टेट्राडिक पलाटिनी क्रिया: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[सामान्य सापेक्षता]] के लिए आइंस्टीन-हिल्बर्ट प्रक्रिया को पहली बार अंतरिक्ष-समय मीट्रिक के संदर्भ में पूरी प्रकार से तैयार किया गया था। क्रिया सिद्धांत में मीट्रिक और [[एफ़िन कनेक्शन|एफ़िन]] संबंध को स्वतंत्र चर के रूप में लेने पर सबसे पहले [[एटिलियस पैलेटिन]] ने विचार किया था।<ref>A. Palatini (1919) ''Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton'', Rend. Circ. Mat. Palermo ''43'', 203-212 [English translation by R.Hojman and C. Mukku in [[Peter Bergmann|P.G. Bergmann]] and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]</ref> इसे प्रथम क्रम सूत्रीकरण कहा जाता है क्योंकि अलग-अलग होने वाले चर क्रिया में केवल पहले डेरिवेटिव तक ही सम्मिलित होते हैं और इसलिए यह उच्च व्युत्पन्न शर्तों के साथ यूलर-लैग्रेंज समीकरणों को अधिक जटिल नहीं बनाता है। टेट्राडिक पैलेटिनी क्रिया स्वतंत्र चर की अलग जोड़ी के संदर्भ में आइंस्टीन-हिल्बर्ट क्रिया का और प्रथम-क्रम सूत्रीकरण है, जिसे फ्रेम फ़ील्ड और [[स्पिन कनेक्शन|स्पिन]] संबंध के रूप में जाना जाता है। [[फ़्रेम फ़ील्ड]] और स्पिन संबंध का उपयोग आम तौर पर सहसंयोजक फ़र्मिओनिक क्रिया के निर्माण में आवश्यक है (इसके बारे में अधिक चर्चा के लिए लेख स्पिन संबंध देखें) जो टेट्राडिक पैलेटिनी क्रिया में जोड़े जाने पर फ़र्मिअन को गुरुत्वाकर्षण से जोड़ता है। | |||
न केवल फ़र्मिअन को गुरुत्वाकर्षण से जोड़ने और टेट्राडिक क्रिया को मीट्रिक संस्करण के लिए और अधिक मौलिक बनाने के लिए इसकी आवश्यकता है, किंतु पैलेटिनी क्रिया स्व-दोहरी पैलेटिनी क्रिया जैसी अधिक रोचक क्रियाओं के लिए कदम भी है, जिसे लैग्रेंजियन आधार के रूप में देखा जा सकता है। अष्टेकर के विहित गुरुत्वाकर्षण के सूत्रीकरण के लिए (अष्टेकर के चर देखें) या [[होल्स्ट क्रिया]] जो अष्टेकर के सिद्धांत के वास्तविक चर संस्करण का आधार है। अन्य महत्वपूर्ण क्रिया [[प्लेबैन कार्रवाई]] है (बैरेट-क्रेन मॉडल पर प्रविष्टि देखें), और यह सिद्ध करना कि यह कुछ शर्तों के अनुसार सामान्य सापेक्षता देता है, इसमें यह दिखाना सम्मिलित है कि यह इन शर्तों के अनुसार पैलेटिनी | न केवल फ़र्मिअन को गुरुत्वाकर्षण से जोड़ने और टेट्राडिक क्रिया को मीट्रिक संस्करण के लिए और अधिक मौलिक बनाने के लिए इसकी आवश्यकता है, किंतु पैलेटिनी क्रिया स्व-दोहरी पैलेटिनी क्रिया जैसी अधिक रोचक क्रियाओं के लिए कदम भी है, जिसे लैग्रेंजियन आधार के रूप में देखा जा सकता है। अष्टेकर के विहित गुरुत्वाकर्षण के सूत्रीकरण के लिए (अष्टेकर के चर देखें) या [[होल्स्ट क्रिया]] जो अष्टेकर के सिद्धांत के वास्तविक चर संस्करण का आधार है। अन्य महत्वपूर्ण क्रिया [[प्लेबैन कार्रवाई|प्लेबैन प्रक्रिया]] है (बैरेट-क्रेन मॉडल पर प्रविष्टि देखें), और यह सिद्ध करना कि यह कुछ शर्तों के अनुसार सामान्य सापेक्षता देता है, इसमें यह दिखाना सम्मिलित है कि यह इन शर्तों के अनुसार पैलेटिनी प्रक्रिया को कम कर देता है। | ||
