रैखिक नियंत्रण: Difference between revisions
(Created page with "{{Multiple issues| {{Lead too short|date=March 2023}} {{More citations needed|date=March 2023}} }} रैखिक नियंत्रण वांछित सेटप...") |
No edit summary |
||
Line 1: | Line 1: | ||
'''रैखिक नियंत्रण''' वांछित सेटपॉइंट ([[नियंत्रण प्रणाली]]) (एसपी) पर नियंत्रित [[प्रक्रिया चर]] (पीवी) को बनाए रखने के लिए [[नियंत्रण संकेत]] उत्पन्न करने के लिए ''नकारात्मक प्रतिक्रिया'' पर आधारित नियंत्रण प्रणाली और [[नियंत्रण सिद्धांत]] हैं। विभिन्न क्षमताओं वाली कई प्रकार की रैखिक नियंत्रण प्रणालियाँ हैं। | |||
रैखिक नियंत्रण वांछित | |||
==आनुपातिक नियंत्रण== | ==आनुपातिक नियंत्रण== | ||
{{main| | {{main|आनुपातिक नियंत्रण}} | ||
[[File:Second order transfer function.svg|thumb|right|300px|स्थानांतरण फ़ंक्शन द्वारा परिभाषित दूसरे क्रम प्रणाली के लिए चरण प्रतिक्रियाएँ <math>H(s)=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n}</math>, कहाँ <math>\zeta</math> अवमंदन अनुपात है और <math>\omega_n</math> अवमंदित प्राकृतिक आवृत्ति है]]आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया नियंत्रण प्रणाली है जिसमें नियंत्रित चर पर एक सुधार लागू किया जाता है जो वांछित मूल्य (एसपी) और मापा मूल्य (पीवी) के बीच अंतर के समानुपाती होता है। दो उत्कृष्ट यांत्रिक उदाहरण हैं टॉयलेट बाउल [[बॉलकॉक]] और [[ केन्द्रापसारक राज्यपाल ]] | [[File:Second order transfer function.svg|thumb|right|300px|स्थानांतरण फ़ंक्शन द्वारा परिभाषित दूसरे क्रम प्रणाली के लिए चरण प्रतिक्रियाएँ <math>H(s)=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n}</math>, कहाँ <math>\zeta</math> अवमंदन अनुपात है और <math>\omega_n</math> अवमंदित प्राकृतिक आवृत्ति है]]आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया नियंत्रण प्रणाली है जिसमें नियंत्रित चर पर एक सुधार लागू किया जाता है जो वांछित मूल्य (एसपी) और मापा मूल्य (पीवी) के बीच अंतर के समानुपाती होता है। दो उत्कृष्ट यांत्रिक उदाहरण हैं टॉयलेट बाउल [[बॉलकॉक]] और [[ केन्द्रापसारक राज्यपाल |केन्द्रापसारक राज्यपाल]] फ्लाई-बॉल गवर्नर। | ||
आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन [[पीआईडी नियंत्रक]] की तुलना में सरल है। उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली का उपयोग किया जाता है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिनमें उच्च सटीकता या प्रतिक्रिया की आवश्यकता नहीं होती है लेकिन तीव्र और समय पर सुधार और प्रतिक्रिया के लिए प्रभावी नहीं होते हैं। आनुपातिक नियंत्रण नियंत्रण वाल्व जैसे हेरफेर किए गए चर (एमवी) को एक लाभ स्तर पर संशोधित करके इस पर काबू पाता है जो अस्थिरता से बचाता है, लेकिन आनुपातिक सुधार की इष्टतम मात्रा को लागू करके जितनी जल्दी हो सके सुधार लागू करता है। | आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन [[पीआईडी नियंत्रक]] की तुलना में सरल है। उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली का उपयोग किया जाता है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिनमें उच्च सटीकता या प्रतिक्रिया की आवश्यकता नहीं होती है लेकिन तीव्र और समय पर सुधार और प्रतिक्रिया के लिए प्रभावी नहीं होते हैं। आनुपातिक नियंत्रण नियंत्रण वाल्व जैसे हेरफेर किए गए चर (एमवी) को एक लाभ स्तर पर संशोधित करके इस पर काबू पाता है जो अस्थिरता से बचाता है, लेकिन आनुपातिक सुधार की इष्टतम मात्रा को लागू करके जितनी जल्दी हो सके सुधार लागू करता है। | ||
आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे एक त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए [[पीआई नियंत्रक]] का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए एक आनुपातिक शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट ऑफसेट त्रुटि को | आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे एक त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए [[पीआई नियंत्रक]] का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए एक आनुपातिक शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट ऑफसेट त्रुटि को समाप्त करने के लिए एक अभिन्न शब्द (आई) का उपयोग करता है। | ||
कुछ प्रणालियों में, एमवी की सीमा की व्यावहारिक सीमाएँ हैं। उदाहरण के लिए, एक हीटर की एक सीमा होती है कि वह कितनी गर्मी पैदा कर सकता है और एक वाल्व केवल इतनी ही दूरी तक खुल सकता है। लाभ में समायोजन एक साथ त्रुटि मानों की सीमा को बदल देता है जिस पर एमवी इन सीमाओं के बीच है। त्रुटि चर की इकाइयों में और इसलिए पीवी की इस सीमा की चौड़ाई को आनुपातिक बैंड (पीबी) कहा जाता है। | कुछ प्रणालियों में, एमवी की सीमा की व्यावहारिक सीमाएँ हैं। उदाहरण के लिए, एक हीटर की एक सीमा होती है कि वह कितनी गर्मी पैदा कर सकता है और एक वाल्व केवल इतनी ही दूरी तक खुल सकता है। लाभ में समायोजन एक साथ त्रुटि मानों की सीमा को बदल देता है जिस पर एमवी इन सीमाओं के बीच है। त्रुटि चर की इकाइयों में और इसलिए पीवी की इस सीमा की चौड़ाई को आनुपातिक बैंड (पीबी) कहा जाता है। | ||
Line 20: | Line 16: | ||
कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सी सुधारात्मक कार्रवाई की जाती है। सिस्टम सुरक्षित और स्थिर हो सकता है लेकिन बदलती परिस्थितियों के जवाब में सुस्त हो सकता है। त्रुटियाँ अपेक्षाकृत लंबे समय तक ठीक नहीं की जाएंगी और सिस्टम ओवरडैम्ड हो जाएगा। यदि आनुपातिक लाभ बढ़ाया जाता है, तो ऐसी प्रणालियाँ अधिक प्रतिक्रियाशील हो जाती हैं और त्रुटियों से अधिक तेज़ी से निपटा जाता है। जब समग्र सिस्टम को [[गंभीर रूप से नम]] कहा जाता है तो लाभ सेटिंग के लिए एक इष्टतम मूल्य होता है। इस बिंदु से परे लूप गेन में वृद्धि से पीवी में दोलन होता है और ऐसी प्रणाली [[कम नमीयुक्त]] होती है। गंभीर रूप से नम व्यवहार को प्राप्त करने के