हार्मोनिक निर्देशांक स्थिति: Difference between revisions

From Vigyanwiki
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 5: Line 5:


==व्युत्पत्ति==
==व्युत्पत्ति==
सामान्य सापेक्षता में, हमें डी'अलेम्बर्ट के समीकरण में आंशिक व्युत्पन्न के बजाय [[सहसंयोजक व्युत्पन्न]] का उपयोग करना होगा, इसलिए हमें मिलता है:
जब हम सामान्य सापेक्षता में, डी'अलेम्बर्ट के समीकरण में आंशिक व्युत्पन्न के बजाय [[सहसंयोजक व्युत्पन्न]] का उपयोग करते है, तब हम इस समीकरण को प्राप्त करते है,


:<math>0 = \left(x^\alpha\right)_{; \beta ; \gamma} g^{\beta \gamma} = \left(\left(x^\alpha\right)_{, \beta , \gamma} - \left(x^\alpha\right)_{, \sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} \,.</math>
:<math>0 = \left(x^\alpha\right)_{; \beta ; \gamma} g^{\beta \gamma} = \left(\left(x^\alpha\right)_{, \beta , \gamma} - \left(x^\alpha\right)_{, \sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} \,.</math>
चूंकि निर्देशांक x<sup>α</sup> वास्तव में एक अदिश राशि नहीं है, यह एक टेंसर समीकरण नहीं है। अर्थात् यह सामान्यतः अपरिवर्तनीय नहीं है। लेकिन निर्देशांक स्थितियाँ आम तौर पर अपरिवर्तनीय नहीं होनी चाहिए क्योंकि उनसे अपेक्षा की जाती है कि वे कुछ निर्देशांक प्रणालियों को चुनें (केवल उनके लिए काम करें) और अन्य को नहीं। चूँकि निर्देशांक का आंशिक व्युत्पन्न [[ क्रोनकर डेल्टा ]] है, हमें मिलता है:
चूंकि निर्देशांक x<sup>α</sup> वास्तव में एक अदिश राशि नहीं है, और यह एक प्रदिश समीकरण भी नहीं है। लेकिन निर्देशांक स्थितियाँ सामान्य तौर पर अपरिवर्तनीय नहीं होनी चाहिए क्योंकि उन्हें (केवल उनके लिए काम करें) अन्य को छोड़कर, कुछ निर्देशांक प्रणालियों को चुनना होता है। चूँकि निर्देशांक का आंशिक व्युत्पन्न [[ क्रोनकर डेल्टा |क्रोनकर डेल्टा]] है, जिसे हम प्राप्त करते है,


:<math>0 = \left(\delta^\alpha_{\beta , \gamma} - \delta^\alpha_{\sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} = \left(0 - \Gamma^{\alpha}_{\beta \gamma}\right) g^{\beta \gamma} = - \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math>
:<math>0 = \left(\delta^\alpha_{\beta , \gamma} - \delta^\alpha_{\sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} = \left(0 - \Gamma^{\alpha}_{\beta \gamma}\right) g^{\beta \gamma} = - \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math>
और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक निर्देशांक स्थिति प्राप्त होती है (जिसे थियोफाइल डी डोनर के बाद डी डोनर गेज के रूप में भी जाना जाता है)<ref> [John Stewart (1991), "Advanced General Relativity", Cambridge University Press, {{ISBN|0-521-44946-4}} ]</ref>):
और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक निर्देशांक स्थिति प्राप्त होती है (जिसे थियोफाइल डी डोनर के बाद डी डोनर नाप के रूप में भी जाना जाता है)<ref> [John Stewart (1991), "Advanced General Relativity", Cambridge University Press, {{ISBN|0-521-44946-4}} ]</ref>):


:<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math>
:<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math>
Line 17: Line 17:


==वैकल्पिक रूप==
==वैकल्पिक रूप==
मीट्रिक टेंसर के व्युत्क्रम के [[टेंसर घनत्व]] के सहसंयोजक व्युत्पन्न पर विचार करें:
मापीय प्रदिश के व्युत्क्रम के [[टेंसर घनत्व|घनत्व]] के सहसंयोजक व्युत्पन्न पर विचार करें,


:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{; \rho} = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \rho} + g^{\sigma \nu} \Gamma^{\mu}_{\sigma \rho} \sqrt {-g} + g^{\mu \sigma} \Gamma^{\nu}_{\sigma \rho} \sqrt {-g} -  g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} \,.</math>
:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{; \rho} = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \rho} + g^{\sigma \nu} \Gamma^{\mu}_{\sigma \rho} \sqrt {-g} + g^{\mu \sigma} \Gamma^{\nu}_{\sigma \rho} \sqrt {-g} -  g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} \,.</math>
अंतिम कार्यकाल <math> -  g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} </math> उभरता है क्योंकि <math> \sqrt {-g}</math> एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। की अपेक्षा, <math> \sqrt {-g}_{; \rho} = 0 \!</math> क्योंकि <math> g^{\mu \nu}_{; \rho} = 0 \!</math>, जबकि <math> \sqrt {-g}_{, \rho} = \sqrt {-g} \Gamma^{\sigma}_{\sigma \rho} \,.</math>
अंतिम पद <math> -  g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} </math> इसलिए उभरता है क्योंकि <math> \sqrt {-g}</math> एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। जबकि <math> \sqrt {-g}_{; \rho} = 0 \!</math> की अपेक्षा, <math> g^{\mu \nu}_{; \rho} = 0 \!</math>, और <math> \sqrt {-g}_{, \rho} = \sqrt {-g} \Gamma^{\sigma}_{\sigma \rho} \,.</math> है
ν को ρ के साथ अनुबंधित करने और हार्मोनिक निर्देशांक स्थिति को दूसरे पद पर लागू करने पर, हमें मिलता है:
 
ν को ρ के साथ अनुबंधित करने और हार्मोनिक निर्देशांक स्थिति को दूसरे पद पर लागू करने पर, हम निम्न समीकरण प्राप्त करते है,


:<math>\begin{align}
:<math>\begin{align}
Line 27: Line 28:
     &= \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} + 0 + g^{\mu \alpha} \Gamma^{\beta}_{\alpha \beta} \sqrt {-g} -  g^{\mu \alpha} \Gamma^{\beta}_{\beta \alpha} \sqrt {-g} \,.
     &= \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} + 0 + g^{\mu \alpha} \Gamma^{\beta}_{\alpha \beta} \sqrt {-g} -  g^{\mu \alpha} \Gamma^{\beta}_{\beta \alpha} \sqrt {-g} \,.
\end{align}</math>
\end{align}</math>
इस प्रकार, हम पाते हैं कि हार्मोनिक निर्देशांक स्थिति को व्यक्त करने का एक वैकल्पिक तरीका है:
इस प्रकार, हम पाते हैं कि हार्मोनिक निर्देशांक स्थिति को व्यक्त करने का एक वैकल्पिक तरीका यह भी है,


:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} \,.</math>
:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} \,.</math>
==अधिक भिन्न रूप==
==अधिक भिन्न रूप==
यदि कोई क्रिस्टोफ़ेल प्रतीक को मीट्रिक टेंसर के रूप में व्यक्त करता है, तो उसे प्राप्त होता है
यदि कोई क्रिस्टोफ़ेल प्रतीक को मापीय प्रदिश के रूप में व्यक्त करता है, तो वह
:<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} = \frac{1}{2} g^{\alpha \delta} \left( g_{\gamma \delta , \beta} + g_{\beta \delta , \gamma} - g_{\beta \gamma , \delta} \right) g^{\beta \gamma} \,.</math>
:<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} = \frac{1}{2} g^{\alpha \delta} \left( g_{\gamma \delta , \beta} + g_{\beta \delta , \gamma} - g_{\beta \gamma , \delta} \right) g^{\beta \gamma} \,.</math> प्राप्त करता है।
के कारक को त्यागना <math>g^{\alpha \delta} \,</math> और कुछ सूचकांकों और शर्तों को पुनर्व्यवस्थित करने पर, कोई भी प्राप्त कर सकता है
<math>g^{\alpha \delta} \,</math>के गुणनखंड को त्यागने और कुछ सूचकांकों और शर्तों को पुनर्व्यवस्थित करने पर  
:<math> g_{\alpha \beta , \gamma} \, g^{\beta \gamma} = \frac{1}{2} g_{\beta \gamma , \alpha} \, g^{\beta \gamma} \,.</math>
:<math> g_{\alpha \beta , \gamma} \, g^{\beta \gamma} = \frac{1}{2} g_{\beta \gamma , \alpha} \, g^{\beta \gamma} \,.</math>प्राप्त होता है।
[[रैखिक गुरुत्वाकर्षण]] के संदर्भ में, यह इन अतिरिक्त रूपों से अप्रभेद्य है:
[[रैखिक गुरुत्वाकर्षण]] के संदर्भ में, यह इन अतिरिक्त रूपों से अप्रभेद्य है,
:<math>\begin{align}
:<math>\begin{align}
     h_{\alpha \beta , \gamma} \, g^{\beta \gamma} &= \frac12 h_{\beta \gamma , \alpha} \, g^{\beta \gamma} \,; \\
     h_{\alpha \beta , \gamma} \, g^{\beta \gamma} &= \frac12 h_{\beta \gamma , \alpha} \, g^{\beta \gamma} \,; \\
Line 46: Line 45:


==तरंग समीकरण पर प्रभाव==
==तरंग समीकरण पर प्रभाव==
उदाहरण के लिए, विद्युत चुम्बकीय वेक्टर क्षमता पर लागू तरंग समीकरण पर विचार करें
उदाहरण के लिए, विद्युत चुम्बकीय सदिश विभव पर लागू तरंग समीकरण पर विचार करें,


:<math>0 = A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} \,.</math>
:<math>0 = A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} \,.</math>
आइए दाहिनी ओर का मूल्यांकन करें:
आइए दाहिनी ओर का मूल्यांकन करें,


:<math>A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} = A_{\alpha ; \beta , \gamma} g^{\beta \gamma} - A_{\sigma ; \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} - A_{\alpha ; \sigma} \Gamma^{\sigma}_{\beta \gamma} g^{\beta \gamma} \,.</math>
:<math>A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} = A_{\alpha ; \beta , \gamma} g^{\beta \gamma} - A_{\sigma ; \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} - A_{\alpha ; \sigma} \Gamma^{\sigma}_{\beta \gamma} g^{\beta \gamma} \,.</math>
हार्मोनिक निर्देशांक स्थिति का उपयोग करके हम सबसे सही पद को समाप्त कर सकते हैं और फिर निम्नानुसार मूल्यांकन जारी रख सकते हैं:
हार्मोनिक निर्देशांक स्थिति का उपयोग करके हम सबसे दाएं पद को समाप्त कर सकते हैं और फिर निम्नानुसार मूल्यांकन जारी रख सकते हैं,


:<math>\begin{align}
:<math>\begin{align}
Line 61: Line 60:
- A_{\rho} \Gamma^{\rho}_{\sigma \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} \,.
- A_{\rho} \Gamma^{\rho}_{\sigma \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} \,.
\end{align}</math>
\end{align}</math>
==यह भी देखें==
==यह भी देखें==
*क्रिस्टोफ़ेल प्रतीक
*[[क्रिस्टोफ़ेल प्रतीक]]
*सहसंयोजक व्युत्पन्न
*[[सहसंयोजक व्युत्पन्न]]
*[[गेज सिद्धांत]]
*[[गेज सिद्धांत|नाप सिद्धांत]]
*सामान्य सापेक्षता
*[[सामान्य सापेक्षता]]
*[[सामान्य सहप्रसरण]]
*[[सामान्य सहप्रसरण]]
*[[होलोनोमिक आधार]]
*[[होलोनोमिक आधार]]
*क्रोनकर डेल्टा
*[[क्रोनकर डेल्टा]]
*लाप्लास का समीकरण
*[[लाप्लास का समीकरण]]
*[[लाप्लास ऑपरेटर]]
*[[लाप्लास ऑपरेटर|लाप्लास संचालक]]
*[[घुंघराले कलन]]
*[[घुंघराले कलन|रिक्की कलन]]
*[[तरंग समीकरण]]
*[[तरंग समीकरण]]


Line 90: Line 87:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 21:53, 5 December 2023

हार्मोनिक निर्देशांक स्थिति सामान्य सापेक्षता में कई निर्देशांक स्थितियों में से एक है, जो आइंस्टीन क्षेत्र समीकरणों को हल करना संभव बनाती है। एक निर्देशांक प्रणाली को हार्मोनिक निर्देशांक स्थिति के लिए पूर्ण माना जाता है यदि प्रत्येक निर्देशांक फलन xα (अदिश क्षेत्र के रूप में माना जाता है) डी'अलेम्बर्ट के समीकरण को पूर्ण करता है। रीमैनियन ज्यामिति में एक हार्मोनिक निर्देशांक प्रणाली की समानांतर धारणा एक निर्देशांक प्रणाली है जिसके निर्देशांक फलन लाप्लास के समीकरण को पूर्ण करते हैं। चूंकि डी'अलेम्बर्ट का समीकरण लाप्लास के समीकरण का समष्टि काल के लिए सामान्यीकरण है, इसलिए इसके समाधानों को हार्मोनिक भी कहा जाता है।

