता है, <math> B_{\nu}(T)</math>, भारोत्तोलन फलन और औसत के रूप में <math>\kappa_\nu</math> सीधे: | ||
<math display="block">\kappa_{Pl}={\int_0^\infty \kappa_\nu B_\nu(T) d\nu \over \int_0^\infty B_\nu(T) d\nu }=\left( { \pi \over \sigma T^4}\right) \int_0^\infty \kappa_\nu B_\nu(T) d\nu ,</math> | <math display="block">\kappa_{Pl}={\int_0^\infty \kappa_\nu B_\nu(T) d\nu \over \int_0^\infty B_\nu(T) d\nu }=\left( { \pi \over \sigma T^4}\right) \int_0^\infty \kappa_\nu B_\nu(T) d\nu ,</math> | ||
जहाँ <math>\sigma</math> स्टीफ़न-बोल्ट्ज़मैन स्थिरांक है। | जहाँ <math>\sigma</math> स्टीफ़न-बोल्ट्ज़मैन स्थिरांक है। | ||
दूसरी ओर, रॉसलैंड अपारदर्शिता ( | दूसरी ओर, रॉसलैंड अपारदर्शिता (स्वेन रोसलैंड के बाद), ब्लैक बॉडी विकिरण के प्लैंक के नियम के तापमान व्युत्पन्न का उपयोग करती है, <math>u(\nu, T)=\partial B_\nu(T)/\partial T</math>, भारोत्तोलन फलन के रूप में और औसत <math>\kappa_\nu^{-1}</math> सीधे: | ||
<math display="block">\frac{1}{\kappa} = \frac{\int_0^{\infty} \kappa_{\nu}^{-1} u(\nu, T) d\nu }{\int_0^{\infty} u(\nu,T) d\nu}.</math> | <math display="block">\frac{1}{\kappa} = \frac{\int_0^{\infty} \kappa_{\nu}^{-1} u(\nu, T) d\nu }{\int_0^{\infty} u(\nu,T) d\nu}.</math> | ||
फोटॉन का माध्य मुक्त पथ <math>\lambda_\nu = (\kappa_\nu \rho)^{-1}</math> है। रॉसलैंड अपारदर्शिता विकिरणीय परिवहन समीकरण के प्रसार समीपता में प्राप्त होती है। यह तब मान्य होता है जब विकिरण क्षेत्र विकिरण माध्य मुक्त पथ के बराबर या उससे कम दूरी पर आइसोट्रोपिक होता है, जैसे कि स्थानीय तापीय संतुलन में है। व्यवहार में, थॉमसन प्रकीर्णन के लिए औसत अपारदर्शिता है: | फोटॉन का माध्य मुक्त पथ <math>\lambda_\nu = (\kappa_\nu \rho)^{-1}</math> है। रॉसलैंड अपारदर्शिता विकिरणीय परिवहन समीकरण के प्रसार समीपता में प्राप्त होती है। यह तब मान्य होता है जब विकिरण क्षेत्र विकिरण माध्य मुक्त पथ के बराबर या उससे कम दूरी पर आइसोट्रोपिक होता है, जैसे कि स्थानीय तापीय संतुलन में है। व्यवहार में, थॉमसन प्रकीर्णन के लिए औसत अपारदर्शिता है: | ||
Line 48: | Line 47: | ||
* मोलर अवशोषकता | * मोलर अवशोषकता | ||
*प्रतिबिंब (भौतिकी) | *प्रतिबिंब (भौतिकी) | ||
* [[चमक (प्रकाशिकी)]] | * [[चमक (प्रकाशिकी)|ग्लोस (प्रकाशिकी)]] | ||
* सेसिया (दृश्य उपस्थिति) | * सेसिया (दृश्य उपस्थिति) | ||
* [[प्रकीर्णन सिद्धांत]] | * [[प्रकीर्णन सिद्धांत]] | ||
Line 62: | Line 61: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/11/2023]] | [[Category:Created On 17/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 09:45, 1 December 2023
