कोहेरेंट टरबूलेंट स्ट्रक्चर: Difference between revisions
(Created page with "{{technical|date=February 2017}} अशांत प्रवाह जटिल बहु-स्तरीय और अराजक गतियाँ हैं जिन...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[अशांत प्रवाह]] जटिल बहु-स्तरीय और अराजक गतियाँ हैं जिन्हें सुसंगत अशांत संरचनाओं के रूप में संदर्भित अधिक प्राथमिक घटकों में वर्गीकृत करने की आवश्यकता है। इस तरह की संरचना में अस्थायी सुसंगतता होनी चाहिए, यानी इसे लंबे समय तक अपने स्वरूप में बने रहना चाहिए ताकि समय-औसत सांख्यिकी के तरीकों को लागू किया जा सके। सुसंगत संरचनाओं का अध्ययन आम तौर पर बहुत बड़े पैमाने पर किया जाता है, लेकिन उन्हें अपने स्वयं के सुसंगत गुणों के साथ अधिक प्राथमिक संरचनाओं में तोड़ा जा सकता है, ऐसे उदाहरणों में [[हेयरपिन भंवर]] शामिल हैं। 1930 के दशक से हेयरपिन और सुसंगत संरचनाओं का अध्ययन किया गया है और डेटा में देखा गया है, और तब से हजारों वैज्ञानिक पत्रों और समीक्षाओं में उद्धृत किया गया है।<ref name = "green">#Green, Sheldon I., “Fluid Vortices: Fluid mechanics and its applications” Dordrecht: Kluwer Academic Publishers, 1995. Print. https://books.google.com/books?id=j6qE7YAwwCoC&dq=theodorsen+1952+hairpin&pg=PA254</ref> | [[अशांत प्रवाह]] जटिल बहु-स्तरीय और अराजक गतियाँ हैं जिन्हें सुसंगत अशांत संरचनाओं के रूप में संदर्भित अधिक प्राथमिक घटकों में वर्गीकृत करने की आवश्यकता है। इस तरह की संरचना में अस्थायी सुसंगतता होनी चाहिए, यानी इसे लंबे समय तक अपने स्वरूप में बने रहना चाहिए ताकि समय-औसत सांख्यिकी के तरीकों को लागू किया जा सके। सुसंगत संरचनाओं का अध्ययन आम तौर पर बहुत बड़े पैमाने पर किया जाता है, लेकिन उन्हें अपने स्वयं के सुसंगत गुणों के साथ अधिक प्राथमिक संरचनाओं में तोड़ा जा सकता है, ऐसे उदाहरणों में [[हेयरपिन भंवर]] शामिल हैं। 1930 के दशक से हेयरपिन और सुसंगत संरचनाओं का अध्ययन किया गया है और डेटा में देखा गया है, और तब से हजारों वैज्ञानिक पत्रों और समीक्षाओं में उद्धृत किया गया है।<ref name = "green">#Green, Sheldon I., “Fluid Vortices: Fluid mechanics and its applications” Dordrecht: Kluwer Academic Publishers, 1995. Print. https://books.google.com/books?id=j6qE7YAwwCoC&dq=theodorsen+1952+hairpin&pg=PA254</ref> | ||
Line 6: | Line 5: | ||
==इतिहास और खोज== | ==इतिहास और खोज== | ||
अशांत कतरनी प्रवाह में संगठित गतियों और संरचनाओं की उपस्थिति लंबे समय से स्पष्ट थी, और इस अवधारणा को साहित्य में स्पष्ट रूप से बताए जाने से पहले ही मिक्सिंग लेंथ मॉडल परिकल्पना द्वारा अतिरिक्त रूप से निहित किया गया है। विशेष रूप से कोर्सिन और रोशको द्वारा जेट और अशांत तरंगों को मापने के द्वारा प्रारंभिक सहसंबंध डेटा भी पाया गया था। हामा की हाइड्रोजन बबल तकनीक, जिसने संरचनाओं का निरीक्षण करने के लिए प्रवाह विज़ुअलाइज़ेशन का उपयोग किया, ने व्यापक ध्यान आकर्षित किया और क्लाइन सहित कई शोधकर्ताओं ने इसका अनुसरण किया। प्रवाह विज़ुअलाइज़ेशन | अशांत कतरनी प्रवाह में संगठित गतियों और संरचनाओं की उपस्थिति लंबे समय से स्पष्ट थी, और इस अवधारणा को साहित्य में स्पष्ट रूप से बताए जाने से पहले ही मिक्सिंग लेंथ मॉडल परिकल्पना द्वारा अतिरिक्त रूप से निहित किया गया है। विशेष रूप से कोर्सिन और रोशको द्वारा जेट और अशांत तरंगों को मापने के द्वारा प्रारंभिक सहसंबंध डेटा भी पाया गया था। हामा की हाइड्रोजन बबल तकनीक, जिसने संरचनाओं का निरीक्षण करने के लिए प्रवाह विज़ुअलाइज़ेशन का उपयोग किया, ने व्यापक ध्यान आकर्षित किया और क्लाइन सहित कई शोधकर्ताओं ने इसका अनुसरण किया। प्रवाह विज़ुअलाइज़ेशन प्रयोगशाला प्रयोगात्मक तकनीक है जिसका उपयोग अशांत कतरनी प्रवाह की संरचनाओं को देखने और समझने के लिए किया जाता है।<ref name = "green" />सुसंगत संरचनाओं की बेहतर समझ के साथ, अब दशकों पहले लिए गए विभिन्न अशांत प्रवाहों से एकत्र किए गए पिछले प्रवाह-दृश्य चित्रों में कई सुसंगत संरचनाओं को खोजना और पहचानना संभव है। सुसंगत प्रवाह संरचनाओं को समझने और कल्पना करने के लिए कंप्यूटर सिमुलेशन अब प्रमुख उपकरण बन रहा है। आवश्यक समय-निर्भर नेवियर-स्टोक्स समीकरणों की गणना करने की क्षमता | नेवियर-स्टोक्स समीकरण बहुत अधिक परिष्कृत स्तर पर ग्राफिक प्रस्तुतियाँ तैयार करता है, और इसके अतिरिक्त प्रयोगशाला प्रयोगों में पहले उत्पन्न अपेक्षित आकार और गति से अधिक, विभिन्न विमानों और संकल्पों पर देखा जा सकता है। हालाँकि, क्षेत्र में अब प्रभावी संख्यात्मक सिमुलेशन को निर्देशित करने, विकसित करने और मान्य करने के लिए नियंत्रित प्रवाह विज़ुअलाइज़ेशन प्रयोग अभी भी आवश्यक हैं।<ref name = "hussain" /> | ||
==परिभाषा== | ==परिभाषा== | ||
[[ अशांति ]] द्रव गतिशीलता में | [[ अशांति | अशांति]] द्रव गतिशीलता में प्रवाह व्यवस्था है जहां द्रव का वेग स्थिति और समय दोनों में महत्वपूर्ण और अनियमित रूप से भिन्न होता है।<ref>Pope S B. Turbulent flows[J]. 2001.</ref> इसके अलावा, सुसंगत संरचना को अशांत प्रवाह के रूप में परिभाषित किया जाता है जिसकी भंवर अभिव्यक्ति, जो आमतौर पर स्टोकेस्टिक होती है, में व्यवस्थित घटक होते हैं जिन्हें प्रवाह संरचना की स्थानिक सीमा पर तत्काल सुसंगत होने के रूप में वर्णित किया जा सकता है। दूसरे शब्दों में, अशांत प्रवाह की विशिष्ट त्रि-आयामी अराजक भंवर अभिव्यक्ति के अंतर्निहित, उस भंवर का संगठित घटक है जो संरचना के पूरे स्थान पर चरण-सहसंबद्ध है। सुसंगत संरचना अभिव्यक्तियों के भीतर पाए जाने वाले तात्कालिक स्थान और चरण सहसंबद्ध vorticity को सुसंगत vorticity के रूप में परिभाषित किया जा सकता है, इसलिए सुसंगत vorticity को सुसंगत संरचनाओं के लिए मुख्य विशेषता पहचानकर्ता बना दिया जाता है। अशांत प्रवाह में निहित और विशेषता उनकी आंतरायिकता है, लेकिन आंतरायिकता सुसंगत संरचना की सीमाओं की बहुत खराब पहचानकर्ता है, इसलिए यह आम तौर पर स्वीकार किया जाता है कि किसी संरचना की सीमा को चिह्नित करने का सबसे अच्छा तरीका इसकी सीमा को पहचानना और परिभाषित करना है। सुसंगत vorticity.<ref name = "hussain" /> | ||
