द्रव गतिविज्ञान: Difference between revisions

From Vigyanwiki
(mb vnjbkl)
(nbgmj lkhjv l)
Line 1: Line 1:
{{Short description|Aspects of fluid mechanics involving flow}}
{{Short description|Aspects of fluid mechanics involving flow}}
{{Continuum mechanics|fluid}}
[[File:Teardrop shape.svg|thumb|300px|विशिष्ट [[:hi:वायुगतिकी|वायुगतिकीय]] अश्रु आकार, बाएं से दाएं गुजरने वाले एक [[:hi:श्यानता|चिपचिपा]] माध्यम मानते हुए, आरेख दबाव वितरण को काली रेखा की मोटाई के रूप में दिखाता है और [[:hi:परिसीमा स्तर|सीमा परत]] में वेग को वायलेट त्रिकोण के रूप में दिखाता है। हरे [[:hi:भंवर जनरेटर|भंवर जनरेटर]] [[:hi:प्रक्षुब्ध प्रवाह|अशांत प्रवाह]] के लिए संक्रमण को प्रेरित करते हैं और बैक-फ्लो को रोकते हैं जिसे पीठ में उच्च दबाव वाले क्षेत्र से [[:hi:प्रवाह पृथक्करण|प्रवाह पृथक्करण]] भी कहा जाता है। सामने की सतह यथासंभव चिकनी है या यहां तक कि [[:hi:त्वचीय दांत|शार्क जैसी त्वचा]] का भी उपयोग करती है, क्योंकि यहां कोई भी अशांति वायु प्रवाह की ऊर्जा को बढ़ाती है। दाईं ओर का कटाव, जिसे [[:hi:स्पॉयलर (वैमानिकी)|कम्बैक]] के रूप में जाना जाता है, स्पॉइलर के पीछे के उच्च दबाव वाले क्षेत्र से अभिसरण भाग में [[:hi:कम्बैक|बैकफ़्लो]] को रोकता है। ]][[:hi:भौतिक शास्त्र|भौतिकी]] और [[:hi:अभियान्त्रिकी|इंजीनियरिंग]] में, '''द्रव गतिकी''' [[:hi:तरल यांत्रिकी|द्रव यांत्रिकी]] का एक उप-अनुशासन है जो तरल [[:hi:तरल|पदार्थ]] - [[:hi:द्रव|तरल पदार्थ]] और [[:hi:गैस|गैसों]] के '''प्रवाह''' का वर्णन करता है। इसमें ''[[:hi:वायुगतिकी|वायुगतिकी]]'' (गति में वायु और अन्य गैसों का अध्ययन) और '''हाइड्रोडायनामिक्स''' (गति में तरल पदार्थों का अध्ययन) सहित कई उप-विषय हैं। द्रव गतिकी में अनुप्रयोगों की एक विस्तृत श्रृंखला है, जिसमें [[:hi:वायुयान|विमान]] पर [[:hi:बल (भौतिकी)|बलों]] और [[:hi:आघूर्ण|क्षणों]] की गणना करना, [[:hi:पाइपलाइन परिवहन|पाइपलाइनों]] के माध्यम से [[:hi:शिलारस|पेट्रोलियम]] के [[:hi:निस्सरण (जलविज्ञान)|द्रव्यमान प्रवाह दर]] का निर्धारण, [[:hi:मौसम का पूर्वानुमान|मौसम के पैटर्न की भविष्यवाणी करना]], [[:hi:अंतरिक्ष|इंटरस्टेलर स्पेस]] में [[:hi:नीहारिका|नेबुला]] को समझना और [[:hi:परमाणु हथियार डिजाइन|विखंडन हथियार विस्फोट का मॉडलिंग]] शामिल है।
[[File:Teardrop shape.svg|thumb|300px|विशिष्ट [[:hi:वायुगतिकी|वायुगतिकीय]] अश्रु आकार, बाएं से दाएं गुजरने वाले एक [[:hi:श्यानता|चिपचिपा]] माध्यम मानते हुए, आरेख दबाव वितरण को काली रेखा की मोटाई के रूप में दिखाता है और [[:hi:परिसीमा स्तर|सीमा परत]] में वेग को वायलेट त्रिकोण के रूप में दिखाता है। हरे [[:hi:भंवर जनरेटर|भंवर जनरेटर]] [[:hi:प्रक्षुब्ध प्रवाह|अशांत प्रवाह]] के लिए संक्रमण को प्रेरित करते हैं और बैक-फ्लो को रोकते हैं जिसे पीठ में उच्च दबाव वाले क्षेत्र से [[:hi:प्रवाह पृथक्करण|प्रवाह पृथक्करण]] भी कहा जाता है। सामने की सतह यथासंभव चिकनी है या यहां तक कि [[:hi:त्वचीय दांत|शार्क जैसी त्वचा]] का भी उपयोग करती है, क्योंकि यहां कोई भी अशांति वायु प्रवाह की ऊर्जा को बढ़ाती है। दाईं ओर का कटाव, जिसे [[:hi:स्पॉयलर (वैमानिकी)|कम्बैक]] के रूप में जाना जाता है, स्पॉइलर के पीछे के उच्च दबाव वाले क्षेत्र से अभिसरण भाग में [[:hi:कम्बैक|बैकफ़्लो]] को रोकता है। ]][[:hi:भौतिक शास्त्र|भौतिकी]] और [[:hi:अभियान्त्रिकी|इंजीनियरिंग]] में, '''द्रव गतिकी''' [[:hi:तरल यांत्रिकी|द्रव यांत्रिकी]] का एक उप-अनुशासन है जो तरल [[:hi:तरल|पदार्थ]] - [[:hi:द्रव|तरल पदार्थ]] और [[:hi:गैस|गैसों]] के '''प्रवाह''' का वर्णन करता है। इसमें ''[[:hi:वायुगतिकी|वायुगतिकी]]'' (गति में वायु और अन्य गैसों का अध्ययन) और '''हाइड्रोडायनामिक्स''' (गति में तरल पदार्थों का अध्ययन) सहित कई उप-विषय हैं। द्रव गतिकी में अनुप्रयोगों की एक विस्तृत श्रृंखला है, जिसमें [[:hi:वायुयान|विमान]] पर [[:hi:बल (भौतिकी)|बलों]] और [[:hi:आघूर्ण|क्षणों]] की गणना करना, [[:hi:पाइपलाइन परिवहन|पाइपलाइनों]] के माध्यम से [[:hi:शिलारस|पेट्रोलियम]] के [[:hi:निस्सरण (जलविज्ञान)|द्रव्यमान प्रवाह दर]] का निर्धारण, [[:hi:मौसम का पूर्वानुमान|मौसम के पैटर्न की भविष्यवाणी करना]], [[:hi:अंतरिक्ष|इंटरस्टेलर स्पेस]] में [[:hi:नीहारिका|नेबुला]] को समझना और [[:hi:परमाणु हथियार डिजाइन|विखंडन हथियार विस्फोट का मॉडलिंग]] शामिल है।