यहां हम परिभाषाएं प्रस्तुत करते हैं और पैलेटिनी क्रिया से आइंस्टीन के समीकरणों की विस्तार से गणना करते हैं। इन गणनाओं को स्व-दोहरी पैलेटिनी क्रिया और होल्स्ट क्रिया के लिए आसानी से संशोधित किया जा सकता है। | यहां हम परिभाषाएं प्रस्तुत करते हैं और पैलेटिनी क्रिया से आइंस्टीन के समीकरणों की विस्तार से गणना करते हैं। इन गणनाओं को स्व-दोहरी पैलेटिनी क्रिया और होल्स्ट क्रिया के लिए आसानी से संशोधित किया जा सकता है। | ||
Line 73: | Line 73: | ||
:<math>e_J^\gamma {R_{\alpha \gamma}}^{IJ} - {1 \over 2} {R_{\gamma \delta}}^{MN} e_M^\gamma e_N^\delta e_\alpha^I = 0</math> | :<math>e_J^\gamma {R_{\alpha \gamma}}^{IJ} - {1 \over 2} {R_{\gamma \delta}}^{MN} e_M^\gamma e_N^\delta e_\alpha^I = 0</math> | ||
जिसे, से गुणा करने के बाद <math>e_{I \beta}</math> बस हमें बताता है कि [[आइंस्टीन टेंसर]] <math>R_{\alpha\beta}-\tfrac{1}{2} R g_{\alpha \beta}</math> टेट्राड द्वारा परिभाषित मीट्रिक गायब हो जाता है। इसलिए हमने यह सिद्ध कर दिया है कि टेट्राडिक रूप में क्रिया का पैलेटिनी रूपांतर सामान्य | जिसे, से गुणा करने के बाद <math>e_{I \beta}</math> बस हमें बताता है कि [[आइंस्टीन टेंसर]] <math>R_{\alpha\beta}-\tfrac{1}{2} R g_{\alpha \beta}</math> टेट्राड द्वारा परिभाषित मीट्रिक गायब हो जाता है। इसलिए हमने यह सिद्ध कर दिया है कि टेट्राडिक रूप में क्रिया का पैलेटिनी रूपांतर सामान्य आइंस्टीन समीकरण उत्पन्न करता है। | ||
== पलटिनी क्रिया का सामान्यीकरण == | == पलटिनी क्रिया का सामान्यीकरण == | ||
हम क्रिया को एक शब्द जोड़कर बदलते हैं | हम क्रिया को एक शब्द जोड़कर बदलते हैं | ||
Line 134: | Line 132: | ||
:<math>{\Omega_{ab}}^{IJ} - {R_{ab}}^{IJ} = 2 \nabla_{[a} {C_{b]}}^{IJ} + 2{C_{[a}}^{IK} {C_{b] K}}^J</math><br /> | :<math>{\Omega_{ab}}^{IJ} - {R_{ab}}^{IJ} = 2 \nabla_{[a} {C_{b]}}^{IJ} + 2{C_{[a}}^{IK} {C_{b] K}}^J</math><br /> | ||
=== क्षेत्र के संबंध में | === क्षेत्र के संबंध में प्रक्रिया को अलग-अलग करना <math>{C_\alpha}^{IJ}</math> === | ||