लिए लाभ को समायोजित करना नियंत्रण प्रणाली को ट्यूनिंग के रूप में जाना जाता है। | कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सी सुधारात्मक कार्रवाई की जाती है। सिस्टम सुरक्षित और स्थिर हो सकता है लेकिन बदलती परिस्थितियों के जवाब में सुस्त हो सकता है। त्रुटियाँ अपेक्षाकृत लंबे समय तक ठीक नहीं की जाएंगी और सिस्टम ओवरडैम्ड हो जाएगा। यदि आनुपातिक लाभ बढ़ाया जाता है, तो ऐसी प्रणालियाँ अधिक प्रतिक्रियाशील हो जाती हैं और त्रुटियों से अधिक तेज़ी से निपटा जाता है। जब समग्र सिस्टम को [[गंभीर रूप से नम]] कहा जाता है तो लाभ सेटिंग के लिए एक इष्टतम मूल्य होता है। इस बिंदु से परे लूप गेन में वृद्धि से पीवी में दोलन होता है और ऐसी प्रणाली [[कम नमीयुक्त]] होती है। गंभीर रूप से नम व्यवहार को प्राप्त करने के लिए लाभ को समायोजित करना नियंत्रण प्रणाली को ट्यूनिंग के रूप में जाना जाता है। | ||
कम नमी वाले | कम नमी वाले परिस्थिति में, भट्टी जल्दी गर्म हो जाती है। एक बार निर्धारित बिंदु पर पहुंचने के बाद, हीटर उप-प्रणाली के भीतर और भट्ठी की दीवारों में संग्रहीत गर्मी मापा तापमान को आवश्यकता से अधिक बढ़ाती रहेगी। निर्धारित बिंदु से ऊपर उठने के बाद, तापमान वापस गिर जाता है और अंततः फिर से गर्मी लागू हो जाती है। हीटर उप-प्रणाली को दोबारा गर्म करने में किसी भी देरी से भट्टी का तापमान निर्धारित बिंदु से और नीचे गिर जाता है और चक्र दोहराता है। तापमान में उतार-चढ़ाव जो एक कम नमी वाली भट्ठी नियंत्रण प्रणाली पैदा करती है, अवांछनीय है। | ||
गंभीर रूप से नम प्रणाली में, जैसे-जैसे तापमान निर्धारित बिंदु के | गंभीर रूप से नम प्रणाली में, जैसे-जैसे तापमान निर्धारित बिंदु के नज़दीक पहुंचता है, ताप इनपुट कम होना प्रारम्भ हो जाता है, भट्टी के गर्म होने की दर धीमी हो जाती है और सिस्टम ओवरशूट से बच जाता है। [[अत्यधिक नमीयुक्त]] सिस्टम में ओवरशूट से भी बचा जाता है, लेकिन सिस्टम में बाहरी परिवर्तनों के लिए एक निर्धारित बिंदु प्रतिक्रिया तक पहुंचने के लिए एक ओवरडैम्प्ड सिस्टम अनावश्यक रूप से धीमा होता है; उदाहरण के लिए भट्ठी का दरवाज़ा खोलनाl | ||
==पीआईडी नियंत्रण== | ==पीआईडी नियंत्रण== | ||
{{main| | {{main|पीआईडी नियंत्रक}} | ||
[[File:PID en updated feedback.svg|right|thumb|300px|पीआईडी नियंत्रक का [[ब्लॉक आरेख]]]] | [[File:PID en updated feedback.svg|right|thumb|300px|पीआईडी नियंत्रक का [[ब्लॉक आरेख]]]] | ||
[[File:PID Compensation Animated.gif|right|thumb|300px|अलग-अलग पीआईडी मापदंडों के प्रभाव (के<sub>p</sub>,क<sub>i</sub>,क<sub>d</sub>) किसी सिस्टम की चरण प्रतिक्रिया पर]]शुद्ध आनुपातिक नियंत्रकों को सिस्टम में अवशिष्ट त्रुटि के साथ काम करना चाहिए। हालाँकि PI नियंत्रक इस त्रुटि को समाप्त कर देते हैं, फिर भी वे सुस्त हो सकते हैं या दोलन उत्पन्न कर सकते हैं। पीआईडी नियंत्रक जवाबदेही में सुधार करते हुए स्थिरता बनाए रखने के लिए एक व्युत्पन्न (डी) कार्रवाई | [[File:PID Compensation Animated.gif|right|thumb|300px|अलग-अलग पीआईडी मापदंडों के प्रभाव (के<sub>p</sub>,क<sub>i</sub>,क<sub>d</sub>) किसी सिस्टम की चरण प्रतिक्रिया पर]]शुद्ध आनुपातिक नियंत्रकों को सिस्टम में अवशिष्ट त्रुटि के साथ काम करना चाहिए। हालाँकि PI नियंत्रक इस त्रुटि को समाप्त कर देते हैं, फिर भी वे सुस्त हो सकते हैं या दोलन उत्पन्न कर सकते हैं। पीआईडी नियंत्रक जवाबदेही में सुधार करते हुए स्थिरता बनाए रखने के लिए एक व्युत्पन्न (डी) कार्रवाई प्रारम्भ करके इन अंतिम कमियों को संबोधित करता है। | ||
===व्युत्पन्न क्रिया=== | ===व्युत्पन्न क्रिया=== | ||
Line 35: | Line 31: | ||
===अभिन्न क्रिया=== | ===अभिन्न क्रिया=== | ||
[[File:Change with Ki.png|thumb|right|300px|अलग-अलग Ki मानों के लिए चरण इनपुट के लिए दूसरे-क्रम प्रणाली की प्रतिक्रिया में परिवर्तन]][[अभिन्न]] शब्द दीर्घकालिक स्थिर-अवस्था त्रुटियों के प्रभाव को बढ़ाता है, त्रुटि दूर होने तक लगातार बढ़ते प्रयास को लागू करता है। विभिन्न तापमानों पर काम करने वाली भट्ठी के उपरोक्त उदाहरण में, यदि लागू की जा रही गर्मी भट्ठी को किसी भी कारण से सेटपॉइंट तक नहीं लाती है, तो अभिन्न क्रिया तेजी से सेटपॉइंट के सापेक्ष आनुपातिक बैंड को स्थानांतरित करती है जब तक कि पीवी त्रुटि शून्य तक कम न हो जाए और निर्धारित बिंदु | [[File:Change with Ki.png|thumb|right|300px|अलग-अलग Ki मानों के लिए चरण इनपुट के लिए दूसरे-क्रम प्रणाली की प्रतिक्रिया में परिवर्तन]][[अभिन्न]] शब्द दीर्घकालिक स्थिर-अवस्था त्रुटियों के प्रभाव को बढ़ाता है, त्रुटि दूर होने तक लगातार बढ़ते प्रयास को लागू करता है। विभिन्न तापमानों पर काम करने वाली भट्ठी के उपरोक्त उदाहरण में, यदि लागू की जा रही गर्मी भट्ठी को किसी भी कारण से सेटपॉइंट तक नहीं लाती है, तो अभिन्न क्रिया तेजी से सेटपॉइंट के सापेक्ष आनुपातिक बैंड को स्थानांतरित करती है जब तक कि पीवी त्रुटि शून्य तक कम न हो जाए और निर्धारित बिंदु प्राप्त कर लिया गया है. | ||
===% प्रति मिनट बढ़ाएं=== | ===% प्रति मिनट बढ़ाएं=== | ||
कुछ नियंत्रकों में रैंप को % प्रति मिनट तक सीमित करने का विकल्प | कुछ नियंत्रकों में रैंप को % प्रति मिनट तक सीमित करने का विकल्प सम्मिलित होता है। यह विकल्प छोटे बॉयलरों (3 एमबीटीयूएच) को स्थिर करने में बहुत मददगार हो सकता है, खासकर गर्मियों के दौरान, हल्के भार के दौरान। एक उपयोगिता बॉयलर इकाई को 5% प्रति मिनट की दर से लोड बदलने की आवश्यकता हो सकती है (आईईए कोल ऑनलाइन - 2, 2007)।<ref>{{cite web |url=http://www.seeei.org.il/prdFiles/2702_desc3.pdf |access-date=2014-04-07 |url-status=live |archive-url=https://web.archive.org/web/20140805131600/http://www.seeei.org.il/prdFiles/2702_desc3.pdf |archive-date=2014-08-05 |publisher=ABB |title=जीवाश्म-ईंधन बिजली संयंत्रों में सहायक प्रणालियों का ऊर्जा कुशल डिजाइन|page=262 }}</ref> | ||