अपारदर्शिता विद्युत चुम्बकीय विकिरण या अन्य प्रकार के विकिरण, विशेषकर दृश्य प्रकाश के प्रति अभेद्यता का माप है। विकिरण हस्तांतरण में, यह संचरण माध्यम में विकिरण के अवशोषण और प्रकीर्णक का वर्णन करता है, जैसे कि प्लाज्मा (भौतिकी), परावैद्युत, विकिरण ढाल, कांच, आदि। अपारदर्शी वस्तु न तो पारदर्शिता (प्रकाशिकी) है (सभी प्रकाश को निकलने की अनुमति देती है) न ही पारभासी (कुछ प्रकाश को निकलने की अनुमति देता है)। जब प्रकाश दो पदार्थों के बीच इंटरफ़ेस से टकराता है, तो सामान्यतः कुछ परावर्तित हो सकता है, कुछ अवशोषित हो सकता है, कुछ बिखर सकता है, और बाकी संचारित हो सकता है (अपवर्तन भी देखें)। परावर्तन विसरित परावर्तन हो सकता है, उदाहरण के लिए सफेद दीवार से परावर्तित होने वाला प्रकाश, या स्पेक्युलर परावर्तन, उदाहरण के लिए दर्पण से परावर्तित होने वाला प्रकाश। अपारदर्शी पदार्थ कोई प्रकाश प्रसारित नहीं करता है, और इसलिए इसे परावर्तित, प्रकीर्णक या अवशोषित करता है। नियमित या विसरित प्रतिबिंब और प्रकाश के संचरण की धारणा से संबंधित दृश्य उपस्थिति की अन्य श्रेणियां, सम्मिलित पहलुओं के बीच अस्पष्टता, पारदर्शिता और पारभासी सहित तीन चर के साथ एक क्रम प्रणाली में सेसिया (दृश्य उपस्थिति) की अवधारणा के अनुसार आयोजित की गई हैं। दर्पण और कार्बन ब्लैक दोनों अपारदर्शी हैं। अपारदर्शिता विचाराधीन प्रकाश की आवृत्ति पर निर्भर करती है। उदाहरण के लिए, कुछ प्रकार के कांच, दृश्य प्रकाश में पारदर्शी होते हुए भी, पराबैंगनी प्रकाश के लिए अधिक सीमा तक अपारदर्शी होते हैं। ठंडी गैस की अवशोषण रेखाओं में अधिक चरम आवृत्ति-निर्भरता दिखाई देती है। अपारदर्शिता को कई विधियों से परिमाणित किया जा सकता है; उदाहरण के लिए, अपारदर्शिता का गणितीय विवरण लेख देखें।
अवशोषण (विद्युत चुम्बकीय विकिरण), प्रतिबिंब (भौतिकी), और प्रकाश प्रकीर्णन सहित विभिन्न प्रक्रियाएं अपारदर्शिता का कारण बन सकती हैं।
व्युत्पत्ति
लेट मिडिल इंग्लिश ओपेक, लैटिन ओपेकस से 'डार्क्ड'. वर्तमान वर्तनी (19वीं शताब्दी से पहले दुर्लभ) फ़्रेंच रूप से प्रभावित है।
रेडियोपेसिटी
एक्स-रे की अपारदर्शिता का वर्णन करने के लिए रेडियोपेसिटी का अधिमानतः उपयोग किया जाता है। आधुनिक चिकित्सा में, रेडियोडेंस पदार्थ वे होते हैं जो एक्स-रे या इसी तरह के विकिरण को पारित नहीं होने देते हैं। रेडियोग्राफ़ में रेडियोडेंस विपरीत माध्यम द्वारा क्रांति ला दी गई है, जिसे रक्त प्रवाह, गैस्ट्रोइंटेस्टाइनल ट्रैक्ट या सेरेब्रल स्पाइनल तरल पदार्थ में पारित किया जा सकता है और सीटी स्कैन या एक्स-रे छवियों को हाइलाइट करने के लिए उपयोग किया जा सकता है। रेडियोलोजी हस्तक्षेप के समय उपयोग किए जाने वाले गाइडवायर या स्टेंट जैसे विभिन्न उपकरणों के डिजाइन में रेडियोपेसिटी प्रमुख विचारों में से एक है। किसी दिए गए एंडोवास्कुलर डिवाइस की रेडियोपेसिटी महत्वपूर्ण है क्योंकि यह इंटरवेंशनल प्रक्रिया के समय डिवाइस को ट्रैक करने की अनुमति देती है।
मात्रात्मक परिभाषा
अपारदर्शिता और अपारदर्शी शब्द अधिकांशतः ऊपर वर्णित गुणों वाली वस्तुओं या मीडिया के लिए वार्तालाप की भाषा में उपयोग किए जाते हैं। चूँकि, यहां खगोल विज्ञान, प्लाज्मा भौतिकी और अन्य क्षेत्रों में उपयोग की जाने वाली अपारदर्शिता की विशिष्ट, मात्रात्मक परिभाषा भी दी गई है।
इस प्रयोग में, अपारदर्शिता द्रव्यमान क्षीणन गुणांक के लिए एक और शब्द है (या, संदर्भ के आधार पर, द्रव्यमान अवशोषण गुणांक, अंतर को अवशोषण गुणांक या क्षीणन बनाम अवशोषण द्वारा वर्णित किया गया है) विद्युत चुम्बकीय विकिरण की विशेष आवृत्ति पर .