हम उम्मीद करेंगे <math>\nabla_a</math> मिन्कोव्स्की मीट्रिक को भी नष्ट करने के लिए <math>\eta_{IJ} = e_{\beta I} e^\beta_J</math>। यदि हम यह भी मान लें कि सहसंयोजक व्युत्पन्न <math>\mathcal{D}_\alpha</math> हमारे पास मिन्कोव्स्की मीट्रिक (जिसे मरोड़-मुक्त कहा जाता है) को नष्ट कर देता है, | हम उम्मीद करेंगे <math>\nabla_a</math> मिन्कोव्स्की मीट्रिक को भी नष्ट करने के लिए <math>\eta_{IJ} = e_{\beta I} e^\beta_J</math>। यदि हम यह भी मान लें कि सहसंयोजक व्युत्पन्न <math>\mathcal{D}_\alpha</math> हमारे पास मिन्कोव्स्की मीट्रिक (जिसे मरोड़-मुक्त कहा जाता है) को नष्ट कर देता है, | ||
Line 142: | Line 140: | ||
:<math>C_{\alpha IJ} = C_{\alpha [IJ]}.</math> | :<math>C_{\alpha IJ} = C_{\alpha [IJ]}.</math> | ||
प्रक्रिया के अंतिम पद से हमारे पास इसके संबंध में भिन्नता है <math>{C_{\alpha I}}^J,</math> | |||
<math>\begin{align} | <math>\begin{align} |
Revision as of 13:42, 29 November 2023
सामान्य सापेक्षता के लिए आइंस्टीन-हिल्बर्ट प्रक्रिया को पहली बार अंतरिक्ष-समय मीट्रिक के संदर्भ में पूरी प्रकार से तैयार किया गया था। क्रिया सिद्धांत में मीट्रिक और एफ़िन संबंध को स्वतंत्र चर के रूप में लेने पर सबसे पहले एटिलियस पैलेटिन ने विचार किया था।[1] इसे प्रथम क्रम सूत्रीकरण कहा जाता है क्योंकि अलग-अलग होने वाले चर क्रिया में केवल पहले डेरिवेटिव तक ही सम्मिलित होते हैं और इसलिए यह उच्च व्युत्पन्न शर्तों के साथ यूलर-लैग्रेंज समीकरणों को अधिक जटिल नहीं बनाता है। टेट्राडिक पैलेटिनी क्रिया स्वतंत्र चर की अलग जोड़ी के संदर्भ में आइंस्टीन-हिल्बर्ट क्रिया का और प्रथम-क्रम सूत्रीकरण है, जिसे फ्रेम फ़ील्ड और स्पिन संबंध के रूप में जाना जाता है। फ़्रेम फ़ील्ड और स्पिन संबंध का उपयोग आम तौर पर सहसंयोजक फ़र्मिओनिक क्रिया के निर्माण में आवश्यक है (इसके बारे में अधिक चर्चा के लिए लेख स्पिन संबंध देखें) जो टेट्राडिक पैलेटिनी क्रिया में जोड़े जाने पर फ़र्मिअन को गुरुत्वाकर्षण से जोड़ता है।
न केवल फ़र्मिअन को गुरुत्वाकर्षण से जोड़ने और टेट्राडिक क्रिया को मीट्रिक संस्करण के लिए और अधिक मौलिक बनाने के लिए इसकी आवश्यकता है, किंतु पैलेटिनी क्रिया स्व-दोहरी पैलेटिनी क्रिया जैसी अधिक रोचक क्रियाओं के लिए कदम भी है, जिसे लैग्रेंजियन आधार के रूप में देखा जा सकता है। अष्टेकर के विहित गुरुत्वाकर्षण के सूत्रीकरण के लिए (अष्टेकर के चर देखें) या होल्स्ट क्रिया जो अष्टेकर के सिद्धांत के वास्तविक चर संस्करण का आधार है। अन्य महत्वपूर्ण क्रिया प्लेबैन प्रक्रिया है (बैरेट-क्रेन मॉडल पर प्रविष्टि देखें), और यह सिद्ध करना कि यह कुछ शर्तों के अनुसार सामान्य सापेक्षता देता है, इसमें यह दिखाना सम्मिलित है कि यह इन शर्तों के अनुसार पैलेटिनी प्रक्रिया को कम कर देता है।
यहां हम परिभाषाएं प्रस्तुत करते हैं और पैलेटिनी क्रिया से आइंस्टीन के समीकरणों की विस्तार से गणना करते हैं। इन गणनाओं को स्व-दोहरी पैलेटिनी क्रिया और होल्स्ट क्रिया के लिए आसानी से संशोधित किया जा सकता है।