अभिप्रेरण

भौतिकी के नियमों को सामान्यतः अपरिवर्तनीय रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में, वास्तविक दुनिया को हमारी निर्देशांक प्रणालियों की परवाह नहीं है। हालाँकि, समीकरणों को हल करने में सक्षम होने के लिए, हमें एक विशेष निर्देशांक प्रणाली पर ध्यान केंद्रित करना होगा। एक निर्देशांक स्थिति एक (या छोटे समूह) ऐसे निर्देशांक प्रणाली (s) का चयन करती है। विशेष सापेक्षता में प्रयुक्त कार्तीय निर्देशांक डी'अलेम्बर्ट के समीकरण को पूर्ण करते हैं, इसलिए एक हार्मोनिक निर्देशांक प्रणाली विशेष सापेक्षता में संदर्भ के एक जड़त्वीय फ्रेम के लिए सामान्य सापेक्षता में उपलब्ध निकटतम सन्निकटन है।

व्युत्पत्ति

जब हम सामान्य सापेक्षता में, डी'अलेम्बर्ट के समीकरण में आंशिक व्युत्पन्न के बजाय सहसंयोजक व्युत्पन्न का उपयोग करते है, तब हम इस समीकरण को प्राप्त करते है,

चूंकि निर्देशांक xα वास्तव में एक अदिश राशि नहीं है, और यह एक प्रदिश समीकरण भी नहीं है। लेकिन निर्देशांक स्थितियाँ सामान्य तौर पर अपरिवर्तनीय नहीं होनी चाहिए क्योंकि उन्हें (केवल उनके लिए काम करें) अन्य को छोड़कर, कुछ निर्देशांक प्रणालियों को चुनना होता है। चूँकि निर्देशांक का आंशिक व्युत्पन्न क्रोनकर डेल्टा है, जिसे हम प्राप्त करते है,

और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक निर्देशांक स्थिति प्राप्त होती है (जिसे थियोफाइल डी डोनर के बाद डी डोनर नाप के रूप में भी जाना जाता है)[1]):

गुरुत्वाकर्षण तरंगों के साथ काम करते समय यह स्थिति विशेष रूप से उपयोगी होती है।

वैकल्पिक रूप

मापीय प्रदिश के व्युत्क्रम के घनत्व के सहसंयोजक व्युत्पन्न पर विचार करें,

अंतिम पद इसलिए उभरता है क्योंकि एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। जबकि की अपेक्षा, , और है

ν को ρ के साथ अनुबंधित करने और हार्मोनिक निर्देशांक स्थिति को दूसरे पद पर लागू करने पर, हम निम्न समीकरण प्राप्त करते है,

इस प्रकार, हम पाते हैं कि हार्मोनिक निर्देशांक स्थिति को व्यक्त करने का एक वैकल्पिक तरीका यह भी है,

अधिक भिन्न रूप

यदि कोई क्रिस्टोफ़ेल प्रतीक को मापीय प्रदिश के रूप में व्यक्त करता है, तो वह

प्राप्त करता है।

के गुणनखंड को त्यागने और कुछ सूचकांकों और शर्तों को पुनर्व्यवस्थित करने पर

प्राप्त होता है।

रैखिक गुरुत्वाकर्षण के संदर्भ में, यह इन अतिरिक्त रूपों से अप्रभेद्य है,

हालाँकि, जब आप h में दूसरे क्रम पर जाते हैं तो अंतिम दो एक अलग निर्देशांक स्थिति होती हैं।

तरंग समीकरण पर प्रभाव

उदाहरण के लिए, विद्युत चुम्बकीय सदिश विभव पर लागू तरंग समीकरण पर विचार करें,

आइए दाहिनी ओर का मूल्यांकन करें,

हार्मोनिक निर्देशांक स्थिति का उपयोग करके हम सबसे दाएं पद को समाप्त कर सकते हैं और फिर निम्नानुसार मूल्यांकन जारी रख सकते हैं,

यह भी देखें

संदर्भ

  1. [John Stewart (1991), "Advanced General Relativity", Cambridge University Press, ISBN 0-521-44946-4 ]
  • P.A.M.Dirac (1975), General Theory of Relativity, Princeton University Press, ISBN 0-691-01146-X, chapter 22


बाहरी संबंध