इस तरीके से सुसंगत संरचना को परिभाषित करने और पहचानने से, अशांत प्रवाह को सुसंगत संरचनाओं और असंगत संरचनाओं में विघटित किया जा सकता है, जो उनकी सुसंगतता पर निर्भर करता है, विशेष रूप से उनकी अस्थिरता के साथ उनके सहसंबंधों पर। इसलिए, संगठित घटनाओं के | इस तरीके से सुसंगत संरचना को परिभाषित करने और पहचानने से, अशांत प्रवाह को सुसंगत संरचनाओं और असंगत संरचनाओं में विघटित किया जा सकता है, जो उनकी सुसंगतता पर निर्भर करता है, विशेष रूप से उनकी अस्थिरता के साथ उनके सहसंबंधों पर। इसलिए, संगठित घटनाओं के समूह औसत में समान रूप से आयोजित घटनाओं को सुसंगत संरचना के रूप में परिभाषित किया जा सकता है, और जो भी घटनाएँ समान या चरण के रूप में पहचानी नहीं जाती हैं और समूह औसत में संरेखित स्थान असंगत अशांत संरचना है। | ||
सुसंगत संरचना को परिभाषित करने के अन्य प्रयास उनके संवेग या दबाव और उनके अशांत प्रवाह के बीच सहसंबंध की जांच के माध्यम से किए जा सकते हैं। हालाँकि, यह अक्सर अशांति के गलत संकेत देता है, क्योंकि किसी तरल पदार्थ पर दबाव और वेग में उतार-चढ़ाव किसी भी अशांति या भंवर की अनुपस्थिति में अच्छी तरह से सहसंबद्ध हो सकता है। कुछ सुसंगत संरचनाएं, जैसे भंवर वलय, आदि कतरनी प्रवाह की सीमा के बराबर बड़े पैमाने पर गति हो सकती हैं। बहुत छोटे पैमाने पर सुसंगत गतियाँ भी होती हैं जैसे कि हेयरपिन भंवर और विशिष्ट भंवर, जिन्हें आम तौर पर सुसंगत उप-संरचनाओं के रूप में जाना जाता है, जैसे सुसंगत संरचनाओं में जिन्हें छोटे और अधिक प्राथमिक उप-संरचनाओं में तोड़ा जा सकता है। | सुसंगत संरचना को परिभाषित करने के अन्य प्रयास उनके संवेग या दबाव और उनके अशांत प्रवाह के बीच सहसंबंध की जांच के माध्यम से किए जा सकते हैं। हालाँकि, यह अक्सर अशांति के गलत संकेत देता है, क्योंकि किसी तरल पदार्थ पर दबाव और वेग में उतार-चढ़ाव किसी भी अशांति या भंवर की अनुपस्थिति में अच्छी तरह से सहसंबद्ध हो सकता है। कुछ सुसंगत संरचनाएं, जैसे भंवर वलय, आदि कतरनी प्रवाह की सीमा के बराबर बड़े पैमाने पर गति हो सकती हैं। बहुत छोटे पैमाने पर सुसंगत गतियाँ भी होती हैं जैसे कि हेयरपिन भंवर और विशिष्ट भंवर, जिन्हें आम तौर पर सुसंगत उप-संरचनाओं के रूप में जाना जाता है, जैसे सुसंगत संरचनाओं में जिन्हें छोटे और अधिक प्राथमिक उप-संरचनाओं में तोड़ा जा सकता है। | ||
==विशेषताएँ== | ==विशेषताएँ== | ||
हालाँकि परिभाषा के अनुसार | हालाँकि परिभाषा के अनुसार सुसंगत संरचना उच्च स्तर की सुसंगत भंवरता, [[रेनॉल्ड्स तनाव]], उत्पादन और गर्मी और बड़े पैमाने पर परिवहन की विशेषता है, लेकिन इसके लिए उच्च स्तर की गतिज ऊर्जा की आवश्यकता नहीं होती है। वास्तव में, सुसंगत संरचनाओं की मुख्य भूमिकाओं में से सामान्य रूप से आवश्यक ऊर्जा की उच्च मात्रा की आवश्यकता के बिना द्रव्यमान, गर्मी और गति का बड़े पैमाने पर परिवहन है। नतीजतन, इसका तात्पर्य यह है कि सुसंगत संरचनाएं रेनॉल्ड्स तनाव का मुख्य उत्पादन और कारण नहीं हैं, और असंगत अशांति भी समान रूप से महत्वपूर्ण हो सकती है।<ref>Ganapathisubramani, B., [[Ellen Longmire|Longmire, E. K.]], Marusic, I. “Characteristics of vortex packets in turbulent boundary layers” J. Fluid Mech., vol. 478, pp. 35-46 (2003). </ref> | ||
सुसंगत संरचनाएं [[सुपरपोजिशन सिद्धांत]] पर आधारित नहीं हो सकती हैं, यानी वे ओवरलैप नहीं हो सकती हैं और प्रत्येक सुसंगत संरचना का अपना स्वतंत्र डोमेन और सीमा होती है। चूंकि भंवर स्थानिक सुपरपोजिशन के रूप में सह-अस्तित्व में हैं, | सुसंगत संरचनाएं [[सुपरपोजिशन सिद्धांत]] पर आधारित नहीं हो सकती हैं, यानी वे ओवरलैप नहीं हो सकती हैं और प्रत्येक सुसंगत संरचना का अपना स्वतंत्र डोमेन और सीमा होती है। चूंकि भंवर स्थानिक सुपरपोजिशन के रूप में सह-अस्तित्व में हैं, सुसंगत संरचना एड़ी (द्रव गतिशीलता) नहीं है। उदाहरण के लिए, भंवर बड़े पैमाने पर माध्य प्रवाह से ऊर्जा प्राप्त करके ऊर्जा को नष्ट करते हैं, और अंततः इसे सबसे छोटे पैमाने पर नष्ट कर देते हैं। सुसंगत संरचनाओं के बीच ऊर्जा का ऐसा कोई समान आदान-प्रदान नहीं होता है, और सुसंगत संरचनाओं के बीच किसी भी अंतःक्रिया जैसे टूटने से बस नई संरचना उत्पन्न होती है। हालाँकि, दो सुसंगत संरचनाएँ दूसरे से बातचीत और प्रभाव डाल सकती हैं। किसी संरचना का द्रव्यमान समय के साथ बदलता है, विशिष्ट मामला यह है कि संरचनाओं में भंवर के प्रसार के माध्यम से मात्रा में वृद्धि होती है। | ||