कुछ परिभाषाएँ
हमें सबसे पहले टेट्राड की अवधारणा का परिचय देना होगा। टेट्राड ऑर्थोनॉर्मल वेक्टर आधार है जिसके संदर्भ में स्पेस-टाइम मीट्रिक स्थानीय रूप से सपाट दिखता है,
जहाँ मिन्कोवस्की मीट्रिक है। टेट्रैड्स स्थान-समय मीट्रिक के बारे में जानकारी को संकोड़ित करती हैं और क्रिया सिद्धांत में स्वतंत्र मानों में से एक के रूप में ली जाएंगी।
अब यदि कोई उन वस्तुओं पर काम करने जा रहा है जिनमें आंतरिक सूचकांक हैं तो उसे उपयुक्त व्युत्पन्न (सहसंयोजक व्युत्पन्न) प्रस्तुत करने की आवश्यकता है। हम इच्छानुसार सहसंयोजक व्युत्पन्न का परिचय देते हैं
जहाँ स्पिन (लोरेंत्ज़) संबंध एक-रूप है (व्युत्पन्न मिन्कोव्स्की मीट्रिक को नष्ट कर देता है )। हम इसके माध्यम से वक्रता को परिभाषित करते हैं
हमने प्राप्त
- ।
हम सहसंयोजक व्युत्पन्न का परिचय देते हैं जो टेट्राड को नष्ट कर देता है,
- ।
संबंध पूरी प्रकार से टेट्राड द्वारा निर्धारित होता है। सामान्यीकृत टेंसर पर इसकी क्रिया द्वारा दिया गया है
हम वक्रता को परिभाषित करते हैं द्वारा
"यह आसानी से सामान्य रूप से परिभाषित करे गए रूपता से संबंधित है,
प्रतिस्थापन के माध्यम से इस अभिव्यक्ति में (विवरण के लिए नीचे देखें)। प्राप्त होता है,
क्रमशः रीमैन टेंसर, रिक्की टेंसर और रिक्की अदिश के लिए।
टेट्राडिक पलाटिनी क्रिया
इस कक्षता का रिची स्कैलर इस विन्यास के रूप में व्यक्त किया जा सकता है क्रिया लिखी जा सकती है
जहाँ लेकिन अब फ़्रेम फ़ील्ड का फलन है।
हम इस क्रिया को टेट्रेड और स्पिन संबंध के साथ भिन्नता के साथ विचलन करके आइन्स्टीन के समीकरणों का प्रमाणपत्र प्राप्त करेंगे।
गणना करने के शॉर्टकट के रूप में हम टेट्राड के साथ संगत संबंध प्रस्तुत करते हैं, [2] इस सहसंयोजक व्युत्पन्न से जुड़ा संबंध पूरी प्रकार से टेट्राड द्वारा निर्धारित होता है। हमने प्रस्तुत किए गए दो कनेक्शनों के बीच का अंतर क्षेत्र द्वारा परिभाषित किया गया है:
हम इन दो सहसंयोजक व्युत्पन्नों की वक्रता के बीच अंतर की गणना कर सकते हैं (विवरण के लिए नीचे देखें),
इस मध्यवर्ती गणना का कारण यह है कि क्रिया को संदर्भ में पुनः व्यक्त करके भिन्नता की गणना करना आसान है और और यह देखते हुए कि इसके संबंध में भिन्नता है के संबंध में भिन्नता के समान है (टेट्राड को स्थिर रखते समय)। क्रिया बन जाती है
हम पहले के संबंध में विचलन करते हैं। पहला पद पर नहीं निर्भर है, इसलिए यह योगदान नहीं करता है। दूसरा पद कुल मानक है। आखिरी पद से यह प्राप्त होता है।"