Revision as of 12:47, 3 June 2022

विशिष्ट वायुगतिकीय अश्रु आकार, बाएं से दाएं गुजरने वाले एक चिपचिपा माध्यम मानते हुए, आरेख दबाव वितरण को काली रेखा की मोटाई के रूप में दिखाता है और सीमा परत में वेग को वायलेट त्रिकोण के रूप में दिखाता है। हरे भंवर जनरेटर अशांत प्रवाह के लिए संक्रमण को प्रेरित करते हैं और बैक-फ्लो को रोकते हैं जिसे पीठ में उच्च दबाव वाले क्षेत्र से प्रवाह पृथक्करण भी कहा जाता है। सामने की सतह यथासंभव चिकनी है या यहां तक कि शार्क जैसी त्वचा का भी उपयोग करती है, क्योंकि यहां कोई भी अशांति वायु प्रवाह की ऊर्जा को बढ़ाती है। दाईं ओर का कटाव, जिसे कम्बैक के रूप में जाना जाता है, स्पॉइलर के पीछे के उच्च दबाव वाले क्षेत्र से अभिसरण भाग में बैकफ़्लो को रोकता है।

भौतिकी और इंजीनियरिंग में, द्रव गतिकी द्रव यांत्रिकी का एक उप-अनुशासन है जो तरल पदार्थ - तरल पदार्थ और गैसों के प्रवाह का वर्णन करता है। इसमें वायुगतिकी (गति में वायु और अन्य गैसों का अध्ययन) और हाइड्रोडायनामिक्स (गति में तरल पदार्थों का अध्ययन) सहित कई उप-विषय हैं। द्रव गतिकी में अनुप्रयोगों की एक विस्तृत श्रृंखला है, जिसमें विमान पर बलों और क्षणों की गणना करना, पाइपलाइनों के माध्यम से पेट्रोलियम के द्रव्यमान प्रवाह दर का निर्धारण, मौसम के पैटर्न की भविष्यवाणी करना, इंटरस्टेलर स्पेस में नेबुला को समझना और विखंडन हथियार विस्फोट का मॉडलिंग शामिल है।

द्रव गतिकी एक व्यवस्थित संरचना प्रदान करती है - जो इन व्यावहारिक विषयों को रेखांकित करती है - जो प्रवाह माप से प्राप्त अनुभवजन्य और अर्ध-अनुभवजन्य कानूनों को अपनाती है और व्यावहारिक समस्याओं को हल करने के लिए उपयोग की जाती है। द्रव गतिकी समस्या के समाधान में आमतौर पर द्रव के विभिन्न गुणों की गणना शामिल होती है, जैसे कि प्रवाह वेग, दबाव, घनत्व और तापमान, स्थान और समय के कार्यों के रूप में।