सुसंगत संरचनाओं की सबसे बुनियादी मात्राओं में से | सुसंगत संरचनाओं की सबसे बुनियादी मात्राओं में से सुसंगत vorticity द्वारा विशेषता है, <math> \Omega_c </math>. शायद सुसंगत संरचनाओं के अगले सबसे महत्वपूर्ण उपाय सुसंगत बनाम असंगत रेनॉल्ड के तनाव हैं, <math> -u_c\nu_c </math> और <math> - \langle u_r\nu_r \rangle </math>. ये गति के परिवहन का प्रतिनिधित्व करते हैं, और उनकी सापेक्ष शक्ति इंगित करती है कि असंगत संरचनाओं की तुलना में सुसंगत संरचनाओं द्वारा कितनी गति का परिवहन किया जा रहा है। अगले सबसे महत्वपूर्ण उपायों में सुसंगत तनाव दर और कतरनी उत्पादन का समोच्च चित्रण शामिल है। ऐसी आकृतियों की उपयोगी संपत्ति यह है कि वे गैलीलियन परिवर्तनों के तहत अपरिवर्तनीय हैं, इसलिए सुसंगत भंवर की आकृतियाँ संरचना की सीमाओं के लिए उत्कृष्ट पहचानकर्ता बनती हैं। इन गुणों की रूपरेखा न केवल यह पता लगाती है कि बिल्कुल सुसंगत संरचना मात्राओं की चोटियाँ और काठियाँ कहाँ हैं, बल्कि यह भी पहचानती हैं कि असंगत अशांत संरचनाएँ अपने दिशात्मक ढालों पर मढ़ा होने पर कहाँ हैं। इसके अलावा, स्थानिक आकृतियाँ खींची जा सकती हैं जो सुसंगत संरचनाओं के आकार, आकार और ताकत का वर्णन करती हैं, जो न केवल यांत्रिकी बल्कि सुसंगत संरचनाओं के गतिशील विकास को भी दर्शाती हैं। उदाहरण के लिए, किसी संरचना के विकसित होने और इसलिए प्रभावी होने के लिए, इसकी सुसंगत भंवरता, सुसंगत रेनॉल्ड्स तनाव और उत्पादन की शर्तें प्रवाह संरचनाओं के समय के औसत मूल्यों से बड़ी होनी चाहिए।<ref name = "hussain" /> | ||
==गठन== | ==गठन== | ||
सुसंगत संरचनाएँ किसी प्रकार की अस्थिरता के कारण बनती हैं, जैसे केल्विन-हेल्महोल्ट्ज़ अस्थिरता। अस्थिरता की पहचान करने के लिए, और इसलिए | सुसंगत संरचनाएँ किसी प्रकार की अस्थिरता के कारण बनती हैं, जैसे केल्विन-हेल्महोल्ट्ज़ अस्थिरता। अस्थिरता की पहचान करने के लिए, और इसलिए सुसंगत संरचना के प्रारंभिक गठन के लिए, प्रवाह संरचना की प्रारंभिक स्थितियों के ज्ञान की आवश्यकता होती है। इसलिए, सुसंगत संरचनाओं के विकास और अंतःक्रिया को पकड़ने के लिए प्रारंभिक स्थिति का दस्तावेज़ीकरण आवश्यक है, क्योंकि प्रारंभिक स्थितियाँ काफी परिवर्तनशील होती हैं। शोधकर्ताओं द्वारा उनके महत्व को नज़रअंदाज़ करने के कारण प्रारंभिक अध्ययनों में प्रारंभिक स्थितियों को नज़रअंदाज करना आम बात थी। प्रारंभिक स्थितियों में औसत वेग प्रोफ़ाइल, मोटाई, आकार, वेग और गति की संभावना घनत्व, रेनॉल्ड्स तनाव मूल्यों का स्पेक्ट्रम आदि शामिल हैं। प्रारंभिक प्रवाह स्थितियों के इन उपायों को तीन व्यापक श्रेणियों में व्यवस्थित और समूहीकृत किया जा सकता है: लामिना का प्रवाह, अत्यधिक परेशान , और पूरी तरह से अशांत।<ref name = "hussain" /> | ||
तीन श्रेणियों में से, सुसंगत संरचनाएं आम तौर पर लामिनायर या अशांत राज्यों में अस्थिरता से उत्पन्न होती हैं। प्रारंभिक ट्रिगरिंग के बाद, उनकी वृद्धि अन्य सुसंगत संरचनाओं के साथ गैर-रेखीय बातचीत, या असंगत अशांत संरचनाओं पर उनके क्षय के कारण होने वाले विकासवादी परिवर्तनों से निर्धारित होती है। देखे गए तीव्र परिवर्तनों से यह विश्वास पैदा होता है कि क्षय के दौरान | तीन श्रेणियों में से, सुसंगत संरचनाएं आम तौर पर लामिनायर या अशांत राज्यों में अस्थिरता से उत्पन्न होती हैं। प्रारंभिक ट्रिगरिंग के बाद, उनकी वृद्धि अन्य सुसंगत संरचनाओं के साथ गैर-रेखीय बातचीत, या असंगत अशांत संरचनाओं पर उनके क्षय के कारण होने वाले विकासवादी परिवर्तनों से निर्धारित होती है। देखे गए तीव्र परिवर्तनों से यह विश्वास पैदा होता है कि क्षय के दौरान पुनर्योजी चक्र होना चाहिए। उदाहरण के लिए, संरचना के क्षय के बाद, परिणाम यह हो सकता है कि प्रवाह अब अशांत है और नई प्रवाह स्थिति द्वारा निर्धारित नई अस्थिरता के प्रति संवेदनशील हो जाता है, जिससे नई सुसंगत संरचना का निर्माण होता है। यह भी संभव है कि संरचनाएं क्षय न करें और इसके बजाय उपसंरचनाओं में विभाजित होकर या अन्य सुसंगत संरचनाओं के साथ बातचीत करके विकृत हो जाएं। | ||
==सुसंगत संरचनाओं की श्रेणियाँ== | ==सुसंगत संरचनाओं की श्रेणियाँ== | ||
===लैग्रेंजियन सुसंगत संरचनाएं=== | ===लैग्रेंजियन सुसंगत संरचनाएं=== | ||
[[File:Skeleton turbulence.png|400px|right|thumb|द्वि-आयामी अशांति प्रयोग से निकाले गए आकर्षित (लाल) और प्रतिकर्षित (नीला) एलसीएस (छवि: मणिकंदन माथुर)<ref name=Mathur2007>{{Cite journal | last1 = Mathur | first1 = M. | last2 = Haller | first2 = G. | last3 = Peacock | first3 = T. | last4 = Ruppert-Felsot | first4 = J. | last5 = Swinney | first5 = H. | title = अशांति के लैग्रेंजियन कंकाल को उजागर करना| doi = 10.1103/PhysRevLett.98.144502 | journal = Physical Review Letters | volume = 98 | issue = 14 | pages = 144502 | year = 2007 | pmid = 17501277|bibcode = 2007PhRvL..98n4502M }}</ref>]]लैग्रेंजियन सुसंगत संरचनाएं (एलसीएस) प्रभावशाली सामग्री सतहें हैं जो | [[File:Skeleton turbulence.png|400px|right|thumb|द्वि-आयामी अशांति प्रयोग से निकाले गए आकर्षित (लाल) और प्रतिकर्षित (नीला) एलसीएस (छवि: मणिकंदन माथुर)<ref name=Mathur2007>{{Cite journal | last1 = Mathur | first1 = M. | last2 = Haller | first2 = G. | last3 = Peacock | first3 = T. | last4 = Ruppert-Felsot | first4 = J. | last5 = Swinney | first5 = H. | title = अशांति के लैग्रेंजियन कंकाल को उजागर करना| doi = 10.1103/PhysRevLett.98.144502 | journal = Physical Review Letters | volume = 98 | issue = 14 | pages = 144502 | year = 2007 | pmid = 17501277|bibcode = 2007PhRvL..98n4502M }}</ref>]]लैग्रेंजियन सुसंगत संरचनाएं (एलसीएस) प्रभावशाली सामग्री सतहें हैं जो अस्थिर प्रवाह द्वारा प्रेरित निष्क्रिय ट्रेसर वितरण में स्पष्ट रूप से पहचानने योग्य पैटर्न बनाती हैं। एलसीएस को हाइपरबोलिक (स्थानीय रूप से सामग्री सतहों को अधिकतम रूप से आकर्षित या प्रतिकर्षित