हम नीचे दिखाते हैं कि इसका तात्पर्य यह है कि पूर्वकारक के रूप में गैर पतित है। ये हमें ये बताता है के साथ मेल खाता है जब केवल आंतरिक सूचकांकों वाली वस्तुओं पर कार्य किया जाता है। इस प्रकार संबंध पूरी प्रकार से टेट्राड और द्वारा निर्धारित होता है के साथ मेल खाता है । टेट्राड के संबंध में भिन्नता की गणना करने के लिए हमें भिन्नता की आवश्यकता है । मानक सूत्र से
हमारे पास है । या उपयोग करने पर , ये बन जाता है हम टेट्राड के संबंध में भिन्नता करके दूसरे समीकरण की गणना करते हैं,
मिलता है, प्रतिस्थापित करने के बाद के लिए जैसा कि गति के पिछले समीकरण द्वारा दिया गया है,
जिसे, से गुणा करने के बाद बस हमें बताता है कि आइंस्टीन टेंसर टेट्राड द्वारा परिभाषित मीट्रिक गायब हो जाता है। इसलिए हमने यह सिद्ध कर दिया है कि टेट्राडिक रूप में क्रिया का पैलेटिनी रूपांतर सामान्य आइंस्टीन समीकरण उत्पन्न करता है।
पलटिनी क्रिया का सामान्यीकरण
हम क्रिया को एक शब्द जोड़कर बदलते हैं
यह पलाटिनी क्रिया को संशोधित करता है
जहाँ
ऊपर दिए गए क्रियाकलाप को होल्स्ट क्रिया कहा जाता है, जिसे होल्स्ट ने प्रस्तुत किया था, [3] और बारबेरो-इमिरज़ी पैरामीटर है जिसकी भूमिका बारबेरो और इमिरिज़ी द्वारा पहचानी गई थी।[4] [5] स्व-द्वितीय सूत्रन रूपांतरण उस चयन का समर्थन करता है, जिसमें है।
यह दिखाना आसान है कि ये क्रियाएं समान समीकरण देती हैं। चूँकि, जो पृष्ठ उस स्थिति का समर्थन करता है जो उसे अलग से किया जाना चाहिए (स्व-द्वितीय पालाटिनी क्रिया देखें)। मान लीजिए , तो फिर द्वारा दिया गया व्युत्क्रम है।
(ध्यान दें कि यह अलग है ) चूँकि यह व्युत्क्रम पूर्वकारक का सामान्यीकरण उपस्थित है भी होगा गैर-विकृत हो और इस प्रकार संबंध के संबंध में भिन्नता से समतुल्य स्थितियाँ प्राप्त की जाती हैं। हम फिर से प्राप्त करते हैं । चूँकि टेट्राड के संबंध में भिन्नता से आइंस्टीन का समीकरण और अतिरिक्त पद प्राप्त होता है। चूँकि, यह अतिरिक्त शब्द रीमैन टेंसर की समरूपता से गायब हो जाता है।
गणना का विवरण
सामान्य वक्रता को मिश्रित सूचकांक वक्रता से संबंधित करना
सामान्य रीमैन वक्रता टेंसर द्वारा परिभाषित किया गया है
मिश्रित सूचकांक वक्रता टेंसर से संबंध खोजने के लिए आइए हम विकल्प चुनें
जहां हमने उपयोग किया है । चूँकि यह सभी के लिए सत्य है हमने प्राप्त
- ।
इस अभिव्यक्ति का प्रयोग करके हम पाते हैं
ठेकेदारी ख़त्म और हमें रिक्की अदिश लिखने की अनुमति देता है
वक्रता के बीच अंतर
व्युत्पन्न द्वारा परिभाषित केवल आंतरिक सूचकांकों पर कार्य करना जानता है। चूँकि, हमें स्पेसटाइम सूचकांकों के लिए मरोड़-मुक्त विस्तार पर विचार करना सुविधाजनक लगता है। सभी गणनाएँ विस्तार के इस विकल्प से स्वतंत्र होंगी। को लागू करने दो बार चालू ,
जहाँ महत्वहीन है, हमें केवल यह ध्यान देने की आवश्यकता है कि यह सममित है और क्योंकि यह मरोड़-मुक्त है। तब
इस तरह:
क्षेत्र के संबंध में प्रक्रिया को अलग-अलग करना