बीसवीं शताब्दी से पहले, हाइड्रोडायनामिक्स द्रव गतिकी का पर्याय था। यह अभी भी कुछ द्रव गतिकी विषयों के नामों में परिलक्षित होता है, जैसे मैग्नेटोहाइड्रोडायनामिक्स और हाइड्रोडायनामिक स्थिरता, दोनों को गैसों पर भी लागू किया जा सकता है। [1]

समीकरण

द्रव गतिकी के मूलभूत स्वयंसिद्ध संरक्षण कानून हैं, विशेष रूप से, द्रव्यमान का संरक्षण, रैखिक गति का संरक्षण, और ऊर्जा का संरक्षण (जिसे थर्मोडायनामिक्स का पहला नियम भी कहा जाता है)। ये शास्त्रीय यांत्रिकी पर आधारित हैं और क्वांटम यांत्रिकी और सामान्य सापेक्षता में संशोधित हैं। वे रेनॉल्ड्स परिवहन प्रमेय का उपयोग करके व्यक्त किए जाते हैं।

उपरोक्त के अलावा, तरल पदार्थ को सातत्य धारणा का पालन करने के लिए माना जाता है। तरल पदार्थ अणुओं से बने होते हैं जो एक दूसरे और ठोस वस्तुओं से टकराते हैं। हालांकि, सातत्य धारणा मानती है कि तरल पदार्थ असतत के बजाय निरंतर होते हैं। नतीजतन, यह माना जाता है कि घनत्व, दबाव, तापमान और प्रवाह वेग जैसे गुण अंतरिक्ष में असीम रूप से छोटे बिंदुओं पर अच्छी तरह से परिभाषित होते हैं और एक बिंदु से दूसरे बिंदु पर लगातार भिन्न होते हैं। तथ्य यह है कि द्रव असतत अणुओं से बना है, को नजरअंदाज कर दिया जाता है।

तरल पदार्थ के लिए जो सातत्य होने के लिए पर्याप्त रूप से घने होते हैं, जिनमें आयनित प्रजातियां नहीं होती हैं, और प्रकाश की गति के संबंध में प्रवाह वेग छोटा होता है, न्यूटनियन तरल पदार्थों के लिए गति समीकरण नेवियर-स्टोक्स समीकरण होते हैं-जो एक गैर-रैखिक सेट होता है अंतर समीकरणों का जो एक तरल पदार्थ के प्रवाह का वर्णन करता है जिसका तनाव प्रवाह वेग ढाल और दबाव पर रैखिक रूप से निर्भर करता है। सरलीकृत समीकरणों में एक सामान्य बंद-रूप समाधान नहीं होता है, इसलिए वे मुख्य रूप से कम्प्यूटेशनल तरल गतिकी में उपयोग किए जाते हैं। समीकरणों को कई तरीकों से सरल बनाया जा सकता है, जिनमें से सभी उन्हें हल करना आसान बनाते हैं। कुछ सरलीकरण कुछ सरल द्रव गतिकी समस्याओं को बंद रूप में हल करने की अनुमति देते हैं।

द्रव्यमान, संवेग और ऊर्जा संरक्षण समीकरणों के अलावा, समस्या का पूरी तरह से वर्णन करने के लिए राज्य का एक थर्मोडायनामिक समीकरण जो अन्य थर्मोडायनामिक चर के कार्य के रूप में दबाव देता है, की आवश्यकता होती है। इसका एक उदाहरण राज्य का आदर्श गैस समीकरण होगा:

:

जहां p दबाव है, ρ है, T पूर्ण तापमान है, जबकि Rयू गैस स्थिर है और M एक विशेष गैस के लिए दाढ़ द्रव्यमान है।

संरक्षण कानून

द्रव गतिकी समस्याओं को हल करने के लिए तीन संरक्षण कानूनों का उपयोग किया जाता है, और शायद अभिन्न या विभेदक रूप में लिखा जाता है। संरक्षण कानून प्रवाह के एक क्षेत्र पर लागू किया जा सकता है जिसे नियंत्रण मात्रा कहा जाता है। एक नियंत्रण मात्रा अंतरिक्ष में एक असतत मात्रा है जिसके माध्यम से द्रव प्रवाहित होता है। संरक्षण कानूनों के अभिन्न सूत्रों का उपयोग नियंत्रण मात्रा के भीतर द्रव्यमान, गति या ऊर्जा के परिवर्तन का वर्णन करने के लिए किया जाता है। संरक्षण कानूनों के विभेदक फॉर्मूलेशन स्टोक्स के प्रमेय को एक अभिव्यक्ति उत्पन्न करने के लिए लागू करते हैं जिसे प्रवाह के भीतर एक असीम रूप से छोटी मात्रा (एक बिंदु पर) पर लागू कानून के अभिन्न रूप के रूप में व्याख्या किया जा सकता है।