करने वाला), अण्डाकार (सामग्री भंवर सीमाएं), और परवलयिक (सामग्री जेट कोर) के रूप में वर्गीकृत किया जा सकता है। ये सतहें शास्त्रीय अपरिवर्तनीय मैनिफोल्ड्स के सामान्यीकरण हैं, जिन्हें गतिशील सिस्टम सिद्धांत में सीमित समय के अस्थिर प्रवाह डेटा के लिए जाना जाता है। सुसंगतता पर यह लैग्रेंजियन परिप्रेक्ष्य द्रव तत्वों द्वारा निर्मित संरचनाओं से संबंधित है, जो सुसंगतता की यूलर समीकरणों (द्रव गतिशीलता) की धारणा के विपरीत है, जो द्रव के तात्कालिक वेग क्षेत्र में विशेषताओं पर विचार करता है। दो- और तीन-आयामी डेटा सेटों में लैग्रेंजियन सुसंगत संरचना की पहचान करने के लिए विभिन्न गणितीय तकनीकों का विकास किया गया है, और प्रयोगशाला प्रयोगों, संख्यात्मक सिमुलेशन और भूभौतिकीय टिप्पणियों पर लागू किया गया है। <ref>Peacock, T., Haller, G. "Lagrangian Coherent structures: the hidden skeleton of fluid flows" Physics Today, 41 (2013). http://georgehaller.com/reprints/PhysToday.pdf</ref><ref name=Haller2015>{{Cite journal | doi = 10.1146/annurev-fluid-010313-141322| title = लैग्रेंजियन सुसंगत संरचनाएं| journal = Annual Review of Fluid Mechanics| volume = 47| pages = 137–162| year = 2015| last1 = Haller | first1 = G. | issue = 1| bibcode = 2015AnRFM..47..137H| s2cid = 122894798| url = http://pdfs.semanticscholar.org/b20c/137482ccdc3717e691ce9613643d1c917fd7.pdf}}</ref> | ||
===हेयरपिन भंवर=== | ===हेयरपिन भंवर=== | ||
हेयरपिन भंवर [http://www.cfd-online.com/Wiki/Introduction_to_turbulence/Wall_ounded_turbulent_flows अशांत दीवार] के अशांत उभारों के शीर्ष पर पाए जाते हैं, जो अशांत दीवार के चारों ओर हेयरपिन के आकार के लूप में लपेटते हैं, जहां से नाम की उत्पत्ति होती है। हेयरपिन के आकार के भंवरों को अशांत सीमा परतों में सबसे महत्वपूर्ण और प्राथमिक निरंतर प्रवाह पैटर्न में से | हेयरपिन भंवर [http://www.cfd-online.com/Wiki/Introduction_to_turbulence/Wall_ounded_turbulent_flows अशांत दीवार] के अशांत उभारों के शीर्ष पर पाए जाते हैं, जो अशांत दीवार के चारों ओर हेयरपिन के आकार के लूप में लपेटते हैं, जहां से नाम की उत्पत्ति होती है। हेयरपिन के आकार के भंवरों को अशांत सीमा परतों में सबसे महत्वपूर्ण और प्राथमिक निरंतर प्रवाह पैटर्न में से माना जाता है। हेयरपिन शायद सबसे सरल संरचनाएं हैं, और बड़े पैमाने पर अशांत सीमा परतों का प्रतिनिधित्व करने वाले मॉडल अक्सर व्यक्तिगत हेयरपिन भंवरों को तोड़कर बनाए जाते हैं, जो दीवार की अशांति की अधिकांश विशेषताओं को समझा सकते हैं। यद्यपि हेयरपिन भंवर दीवार के पास प्रवाह के सरल वैचारिक मॉडल का आधार बनाते हैं, वास्तविक अशांत प्रवाह में प्रतिस्पर्धी भंवरों का पदानुक्रम हो सकता है, जिनमें से प्रत्येक की अपनी विषमता और गड़बड़ी की डिग्री होती है।<ref>Adrian, R. J. “Hairpin vortex organization in wall turbulence” Phys. Fluids 19, 041301 (2007). </ref> | ||
हेयरपिन भंवर घोड़े की नाल के भंवर से मिलते जुलते हैं, जो दीवार से दूरी के आधार पर ऊपर की ओर बहने वाले वेगों में अंतर के कारण छोटी उर्ध्व गति की गड़बड़ी के कारण मौजूद होते हैं। ये हेयरपिन भंवरों के कई पैकेट बनाते हैं, जहां विभिन्न आकारों के हेयरपिन पैकेट पैकेट में जोड़ने के लिए नए भंवर उत्पन्न कर सकते हैं। विशेष रूप से, सतह के करीब, हेयरपिन भंवरों की पूंछ के सिरे धीरे-धीरे एकत्रित हो सकते हैं जिसके परिणामस्वरूप उत्तेजित विस्फोट हो सकते हैं, जिससे नए हेयरपिन भंवर पैदा हो सकते हैं। इसलिए, ऐसे विस्फोट | हेयरपिन भंवर घोड़े की नाल के भंवर से मिलते जुलते हैं, जो दीवार से दूरी के आधार पर ऊपर की ओर बहने वाले वेगों में अंतर के कारण छोटी उर्ध्व गति की गड़बड़ी के कारण मौजूद होते हैं। ये हेयरपिन भंवरों के कई पैकेट बनाते हैं, जहां विभिन्न आकारों के हेयरपिन पैकेट पैकेट में जोड़ने के लिए नए भंवर उत्पन्न कर सकते हैं। विशेष रूप से, सतह के करीब, हेयरपिन भंवरों की पूंछ के सिरे धीरे-धीरे एकत्रित हो सकते हैं जिसके परिणामस्वरूप उत्तेजित विस्फोट हो सकते हैं, जिससे नए हेयरपिन भंवर पैदा हो सकते हैं। इसलिए, ऐसे विस्फोट पुनर्योजी प्रक्रिया हैं, जिसमें वे सतह के पास भंवर बनाने और उन्हें अशांत दीवार के बाहरी क्षेत्रों पर फेंकने का कार्य करते हैं। विस्फोटक गुणों के आधार पर, मिश्रण के कारण ऐसे प्रवाह को गर्मी हस्तांतरण में बहुत कुशल माना जा सकता है। विशेष रूप से, विस्फोट गर्म तरल पदार्थ को ऊपर ले जाते हैं जबकि विस्फोट से पहले हेयरपिन भंवरों की पूंछों के अभिसरण के दौरान ठंडे प्रवाह को नीचे की ओर लाया जाता है।<ref>Haidari, A. H., Smith, C. R. “The generation and regeneration of single hairpin vortices” J. Fluid Mech., vol. 277, pp. 135-162. (1994)</ref> | ||
ऐसा माना जाता है कि उत्पादन और योगदान <math> -\overline{u'v'} </math>रेनॉल्ड्स तनाव, हेयरपिन की आंतरिक और बाहरी दीवारों के बीच मजबूत बातचीत के दौरान होता है। इस रेनॉल्ड के तनाव शब्द के उत्पादन के दौरान, योगदान तेज रुक-रुक कर समय खंडों में आता है जब विस्फोट नए भंवरों को बाहर लाते हैं। | ऐसा माना जाता है कि उत्पादन और योगदान <math> -\overline{u'v'} </math>रेनॉल्ड्स तनाव, हेयरपिन की आंतरिक और बाहरी दीवारों के बीच मजबूत बातचीत के दौरान होता है। इस रेनॉल्ड के तनाव शब्द के उत्पादन के दौरान, योगदान तेज रुक-रुक कर समय खंडों में आता है जब विस्फोट नए भंवरों को बाहर लाते हैं। | ||