हम उम्मीद करेंगे मिन्कोव्स्की मीट्रिक को भी नष्ट करने के लिए । यदि हम यह भी मान लें कि सहसंयोजक व्युत्पन्न हमारे पास मिन्कोव्स्की मीट्रिक (जिसे मरोड़-मुक्त कहा जाता है) को नष्ट कर देता है,
यह दावा करना
प्रक्रिया के अंतिम पद से हमारे पास इसके संबंध में भिन्नता है
या
या
जहां हमने उपयोग किया है । इसे और अधिक संक्षिप्त रूप में लिखा जा सकता है
का लुप्त हो जाना
हम "जियोमेट्रोडायनामिक्स बनाम संबंध डायनेमिक्स" संदर्भ का अनुसरण करके दिखाएंगे[6] वह
तात्पर्य सबसे पहले हम स्पेसटाइम टेंसर फ़ील्ड को परिभाषित करते हैं
तब शर्त के समान है जो के समान है।अनुबंधन समीकरण 1 के साथ कोई उसका हिसाब लगाता है
जैसा हमारे पास है हम इसे इस प्रकार लिखते हैं
और के रूप में उलटे हैं इसका तात्पर्य है
इस प्रकार शर्तें और Eq का। 1 दोनों गायब हो जाते हैं और Eq। 1 से कम हो जाता है
यदि अब हम इसके साथ अनुबंध करते हैं , हम पाते हैं
या
चूंकि हमारे पास है और , हम प्राप्त करने के लिए हर बार उचित चिह्न परिवर्तन के साथ पहले दो और फिर अंतिम दो सूचकांकों को क्रमिक रूप से बदल सकते हैं,
यह दावा करना
- या
और तब से उलटे हैं, हम पाते हैं । यह वांछित परिणाम है।
यह भी देखें
संदर्भ
- ↑ A. Palatini (1919) Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43, 203-212 [English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]
- ↑ A. Ashtekar "Lectures on non-perturbative canonical gravity" (with invited contributions), Bibliopolis, Naples 19988.
- ↑ Holst, Sören (1996-05-15). "बार्बेरो का हैमिल्टनियन एक सामान्यीकृत हिल्बर्ट-पैलाटिनी क्रिया से लिया गया है". Physical Review D. 53 (10): 5966–5969. arXiv:gr-qc/9511026. Bibcode:1996PhRvD..53.5966H. doi:10.1103/physrevd.53.5966. ISSN 0556-2821. PMID 10019884. S2CID 15959938.
- ↑ Barbero G., J. Fernando (1995-05-15). "लोरेंत्ज़ियन हस्ताक्षर अंतरिक्ष-समय के लिए वास्तविक अष्टेकर चर". Physical Review D. 51 (10): 5507–5510. arXiv:gr-qc/9410014. Bibcode:1995PhRvD..51.5507B. doi:10.1103/physrevd.51.5507. ISSN 0556-2821. PMID 10018309. S2CID 16314220.
- ↑ Immirzi, Giorgio (1997-10-01). "विहित गुरुत्व के लिए वास्तविक और जटिल कनेक्शन". Classical and Quantum Gravity. IOP Publishing. 14 (10): L177–L181. arXiv:gr-qc/9612030. Bibcode:1997CQGra..14L.177I. doi:10.1088/0264-9381/14/10/002. ISSN 0264-9381. S2CID 5795181.
- ↑ Romano, Joseph D. (1993). "जियोमेट्रोडायनामिक्स बनाम कनेक्शन डायनेमिक्स". General Relativity and Gravitation. 25 (8): 759–854. arXiv:gr-qc/9303032. Bibcode:1993GReGr..25..759R. doi:10.1007/bf00758384. ISSN 0001-7701. S2CID 119359223.