==अन्य तकनीकें== | ==अन्य तकनीकें== | ||
पीवी या त्रुटि सिग्नल को फ़िल्टर करना (सिग्नल प्रोसेसिंग) संभव है। ऐसा करने से अवांछित आवृत्तियों पर सिस्टम की प्रतिक्रिया को कम करके अस्थिरता या दोलन को कम करने में मदद मिल सकती है। कई प्रणालियों में [[गुंजयमान आवृत्ति]] होती है। उस आवृत्ति को फ़िल्टर करके, दोलन होने से पहले मजबूत समग्र प्रतिक्रिया लागू की जा सकती है, जिससे सिस्टम खुद को अलग किए बिना अधिक प्रतिक्रियाशील हो जाता है। | पीवी या त्रुटि सिग्नल को फ़िल्टर करना (सिग्नल प्रोसेसिंग) संभव है। ऐसा करने से अवांछित आवृत्तियों पर सिस्टम की प्रतिक्रिया को कम करके अस्थिरता या दोलन को कम करने में मदद मिल सकती है। कई प्रणालियों में [[गुंजयमान आवृत्ति]] होती है। उस आवृत्ति को फ़िल्टर करके, दोलन होने से पहले मजबूत समग्र प्रतिक्रिया लागू की जा सकती है, जिससे सिस्टम खुद को अलग किए बिना अधिक प्रतिक्रियाशील हो जाता है। | ||
फीडबैक सिस्टम को जोड़ा जा सकता है। पीआईडी नियंत्रक | फीडबैक सिस्टम को जोड़ा जा सकता है। पीआईडी नियंत्रक कैस्केड नियंत्रण में, एक नियंत्रण लूप एक सेटपॉइंट के विरुद्ध मापा चर पर नियंत्रण एल्गोरिदम लागू करता है लेकिन फिर प्रक्रिया चर को सीधे प्रभावित करने के बजाय दूसरे नियंत्रण लूप को एक अलग सेटपॉइंट प्रदान करता है। यदि किसी सिस्टम में नियंत्रित करने के लिए कई अलग-अलग मापित चर हैं, तो उनमें से प्रत्येक के लिए अलग-अलग नियंत्रण प्रणालियाँ उपस्थित होंगी। | ||
कई अनुप्रयोगों में [[नियंत्रण इंजीनियरिंग]] नियंत्रण प्रणालियाँ तैयार करती है जो पीआईडी नियंत्रण से अधिक जटिल होती हैं। ऐसे क्षेत्रीय अनुप्रयोगों के उदाहरणों में [[फ्लाई बाय वायर]] विमान नियंत्रण प्रणाली, रासायनिक संयंत्र और तेल रिफाइनरियां | कई अनुप्रयोगों में [[नियंत्रण इंजीनियरिंग]] नियंत्रण प्रणालियाँ तैयार करती है जो पीआईडी नियंत्रण से अधिक जटिल होती हैं। ऐसे क्षेत्रीय अनुप्रयोगों के उदाहरणों में [[फ्लाई बाय वायर]] विमान नियंत्रण प्रणाली, रासायनिक संयंत्र और तेल रिफाइनरियां सम्मिलित हैं। [[मॉडल पूर्वानुमानित नियंत्रण]] प्रणालियाँ विशेष [[कंप्यूटर एडेड डिजाइन]]|कंप्यूटर-एडेड-डिज़ाइन सॉफ़्टवेयर और नियंत्रित किए जाने वाले सिस्टम के अनुभवजन्य गणितीय मॉडल का उपयोग करके डिज़ाइन की गई हैं। | ||
==यह भी देखें== | ==यह भी देखें== | ||
*[[रैखिक प्रणाली]] | *[[रैखिक प्रणाली]] | ||
*[[रैखिक समय-अपरिवर्तनीय प्रणाली]] | |||
*[[अरेखीय नियंत्रण]] | *[[अरेखीय नियंत्रण]] | ||
Revision as of 12:12, 29 November 2023
रैखिक नियंत्रण वांछित सेटपॉइंट (नियंत्रण प्रणाली) (एसपी) पर नियंत्रित प्रक्रिया चर (पीवी) को बनाए रखने के लिए नियंत्रण संकेत उत्पन्न करने के लिए नकारात्मक प्रतिक्रिया पर आधारित नियंत्रण प्रणाली और नियंत्रण सिद्धांत हैं। विभिन्न क्षमताओं वाली कई प्रकार की रैखिक नियंत्रण प्रणालियाँ हैं।
आनुपातिक नियंत्रण