एकल हेयरपिन के प्रयोगों और संख्यात्मक सिमुलेशन में हेयरपिन भंवरों का निर्माण देखा गया है, हालांकि प्रकृति में उनके लिए अवलोकन संबंधी साक्ष्य अभी भी सीमित हैं। थियोडोर्सन ऐसे रेखाचित्र तैयार कर रहे हैं जो उनके प्रवाह विज़ुअलाइज़ेशन प्रयोगों में हेयरपिन भंवरों की उपस्थिति का संकेत देते हैं। इन छोटी प्राथमिक संरचनाओं को दाईं ओर के स्केच में मुख्य भंवर को ढंकते हुए देखा जा सकता है (थियोडोर्सन के भाप प्रयोग के स्केच की छवि जो संरचनाओं की उपस्थिति को उजागर करती है)। उस समय स्केच काफी उन्नत था, लेकिन कंप्यूटर के आगमन के साथ बेहतर चित्रण आया। 1952 में रॉबिन्सन ने दो प्रकार की प्रवाह संरचनाओं को अलग किया, जिन्हें उन्होंने हॉर्सशू, या आर्क, भंवर और अर्ध-स्ट्रीमवाइज भंवर (दाईं ओर दिखाया गया क्लासिक चित्र) नाम दिया।<ref name="green"/> | एकल हेयरपिन के प्रयोगों और संख्यात्मक सिमुलेशन में हेयरपिन भंवरों का निर्माण देखा गया है, हालांकि प्रकृति में उनके लिए अवलोकन संबंधी साक्ष्य अभी भी सीमित हैं। थियोडोर्सन ऐसे रेखाचित्र तैयार कर रहे हैं जो उनके प्रवाह विज़ुअलाइज़ेशन प्रयोगों में हेयरपिन भंवरों की उपस्थिति का संकेत देते हैं। इन छोटी प्राथमिक संरचनाओं को दाईं ओर के स्केच में मुख्य भंवर को ढंकते हुए देखा जा सकता है (थियोडोर्सन के भाप प्रयोग के स्केच की छवि जो संरचनाओं की उपस्थिति को उजागर करती है)। उस समय स्केच काफी उन्नत था, लेकिन कंप्यूटर के आगमन के साथ बेहतर चित्रण आया। 1952 में रॉबिन्सन ने दो प्रकार की प्रवाह संरचनाओं को अलग किया, जिन्हें उन्होंने हॉर्सशू, या आर्क, भंवर और अर्ध-स्ट्रीमवाइज भंवर (दाईं ओर दिखाया गया क्लासिक चित्र) नाम दिया।<ref name="green"/> | ||
[[File:CreativeLicensedAfterRobinson.png|thumb|रॉबिन्सन द्वारा प्रत्यक्ष संख्यात्मक सिमुलेशन के माध्यम से पाई गई दो मुख्य प्रवाह संरचनाओं का वर्णन करता है<ref name="green"/>]]कंप्यूटर के बड़े पैमाने पर उपयोग के बाद से, प्रत्यक्ष संख्यात्मक सिमुलेशन या डीएनएस का व्यापक रूप से उपयोग किया गया है, जिससे प्रवाह के जटिल विकास का वर्णन करने वाले विशाल डेटा सेट तैयार किए गए हैं। डीएनएस इंगित करता है कि कई जटिल 3-आयामी भंवर सतह के निकट उच्च कतरनी के क्षेत्रों में अंतर्निहित हैं। शोधकर्ता सुसंगत भंवरों जैसी स्वीकृत परिभाषाओं के आधार पर व्यक्तिगत भंवर संरचनाओं के संकेतों के लिए उच्च कतरनी के इस क्षेत्र के चारों ओर देखते हैं। ऐतिहासिक रूप से, भंवर को प्रवाह में | [[File:CreativeLicensedAfterRobinson.png|thumb|रॉबिन्सन द्वारा प्रत्यक्ष संख्यात्मक सिमुलेशन के माध्यम से पाई गई दो मुख्य प्रवाह संरचनाओं का वर्णन करता है<ref name="green"/>]]कंप्यूटर के बड़े पैमाने पर उपयोग के बाद से, प्रत्यक्ष संख्यात्मक सिमुलेशन या डीएनएस का व्यापक रूप से उपयोग किया गया है, जिससे प्रवाह के जटिल विकास का वर्णन करने वाले विशाल डेटा सेट तैयार किए गए हैं। डीएनएस इंगित करता है कि कई जटिल 3-आयामी भंवर सतह के निकट उच्च कतरनी के क्षेत्रों में अंतर्निहित हैं। शोधकर्ता सुसंगत भंवरों जैसी स्वीकृत परिभाषाओं के आधार पर व्यक्तिगत भंवर संरचनाओं के संकेतों के लिए उच्च कतरनी के इस क्षेत्र के चारों ओर देखते हैं। ऐतिहासिक रूप से, भंवर को प्रवाह में क्षेत्र के रूप में माना जाता है जहां भंवर रेखाओं का समूह साथ आता है, इसलिए कोर के बारे में तात्कालिक गोलाकार पथों के समूह के साथ भंवर कोर की उपस्थिति का संकेत मिलता है। 1991 में, रॉबिन्सन ने भंवर संरचना को कोर के रूप में परिभाषित किया, जिसमें संवहित निम्न दबाव वाले क्षेत्र शामिल थे, जहां तात्कालिक स्ट्रीमलाइनें भंवर कोर विमान के सामान्य तल के सापेक्ष वृत्त या सर्पिल आकार बना सकती हैं। हालाँकि लंबी अवधि में हेयरपिन के विकास को ट्रैक करना संभव नहीं है, लेकिन कम समय अवधि में उनके विकास को पहचानना और उसका पता लगाना संभव है। हेयरपिन भंवरों की कुछ प्रमुख उल्लेखनीय विशेषताएं यह हैं कि वे पृष्ठभूमि कतरनी प्रवाह, अन्य भंवरों के साथ कैसे बातचीत करते हैं, और वे सतह के पास प्रवाह के साथ कैसे बातचीत करते हैं।<ref name="green"/> | ||
Revision as of 16:57, 28 November 2023
अशांत प्रवाह जटिल बहु-स्तरीय और अराजक गतियाँ हैं जिन्हें सुसंगत अशांत संरचनाओं के रूप में संदर्भित अधिक प्राथमिक घटकों में वर्गीकृत करने की आवश्यकता है। इस तरह की संरचना में अस्थायी सुसंगतता होनी चाहिए, यानी इसे लंबे समय तक अपने स्वरूप में बने रहना चाहिए ताकि समय-औसत सांख्यिकी के तरीकों को लागू किया जा सके। सुसंगत संरचनाओं का अध्ययन आम तौर पर बहुत बड़े पैमाने पर किया जाता है, लेकिन उन्हें अपने स्वयं के सुसंगत गुणों के साथ अधिक प्राथमिक संरचनाओं में तोड़ा जा सकता है, ऐसे उदाहरणों में हेयरपिन भंवर शामिल हैं। 1930 के दशक से हेयरपिन और सुसंगत संरचनाओं का अध्ययन किया गया है और डेटा में देखा गया है, और तब से हजारों वैज्ञानिक पत्रों और समीक्षाओं में उद्धृत किया गया है।[1]
प्रवाह विज़ुअलाइज़ेशन प्रयोग, धूम्रपान और डाई को ट्रेसर के रूप में उपयोग करते हुए, ऐतिहासिक रूप से सुसंगत संरचनाओं का अनुकरण करने और सिद्धांतों को सत्यापित करने के लिए उपयोग किया जाता रहा है, लेकिन कंप्यूटर मॉडल अब इस क्षेत्र के गठन, विकास और अन्य गुणों को सत्यापित करने और समझने के लिए व्यापक रूप से उपयोग किए जाने वाले प्रमुख उपकरण हैं। संरचनाएँ। इन गतियों के गतिज गुणों में आकार, पैमाना, आकृति, भंवरता, अशांति गतिज ऊर्जा शामिल हैं, और गतिशील गुण सुसंगत संरचनाओं के बढ़ने, विकसित होने और क्षय होने के तरीके को नियंत्रित करते हैं। अधिकांश सुसंगत संरचनाओं का अध्ययन केवल साधारण दीवार अशांति के सीमित रूपों के भीतर किया जाता है, जो सुसंगतता को स्थिर, पूरी तरह से विकसित, असम्पीडित और सीमा परत में शून्य दबाव ढाल के साथ अनुमानित करता है। यद्यपि इस तरह के अनुमान वास्तविकता से परे हैं, लेकिन उनमें अत्यधिक वैचारिक स्तर पर अशांत सुसंगत संरचनाओं को समझने के लिए आवश्यक पर्याप्त पैरामीटर शामिल हैं।[2]