अधिक विशेष रूप से, यदि आवृत्ति के साथ प्रकाश की किरण अपारदर्शिता और द्रव्यमान घनत्व दोनों स्थि वाले माध्यम से यात्रा करता है, तो सूत्र के अनुसार दूरी x के साथ तीव्रता कम हो जाएगी
- x वह दूरी है जो प्रकाश ने माध्यम से तय की है
- दूरी x पर शेष प्रकाश की तीव्रता है
- , पर प्रकाश की प्रारंभिक तीव्रता है
किसी दिए गए आवृत्ति पर दिए गए माध्यम के लिए, अपारदर्शिता का संख्यात्मक मान होता है जो लंबाई2/मास की इकाइयों के साथ 0 और अनंत के बीच हो सकता है।
वायु प्रदूषण कार्य में अपारदर्शिता क्षीणन गुणांक (उर्फ विलुप्त होने गुणांक) के अतिरिक्त अवरुद्ध प्रकाश के प्रतिशत को संदर्भित करती है और 0% प्रकाश अवरुद्ध से लेकर 100% प्रकाश अवरुद्ध तक भिन्न होती है:
प्लैंक और रोसलैंड अपारदर्शिता
यह निश्चित भार योजना का उपयोग करके गणना की गई औसत अस्पष्टता को परिभाषित करने की प्रथा है। प्लैंक अपारदर्शिता (प्लैंक-मीन-अवशोषण-गुणांक के रूप में भी जाना जाता है[1]) सामान्यीकृत प्लैंक ब्लैक-बॉडी विकिरण ऊर्जा घनत्व वितरण का उपयोग करता है, , भारोत्तोलन फलन और औसत के रूप में सीधे:
दूसरी ओर, रॉसलैंड अपारदर्शिता (स्वेन रोसलैंड के बाद), ब्लैक बॉडी विकिरण के प्लैंक के नियम के तापमान व्युत्पन्न का उपयोग करती है, , भारोत्तोलन फलन के रूप में और औसत सीधे:
यह भी देखें
- अवशोषण (विद्युत चुम्बकीय विकिरण)
- अपारदर्शिता का गणितीय विवरण
- मोलर अवशोषकता
- प्रतिबिंब (भौतिकी)
- ग्लोस (प्रकाशिकी)
- सेसिया (दृश्य उपस्थिति)
- प्रकीर्णन सिद्धांत
- पारदर्शिता और पारदर्शीता
- कप्पा तंत्र
संदर्भ
- ↑ Modest, Radiative Heat Transfer, ISBN 978-0-12386944-9
- ↑ Stuart L. Shapiro and Saul A. Teukolsky, "Black Holes, White Dwarfs, and Neutron Stars" 1983, ISBN 0-471-87317-9.
- ↑ George B. Rybicki and Alan P. Lightman, "Radiative Processes in Astrophysics" 1979 ISBN 0-471-04815-1.