आनुपातिक नियंत्रण एक प्रकार की रैखिक प्रतिक्रिया नियंत्रण प्रणाली है जिसमें नियंत्रित चर पर एक सुधार लागू किया जाता है जो वांछित मूल्य (एसपी) और मापा मूल्य (पीवी) के बीच अंतर के समानुपाती होता है। दो उत्कृष्ट यांत्रिक उदाहरण हैं टॉयलेट बाउल बॉलकॉक और केन्द्रापसारक राज्यपाल फ्लाई-बॉल गवर्नर।
आनुपातिक नियंत्रण प्रणाली ऑन-ऑफ नियंत्रण प्रणाली की तुलना में अधिक जटिल है, लेकिन पीआईडी नियंत्रक की तुलना में सरल है। उदाहरण के लिए, ऑटोमोबाइल क्रूज़ नियंत्रण में आनुपातिक-अभिन्न-व्युत्पन्न (पीआईडी) नियंत्रण प्रणाली का उपयोग किया जाता है। ऑन-ऑफ नियंत्रण उन प्रणालियों के लिए काम करेगा जिनमें उच्च सटीकता या प्रतिक्रिया की आवश्यकता नहीं होती है लेकिन तीव्र और समय पर सुधार और प्रतिक्रिया के लिए प्रभावी नहीं होते हैं। आनुपातिक नियंत्रण नियंत्रण वाल्व जैसे हेरफेर किए गए चर (एमवी) को एक लाभ स्तर पर संशोधित करके इस पर काबू पाता है जो अस्थिरता से बचाता है, लेकिन आनुपातिक सुधार की इष्टतम मात्रा को लागू करके जितनी जल्दी हो सके सुधार लागू करता है।
आनुपातिक नियंत्रण का एक दोष यह है कि यह अवशिष्ट एसपी-पीवी त्रुटि को समाप्त नहीं कर सकता है, क्योंकि आनुपातिक आउटपुट उत्पन्न करने के लिए इसे एक त्रुटि की आवश्यकता होती है। इसे दूर करने के लिए पीआई नियंत्रक का उपयोग किया जा सकता है। पीआई नियंत्रक सकल त्रुटि को दूर करने के लिए एक आनुपातिक शब्द (पी) का उपयोग करता है, और समय के साथ त्रुटि को एकीकृत करके अवशिष्ट ऑफसेट त्रुटि को समाप्त करने के लिए एक अभिन्न शब्द (आई) का उपयोग करता है।
कुछ प्रणालियों में, एमवी की सीमा की व्यावहारिक सीमाएँ हैं। उदाहरण के लिए, एक हीटर की एक सीमा होती है कि वह कितनी गर्मी पैदा कर सकता है और एक वाल्व केवल इतनी ही दूरी तक खुल सकता है। लाभ में समायोजन एक साथ त्रुटि मानों की सीमा को बदल देता है जिस पर एमवी इन सीमाओं के बीच है। त्रुटि चर की इकाइयों में और इसलिए पीवी की इस सीमा की चौड़ाई को आनुपातिक बैंड (पीबी) कहा जाता है।
भट्ठी उदाहरण
औद्योगिक भट्ठी के तापमान को नियंत्रित करते समय, आमतौर पर भट्ठी की वर्तमान जरूरतों के अनुपात में ईंधन वाल्व के उद्घाटन को नियंत्रित करना बेहतर होता है। यह थर्मल झटके से बचने में मदद करता है और गर्मी को अधिक प्रभावी ढंग से लागू करता है।
कम लाभ पर, त्रुटियों का पता चलने पर केवल एक छोटी सी सुधारात्मक कार्रवाई की जाती है। सिस्टम सुरक्षित और स्थिर हो सकता है लेकिन बदलती परिस्थितियों के जवाब में सुस्त हो सकता है। त्रुटियाँ अपेक्षाकृत लंबे समय तक ठीक नहीं की जाएंगी और सिस्टम ओवरडैम्ड हो जाएगा। यदि आनुपातिक लाभ बढ़ाया जाता है, तो ऐसी प्रणालियाँ अधिक प्रतिक्रियाशील हो जाती हैं और त्रुटियों से अधिक तेज़ी से निपटा जाता है। जब समग्र सिस्टम को गंभीर रूप से नम कहा जाता है तो लाभ सेटिंग के लिए एक इष्टतम मूल्य होता है। इस बिंदु से परे लूप गेन में वृद्धि से पीवी में दोलन होता है और ऐसी प्रणाली कम नमीयुक्त होती है। गंभीर रूप से नम व्यवहार को प्राप्त करने के लिए लाभ को समायोजित करना नियंत्रण प्रणाली को ट्यूनिंग के रूप में जाना जाता है।