इतिहास और खोज
अशांत कतरनी प्रवाह में संगठित गतियों और संरचनाओं की उपस्थिति लंबे समय से स्पष्ट थी, और इस अवधारणा को साहित्य में स्पष्ट रूप से बताए जाने से पहले ही मिक्सिंग लेंथ मॉडल परिकल्पना द्वारा अतिरिक्त रूप से निहित किया गया है। विशेष रूप से कोर्सिन और रोशको द्वारा जेट और अशांत तरंगों को मापने के द्वारा प्रारंभिक सहसंबंध डेटा भी पाया गया था। हामा की हाइड्रोजन बबल तकनीक, जिसने संरचनाओं का निरीक्षण करने के लिए प्रवाह विज़ुअलाइज़ेशन का उपयोग किया, ने व्यापक ध्यान आकर्षित किया और क्लाइन सहित कई शोधकर्ताओं ने इसका अनुसरण किया। प्रवाह विज़ुअलाइज़ेशन प्रयोगशाला प्रयोगात्मक तकनीक है जिसका उपयोग अशांत कतरनी प्रवाह की संरचनाओं को देखने और समझने के लिए किया जाता है।[1]सुसंगत संरचनाओं की बेहतर समझ के साथ, अब दशकों पहले लिए गए विभिन्न अशांत प्रवाहों से एकत्र किए गए पिछले प्रवाह-दृश्य चित्रों में कई सुसंगत संरचनाओं को खोजना और पहचानना संभव है। सुसंगत प्रवाह संरचनाओं को समझने और कल्पना करने के लिए कंप्यूटर सिमुलेशन अब प्रमुख उपकरण बन रहा है। आवश्यक समय-निर्भर नेवियर-स्टोक्स समीकरणों की गणना करने की क्षमता | नेवियर-स्टोक्स समीकरण बहुत अधिक परिष्कृत स्तर पर ग्राफिक प्रस्तुतियाँ तैयार करता है, और इसके अतिरिक्त प्रयोगशाला प्रयोगों में पहले उत्पन्न अपेक्षित आकार और गति से अधिक, विभिन्न विमानों और संकल्पों पर देखा जा सकता है। हालाँकि, क्षेत्र में अब प्रभावी संख्यात्मक सिमुलेशन को निर्देशित करने, विकसित करने और मान्य करने के लिए नियंत्रित प्रवाह विज़ुअलाइज़ेशन प्रयोग अभी भी आवश्यक हैं।[2]
परिभाषा
अशांति द्रव गतिशीलता में प्रवाह व्यवस्था है जहां द्रव का वेग स्थिति और समय दोनों में महत्वपूर्ण और अनियमित रूप से भिन्न होता है।[3] इसके अलावा, सुसंगत संरचना को अशांत प्रवाह के रूप में परिभाषित किया जाता है जिसकी भंवर अभिव्यक्ति, जो आमतौर पर स्टोकेस्टिक होती है, में व्यवस्थित घटक होते हैं जिन्हें प्रवाह संरचना की स्थानिक सीमा पर तत्काल सुसंगत होने के रूप में वर्णित किया जा सकता है। दूसरे शब्दों में, अशांत प्रवाह की विशिष्ट त्रि-आयामी अराजक भंवर अभिव्यक्ति के अंतर्निहित, उस भंवर का संगठित घटक है जो संरचना के पूरे स्थान पर चरण-सहसंबद्ध है। सुसंगत संरचना अभिव्यक्तियों के भीतर पाए जाने वाले तात्कालिक स्थान और चरण सहसंबद्ध vorticity को सुसंगत vorticity के रूप में परिभाषित किया जा सकता है, इसलिए सुसंगत vorticity को सुसंगत संरचनाओं के लिए मुख्य विशेषता पहचानकर्ता बना दिया जाता है। अशांत प्रवाह में निहित और विशेषता उनकी आंतरायिकता है, लेकिन आंतरायिकता सुसंगत संरचना की सीमाओं की बहुत खराब पहचानकर्ता है, इसलिए यह आम तौर पर स्वीकार किया जाता है कि किसी संरचना की सीमा को चिह्नित करने का सबसे अच्छा तरीका इसकी सीमा को पहचानना और परिभाषित करना है। सुसंगत vorticity.[2]
इस तरीके से सुसंगत संरचना को परिभाषित करने और पहचानने से, अशांत प्रवाह को सुसंगत संरचनाओं और असंगत संरचनाओं में विघटित किया जा सकता है, जो उनकी सुसंगतता पर निर्भर करता है, विशेष रूप से उनकी अस्थिरता के साथ उनके सहसंबंधों पर। इसलिए, संगठित घटनाओं के समूह औसत में समान रूप से आयोजित घटनाओं को सुसंगत संरचना के रूप में परिभाषित किया जा सकता है, और जो भी घटनाएँ समान या चरण के रूप में पहचानी नहीं जाती हैं और समूह औसत में संरेखित स्थान असंगत अशांत संरचना है।
सुसंगत संरचना को परिभाषित करने के अन्य प्रयास उनके संवेग या दबाव और उनके अशांत प्रवाह के बीच सहसंबंध की जांच के माध्यम से किए जा सकते हैं। हालाँकि, यह अक्सर अशांति के गलत संकेत देता है, क्योंकि किसी तरल पदार्थ पर दबाव और वेग में उतार-चढ़ाव किसी भी अशांति या भंवर की अनुपस्थिति में अच्छी तरह से सहसंबद्ध हो सकता है। कुछ सुसंगत संरचनाएं, जैसे भंवर वलय, आदि कतरनी प्रवाह की सीमा के बराबर बड़े पैमाने पर गति हो सकती हैं। बहुत छोटे पैमाने पर सुसंगत गतियाँ भी होती हैं जैसे कि हेयरपिन भंवर और विशिष्ट भंवर, जिन्हें आम तौर पर सुसंगत उप-संरचनाओं के रूप में जाना जाता है, जैसे सुसंगत संरचनाओं में जिन्हें छोटे और अधिक प्राथमिक उप-संरचनाओं में तोड़ा जा सकता है।
विशेषताएँ
हालाँकि परिभाषा के अनुसार सुसंगत संरचना उच्च स्तर की सुसंगत भंवरता, रेनॉल्ड्स तनाव, उत्पादन और गर्मी और बड़े पैमाने पर परिवहन की विशेषता है, लेकिन इसके लिए उच्च स्तर की गतिज ऊर्जा की आवश्यकता नहीं होती है। वास्तव में, सुसंगत संरचनाओं की मुख्य भूमिकाओं में से सामान्य रूप से आवश्यक ऊर्जा की उच्च मात्रा की आवश्यकता के बिना द्रव्यमान, गर्मी और गति का बड़े पैमाने पर परिवहन है। नतीजतन, इसका तात्पर्य यह है कि सुसंगत संरचनाएं रेनॉल्ड्स तनाव का मुख्य उत्पादन और कारण नहीं हैं, और असंगत अशांति भी समान रूप से महत्वपूर्ण हो सकती है।[4] सुसंगत संरचनाएं सुपरपोजिशन सिद्धांत पर आधारित नहीं हो सकती हैं, यानी वे ओवरलैप नहीं हो सकती हैं और प्रत्येक सुसंगत संरचना का अपना स्वतंत्र डोमेन और सीमा होती है। चूंकि भंवर स्थानिक सुपरपोजिशन के रूप में सह-अस्तित्व में हैं, सुसंगत संरचना एड़ी (द्रव गतिशीलता) नहीं है। उदाहरण के लिए, भंवर बड़े पैमाने पर माध्य प्रवाह से ऊर्जा प्राप्त करके ऊर्जा को नष्ट करते हैं, और अंततः इसे सबसे छोटे पैमाने पर नष्ट कर देते हैं। सुसंगत संरचनाओं के बीच ऊर्जा का ऐसा कोई समान आदान-प्रदान नहीं होता है, और सुसंगत संरचनाओं के बीच किसी भी अंतःक्रिया जैसे टूटने से बस नई संरचना उत्पन्न होती है। हालाँकि, दो सुसंगत संरचनाएँ दूसरे से बातचीत और प्रभाव डाल सकती हैं। किसी संरचना का द्रव्यमान समय के साथ बदलता है, विशिष्ट मामला यह है कि संरचनाओं में भंवर के प्रसार के माध्यम से मात्रा में वृद्धि होती है।
सुसंगत संरचनाओं की सबसे बुनियादी मात्राओं में से सुसंगत vorticity द्वारा विशेषता है, . शायद सुसंगत संरचनाओं के अगले सबसे महत्वपूर्ण उपाय सुसंगत बनाम असंगत रेनॉल्ड के तनाव हैं, और . ये गति के परिवहन का प्रतिनिधित्व करते हैं, और उनकी सापेक्ष शक्ति इंगित करती है कि असंगत संरचनाओं की तुलना में सुसंगत संरचनाओं द्वारा कितनी गति का परिवहन किया जा रहा है। अगले सबसे महत्वपूर्ण उपायों में सुसंगत तनाव दर और कतरनी उत्पादन का समोच्च चित्रण शामिल है। ऐसी आकृतियों की उपयोगी संपत्ति यह है कि वे गैलीलियन परिवर्तनों के तहत अपरिवर्तनीय हैं, इसलिए सुसंगत भंवर की आकृतियाँ संरचना की सीमाओं के लिए उत्कृष्ट पहचानकर्ता बनती हैं। इन गुणों की रूपरेखा न केवल यह पता लगाती है कि बिल्कुल सुसंगत संरचना मात्राओं की चोटियाँ और काठियाँ कहाँ हैं, बल्कि यह भी पहचानती हैं कि असंगत अशांत संरचनाएँ अपने दिशात्मक ढालों पर मढ़ा होने पर कहाँ हैं। इसके अलावा, स्थानिक आकृतियाँ खींची जा सकती हैं जो सुसंगत संरचनाओं के आकार, आकार और ताकत का वर्णन करती हैं, जो न केवल यांत्रिकी बल्कि सुसंगत संरचनाओं के गतिशील विकास को भी दर्शाती हैं। उदाहरण के लिए, किसी संरचना के विकसित होने और इसलिए प्रभावी होने के लिए, इसकी सुसंगत भंवरता, सुसंगत रेनॉल्ड्स तनाव और उत्पादन की शर्तें प्रवाह संरचनाओं के समय के औसत मूल्यों से बड़ी होनी चाहिए।[2]
गठन
सुसंगत संरचनाएँ किसी प्रकार की अस्थिरता के कारण बनती हैं, जैसे केल्विन-हेल्महोल्ट्ज़ अस्थिरता। अस्थिरता की पहचान करने के लिए, और इसलिए सुसंगत संरचना के प्रारंभिक गठन के लिए, प्रवाह संरचना की प्रारंभिक स्थितियों के ज्ञान की आवश्यकता होती है। इसलिए, सुसंगत संरचनाओं के विकास और अंतःक्रिया को पकड़ने के लिए प्रारंभिक स्थिति का दस्तावेज़ीकरण आवश्यक है, क्योंकि प्रारंभिक स्थितियाँ काफी परिवर्तनशील होती हैं। शोधकर्ताओं द्वारा उनके महत्व को नज़रअंदाज़ करने के कारण प्रारंभिक अध्ययनों में प्रारंभिक स्थितियों को नज़रअंदाज करना आम बात थी। प्रारंभिक स्थितियों में औसत वेग प्रोफ़ाइल, मोटाई, आकार, वेग और गति की संभावना घनत्व, रेनॉल्ड्स तनाव मूल्यों का स्पेक्ट्रम आदि शामिल हैं। प्रारंभिक प्रवाह स्थितियों के इन उपायों को तीन व्यापक श्रेणियों में व्यवस्थित और समूहीकृत किया जा सकता है: लामिना का प्रवाह, अत्यधिक परेशान , और पूरी तरह से अशांत।[2]
तीन श्रेणियों में से, सुसंगत संरचनाएं आम तौर पर लामिनायर या अशांत राज्यों में अस्थिरता से उत्पन्न होती हैं। प्रारंभिक ट्रिगरिंग के बाद, उनकी वृद्धि अन्य सुसंगत संरचनाओं के साथ गैर-रेखीय बातचीत, या असंगत अशांत संरचनाओं पर उनके क्षय के कारण होने वाले विकासवादी परिवर्तनों से निर्धारित होती है। देखे गए तीव्र परिवर्तनों से यह विश्वास पैदा होता है कि क्षय के दौरान पुनर्योजी चक्र होना चाहिए। उदाहरण के लिए, संरचना के क्षय के बाद, परिणाम यह हो सकता है कि प्रवाह अब अशांत है और नई प्रवाह स्थिति द्वारा निर्धारित नई अस्थिरता के प्रति संवेदनशील हो जाता है, जिससे नई सुसंगत संरचना का निर्माण होता है। यह भी संभव है कि संरचनाएं क्षय न करें और इसके बजाय उपसंरचनाओं में विभाजित होकर या अन्य सुसंगत संरचनाओं के साथ बातचीत करके विकृत हो जाएं।
सुसंगत संरचनाओं की श्रेणियाँ
लैग्रेंजियन सुसंगत संरचनाएं
लैग्रेंजियन सुसंगत संरचनाएं (एलसीएस) प्रभावशाली सामग्री सतहें हैं जो अस्थिर प्रवाह द्वारा प्रेरित निष्क्रिय ट्रेसर वितरण में स्पष्ट रूप से पहचानने योग्य पैटर्न बनाती हैं। एलसीएस को हाइपरबोलिक (स्थानीय रूप से सामग्री सतहों को अधिकतम रूप से आकर्षित या प्रतिकर्षित करने वाला), अण्डाकार (सामग्री भंवर सीमाएं), और परवलयिक (सामग्री जेट कोर) के रूप में वर्गीकृत किया जा सकता है। ये सतहें शास्त्रीय अपरिवर्तनीय मैनिफोल्ड्स के सामान्यीकरण हैं, जिन्हें गतिशील सिस्टम सिद्धांत में सीमित समय के अस्थिर प्रवाह डेटा के लिए जाना जाता है। सुसंगतता पर यह लैग्रेंजियन परिप्रेक्ष्य द्रव तत्वों द्वारा निर्मित संरचनाओं से संबंधित है, जो सुसंगतता की यूलर समीकरणों (द्रव गतिशीलता) की धारणा के विपरीत है, जो द्रव के तात्कालिक वेग क्षेत्र में विशेषताओं पर विचार करता है। दो- और तीन-आयामी डेटा सेटों में लैग्रेंजियन सुसंगत संरचना की पहचान करने के लिए विभिन्न गणितीय तकनीकों का विकास किया गया है, और प्रयोगशाला प्रयोगों, संख्यात्मक सिमुलेशन और भूभौतिकीय टिप्पणियों पर लागू किया गया है। [6][7]
हेयरपिन भंवर