कम नमी वाले परिस्थिति में, भट्टी जल्दी गर्म हो जाती है। एक बार निर्धारित बिंदु पर पहुंचने के बाद, हीटर उप-प्रणाली के भीतर और भट्ठी की दीवारों में संग्रहीत गर्मी मापा तापमान को आवश्यकता से अधिक बढ़ाती रहेगी। निर्धारित बिंदु से ऊपर उठने के बाद, तापमान वापस गिर जाता है और अंततः फिर से गर्मी लागू हो जाती है। हीटर उप-प्रणाली को दोबारा गर्म करने में किसी भी देरी से भट्टी का तापमान निर्धारित बिंदु से और नीचे गिर जाता है और चक्र दोहराता है। तापमान में उतार-चढ़ाव जो एक कम नमी वाली भट्ठी नियंत्रण प्रणाली पैदा करती है, अवांछनीय है।
गंभीर रूप से नम प्रणाली में, जैसे-जैसे तापमान निर्धारित बिंदु के नज़दीक पहुंचता है, ताप इनपुट कम होना प्रारम्भ हो जाता है, भट्टी के गर्म होने की दर धीमी हो जाती है और सिस्टम ओवरशूट से बच जाता है। अत्यधिक नमीयुक्त सिस्टम में ओवरशूट से भी बचा जाता है, लेकिन सिस्टम में बाहरी परिवर्तनों के लिए एक निर्धारित बिंदु प्रतिक्रिया तक पहुंचने के लिए एक ओवरडैम्प्ड सिस्टम अनावश्यक रूप से धीमा होता है; उदाहरण के लिए भट्ठी का दरवाज़ा खोलनाl
पीआईडी नियंत्रण
शुद्ध आनुपातिक नियंत्रकों को सिस्टम में अवशिष्ट त्रुटि के साथ काम करना चाहिए। हालाँकि PI नियंत्रक इस त्रुटि को समाप्त कर देते हैं, फिर भी वे सुस्त हो सकते हैं या दोलन उत्पन्न कर सकते हैं। पीआईडी नियंत्रक जवाबदेही में सुधार करते हुए स्थिरता बनाए रखने के लिए एक व्युत्पन्न (डी) कार्रवाई प्रारम्भ करके इन अंतिम कमियों को संबोधित करता है।
व्युत्पन्न क्रिया
व्युत्पन्न का संबंध समय के साथ त्रुटि के परिवर्तन की दर से है: यदि मापा गया चर तेजी से सेटपॉइंट तक पहुंचता है, तो इसे आवश्यक स्तर तक पहुंचने की अनुमति देने के लिए एक्चुएटर को जल्दी बंद कर दिया जाता है; इसके विपरीत, यदि मापा गया मान तेजी से निर्धारित बिंदु से दूर जाने लगता है, तो अतिरिक्त प्रयास लागू किया जाता है - उस गति के अनुपात में इसे वापस ले जाने में मदद करने के लिए।
चलती गाड़ी पर बंदूक या कैमरे जैसी भारी वस्तु की गति नियंत्रण से जुड़ी नियंत्रण प्रणालियों पर, एक अच्छी तरह से ट्यून किए गए पीआईडी नियंत्रक की व्युत्पन्न कार्रवाई इसे अधिकांश कुशल मानव ऑपरेटरों की तुलना में एक सेटपॉइंट तक बेहतर ढंग से पहुंचने और बनाए रखने की अनुमति दे सकती है। हालाँकि, यदि किसी व्युत्पन्न क्रिया को अधिक लागू किया जाता है, तो इससे दोलन हो सकता है।
अभिन्न क्रिया
अभिन्न शब्द दीर्घकालिक स्थिर-अवस्था त्रुटियों के प्रभाव को बढ़ाता है, त्रुटि दूर होने तक लगातार बढ़ते प्रयास को लागू करता है। विभिन्न तापमानों पर काम करने वाली भट्ठी के उपरोक्त उदाहरण में, यदि लागू की जा रही गर्मी भट्ठी को किसी भी कारण से सेटपॉइंट तक नहीं लाती है, तो अभिन्न क्रिया तेजी से सेटपॉइंट के सापेक्ष आनुपातिक बैंड को स्थानांतरित करती है जब तक कि पीवी त्रुटि शून्य तक कम न हो जाए और निर्धारित बिंदु प्राप्त कर लिया गया है.