हेयरपिन भंवर अशांत दीवार के अशांत उभारों के शीर्ष पर पाए जाते हैं, जो अशांत दीवार के चारों ओर हेयरपिन के आकार के लूप में लपेटते हैं, जहां से नाम की उत्पत्ति होती है। हेयरपिन के आकार के भंवरों को अशांत सीमा परतों में सबसे महत्वपूर्ण और प्राथमिक निरंतर प्रवाह पैटर्न में से माना जाता है। हेयरपिन शायद सबसे सरल संरचनाएं हैं, और बड़े पैमाने पर अशांत सीमा परतों का प्रतिनिधित्व करने वाले मॉडल अक्सर व्यक्तिगत हेयरपिन भंवरों को तोड़कर बनाए जाते हैं, जो दीवार की अशांति की अधिकांश विशेषताओं को समझा सकते हैं। यद्यपि हेयरपिन भंवर दीवार के पास प्रवाह के सरल वैचारिक मॉडल का आधार बनाते हैं, वास्तविक अशांत प्रवाह में प्रतिस्पर्धी भंवरों का पदानुक्रम हो सकता है, जिनमें से प्रत्येक की अपनी विषमता और गड़बड़ी की डिग्री होती है।[8] हेयरपिन भंवर घोड़े की नाल के भंवर से मिलते जुलते हैं, जो दीवार से दूरी के आधार पर ऊपर की ओर बहने वाले वेगों में अंतर के कारण छोटी उर्ध्व गति की गड़बड़ी के कारण मौजूद होते हैं। ये हेयरपिन भंवरों के कई पैकेट बनाते हैं, जहां विभिन्न आकारों के हेयरपिन पैकेट पैकेट में जोड़ने के लिए नए भंवर उत्पन्न कर सकते हैं। विशेष रूप से, सतह के करीब, हेयरपिन भंवरों की पूंछ के सिरे धीरे-धीरे एकत्रित हो सकते हैं जिसके परिणामस्वरूप उत्तेजित विस्फोट हो सकते हैं, जिससे नए हेयरपिन भंवर पैदा हो सकते हैं। इसलिए, ऐसे विस्फोट पुनर्योजी प्रक्रिया हैं, जिसमें वे सतह के पास भंवर बनाने और उन्हें अशांत दीवार के बाहरी क्षेत्रों पर फेंकने का कार्य करते हैं। विस्फोटक गुणों के आधार पर, मिश्रण के कारण ऐसे प्रवाह को गर्मी हस्तांतरण में बहुत कुशल माना जा सकता है। विशेष रूप से, विस्फोट गर्म तरल पदार्थ को ऊपर ले जाते हैं जबकि विस्फोट से पहले हेयरपिन भंवरों की पूंछों के अभिसरण के दौरान ठंडे प्रवाह को नीचे की ओर लाया जाता है।[9] ऐसा माना जाता है कि उत्पादन और योगदान रेनॉल्ड्स तनाव, हेयरपिन की आंतरिक और बाहरी दीवारों के बीच मजबूत बातचीत के दौरान होता है। इस रेनॉल्ड के तनाव शब्द के उत्पादन के दौरान, योगदान तेज रुक-रुक कर समय खंडों में आता है जब विस्फोट नए भंवरों को बाहर लाते हैं।
एकल हेयरपिन के प्रयोगों और संख्यात्मक सिमुलेशन में हेयरपिन भंवरों का निर्माण देखा गया है, हालांकि प्रकृति में उनके लिए अवलोकन संबंधी साक्ष्य अभी भी सीमित हैं। थियोडोर्सन ऐसे रेखाचित्र तैयार कर रहे हैं जो उनके प्रवाह विज़ुअलाइज़ेशन प्रयोगों में हेयरपिन भंवरों की उपस्थिति का संकेत देते हैं। इन छोटी प्राथमिक संरचनाओं को दाईं ओर के स्केच में मुख्य भंवर को ढंकते हुए देखा जा सकता है (थियोडोर्सन के भाप प्रयोग के स्केच की छवि जो संरचनाओं की उपस्थिति को उजागर करती है)। उस समय स्केच काफी उन्नत था, लेकिन कंप्यूटर के आगमन के साथ बेहतर चित्रण आया। 1952 में रॉबिन्सन ने दो प्रकार की प्रवाह संरचनाओं को अलग किया, जिन्हें उन्होंने हॉर्सशू, या आर्क, भंवर और अर्ध-स्ट्रीमवाइज भंवर (दाईं ओर दिखाया गया क्लासिक चित्र) नाम दिया।[1]
कंप्यूटर के बड़े पैमाने पर उपयोग के बाद से, प्रत्यक्ष संख्यात्मक सिमुलेशन या डीएनएस का व्यापक रूप से उपयोग किया गया है, जिससे प्रवाह के जटिल विकास का वर्णन करने वाले विशाल डेटा सेट तैयार किए गए हैं। डीएनएस इंगित करता है कि कई जटिल 3-आयामी भंवर सतह के निकट उच्च कतरनी के क्षेत्रों में अंतर्निहित हैं। शोधकर्ता सुसंगत भंवरों जैसी स्वीकृत परिभाषाओं के आधार पर व्यक्तिगत भंवर संरचनाओं के संकेतों के लिए उच्च कतरनी के इस क्षेत्र के चारों ओर देखते हैं। ऐतिहासिक रूप से, भंवर को प्रवाह में क्षेत्र के रूप में माना जाता है जहां भंवर रेखाओं का समूह साथ आता है, इसलिए कोर के बारे में तात्कालिक गोलाकार पथों के समूह के साथ भंवर कोर की उपस्थिति का संकेत मिलता है। 1991 में, रॉबिन्सन ने भंवर संरचना को कोर के रूप में परिभाषित किया, जिसमें संवहित निम्न दबाव वाले क्षेत्र शामिल थे, जहां तात्कालिक स्ट्रीमलाइनें भंवर कोर विमान के सामान्य तल के सापेक्ष वृत्त या सर्पिल आकार बना सकती हैं। हालाँकि लंबी अवधि में हेयरपिन के विकास को ट्रैक करना संभव नहीं है, लेकिन कम समय अवधि में उनके विकास को पहचानना और उसका पता लगाना संभव है। हेयरपिन भंवरों की कुछ प्रमुख उल्लेखनीय विशेषताएं यह हैं कि वे पृष्ठभूमि कतरनी प्रवाह, अन्य भंवरों के साथ कैसे बातचीत करते हैं, और वे सतह के पास प्रवाह के साथ कैसे बातचीत करते हैं।[1]
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 #Green, Sheldon I., “Fluid Vortices: Fluid mechanics and its applications” Dordrecht: Kluwer Academic Publishers, 1995. Print. https://books.google.com/books?id=j6qE7YAwwCoC&dq=theodorsen+1952+hairpin&pg=PA254
- ↑ 2.0 2.1 2.2 2.3 2.4 Hussain, A. K. M. F. "Coherent structures- reality and myth" Phys. Fluids 26, 2816, doi: 10.1063/1.864048. (1983)
- ↑ Pope S B. Turbulent flows[J]. 2001.
- ↑ Ganapathisubramani, B., Longmire, E. K., Marusic, I. “Characteristics of vortex packets in turbulent boundary layers” J. Fluid Mech., vol. 478, pp. 35-46 (2003).
- ↑ Mathur, M.; Haller, G.; Peacock, T.; Ruppert-Felsot, J.; Swinney, H. (2007). "अशांति के लैग्रेंजियन कंकाल को उजागर करना". Physical Review Letters. 98 (14): 144502. Bibcode:2007PhRvL..98n4502M. doi:10.1103/PhysRevLett.98.144502. PMID 17501277.
- ↑ Peacock, T., Haller, G. "Lagrangian Coherent structures: the hidden skeleton of fluid flows" Physics Today, 41 (2013). http://georgehaller.com/reprints/PhysToday.pdf
- ↑ Haller, G. (2015). "लैग्रेंजियन सुसंगत संरचनाएं" (PDF). Annual Review of Fluid Mechanics. 47 (1): 137–162. Bibcode:2015AnRFM..47..137H. doi:10.1146/annurev-fluid-010313-141322. S2CID 122894798.
- ↑ Adrian, R. J. “Hairpin vortex organization in wall turbulence” Phys. Fluids 19, 041301 (2007).
- ↑ Haidari, A. H., Smith, C. R. “The generation and regeneration of single hairpin vortices” J. Fluid Mech., vol. 277, pp. 135-162. (1994)