% प्रति मिनट बढ़ाएं
कुछ नियंत्रकों में रैंप को % प्रति मिनट तक सीमित करने का विकल्प सम्मिलित होता है। यह विकल्प छोटे बॉयलरों (3 एमबीटीयूएच) को स्थिर करने में बहुत मददगार हो सकता है, खासकर गर्मियों के दौरान, हल्के भार के दौरान। एक उपयोगिता बॉयलर इकाई को 5% प्रति मिनट की दर से लोड बदलने की आवश्यकता हो सकती है (आईईए कोल ऑनलाइन - 2, 2007)।[1]
अन्य तकनीकें
पीवी या त्रुटि सिग्नल को फ़िल्टर करना (सिग्नल प्रोसेसिंग) संभव है। ऐसा करने से अवांछित आवृत्तियों पर सिस्टम की प्रतिक्रिया को कम करके अस्थिरता या दोलन को कम करने में मदद मिल सकती है। कई प्रणालियों में गुंजयमान आवृत्ति होती है। उस आवृत्ति को फ़िल्टर करके, दोलन होने से पहले मजबूत समग्र प्रतिक्रिया लागू की जा सकती है, जिससे सिस्टम खुद को अलग किए बिना अधिक प्रतिक्रियाशील हो जाता है।
फीडबैक सिस्टम को जोड़ा जा सकता है। पीआईडी नियंत्रक कैस्केड नियंत्रण में, एक नियंत्रण लूप एक सेटपॉइंट के विरुद्ध मापा चर पर नियंत्रण एल्गोरिदम लागू करता है लेकिन फिर प्रक्रिया चर को सीधे प्रभावित करने के बजाय दूसरे नियंत्रण लूप को एक अलग सेटपॉइंट प्रदान करता है। यदि किसी सिस्टम में नियंत्रित करने के लिए कई अलग-अलग मापित चर हैं, तो उनमें से प्रत्येक के लिए अलग-अलग नियंत्रण प्रणालियाँ उपस्थित होंगी।
कई अनुप्रयोगों में नियंत्रण इंजीनियरिंग नियंत्रण प्रणालियाँ तैयार करती है जो पीआईडी नियंत्रण से अधिक जटिल होती हैं। ऐसे क्षेत्रीय अनुप्रयोगों के उदाहरणों में फ्लाई बाय वायर विमान नियंत्रण प्रणाली, रासायनिक संयंत्र और तेल रिफाइनरियां सम्मिलित हैं। मॉडल पूर्वानुमानित नियंत्रण प्रणालियाँ विशेष कंप्यूटर एडेड डिजाइन|कंप्यूटर-एडेड-डिज़ाइन सॉफ़्टवेयर और नियंत्रित किए जाने वाले सिस्टम के अनुभवजन्य गणितीय मॉडल का उपयोग करके डिज़ाइन की गई हैं।
यह भी देखें
संदर्भ
- ↑ "जीवाश्म-ईंधन बिजली संयंत्रों में सहायक प्रणालियों का ऊर्जा कुशल डिजाइन" (PDF). ABB. p. 262. Archived (PDF) from the original on 2014-08-05. Retrieved 2014-04-07.