यद्यपि ऊर्जा को एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है, एक बंद प्रणाली में कुल ऊर्जा स्थिर रहती है।

विशिष्ट एन्थैल्पी है, k द्रव की तापीय चालकता है, T तापमान है, और Φ चिपचिपा अपव्यय समारोह है। चिपचिपा अपव्यय समारोह उस दर को नियंत्रित करता है जिस पर प्रवाह की यांत्रिक ऊर्जा गर्मी में परिवर्तित हो जाती है। ऊष्मप्रवैगिकी के दूसरे नियम के लिए आवश्यक है कि अपव्यय शब्द हमेशा सकारात्मक हो: चिपचिपापन नियंत्रण मात्रा के भीतर ऊर्जा नहीं बना सकता है[2] बाईं ओर का व्यंजक भौतिक व्युत्पन्न है।

वर्गीकरण

संपीड़ित बनाम असंपीड़ित प्रवाह

सभी तरल पदार्थ एक हद तक संकुचित होते हैं; अर्थात् दाब या तापमान में परिवर्तन से घनत्व में परिवर्तन होता है। हालांकि, कई स्थितियों में दबाव और तापमान में बदलाव इतना कम होता है कि घनत्व में बदलाव नगण्य होता है। इस मामले में प्रवाह को एक असम्पीडित प्रवाह के रूप में तैयार किया जा सकता है। अन्यथा अधिक सामान्य संपीड़ित प्रवाह समीकरणों का उपयोग किया जाना चाहिए।

गणितीय रूप से, ρ को यह कहकर व्यक्त किया जाता है कि द्रव पार्सल का घनत्व प्रवाह क्षेत्र में गति करने पर नहीं बदलता है, अर्थात,

कहाँ पे

D/Dt भौतिक व्युत्पन्न है, जो स्थानीय और संवहन व्युत्पन्न सेकेंड का योग है। यह अतिरिक्त बाधा शासी समीकरणों को सरल बनाती है, विशेष रूप से उस स्थिति में जब द्रव का एक समान घनत्व होता है।

गैसों के प्रवाह के लिए, यह निर्धारित करने के लिए कि संपीड़ित या असंपीड़ित द्रव गतिकी का उपयोग करना है, प्रवाह की मच संख्या का मूल्यांकन किया जाता है। एक मोटे गाइड के रूप में, लगभग 0.3 से नीचे मच संख्या पर संपीड़ित प्रभावों को अनदेखा किया जा सकता है। तरल पदार्थों के लिए, क्या असंपीड़ित धारणा वैध है, द्रव गुणों (विशेष रूप से महत्वपूर्ण दबाव और तरल पदार्थ का तापमान) और प्रवाह की स्थिति (वास्तविक प्रवाह दबाव कितना महत्वपूर्ण दबाव बन जाता है) पर निर्भर करता है। ध्वनिक समस्याओं के लिए हमेशा संपीड्यता की अनुमति की आवश्यकता होती है, क्योंकि ध्वनि तरंगें संपीड़न तरंगें होती हैं जिनमें दबाव में परिवर्तन और माध्यम के घनत्व में परिवर्तन होता है जिसके माध्यम से वे फैलते हैं।

न्यूटोनियन बनाम गैर-न्यूटोनियन तरल पदार्थ

एक एयरफ़ॉइल

सुपरफ्लुइड्स को छोड़कर सभी तरल पदार्थ चिपचिपा होते हैं, जिसका अर्थ है कि वे विरूपण के लिए कुछ प्रतिरोध करते हैं: विभिन्न वेगों पर चलने वाले तरल पदार्थ के पड़ोसी पार्सल एक दूसरे पर चिपचिपा बल लगाते हैं। वेग प्रवणता को तनाव दर के रूप में संदर्भित किया जाता है; इसका आयाम है। आइजैक न्यूटन ने दिखाया कि पानी और हवा जैसे कई परिचित तरल पदार्थों के लिए, इन चिपचिपा बलों के कारण तनाव रैखिक रूप से तनाव दर से संबंधित होता है। ऐसे द्रवों को न्यूटोनियन द्रव कहते हैं। आनुपातिकता के गुणांक को द्रव की चिपचिपाहट कहा जाता है; न्यूटोनियन तरल पदार्थों के लिए, यह एक द्रव गुण है जो तनाव दर से स्वतंत्र है।

गैर-न्यूटोनियन तरल पदार्थों में अधिक जटिल, गैर-रेखीय तनाव-तनाव व्यवहार होता है। रियोलॉजी का उप-अनुशासन ऐसे तरल पदार्थों के तनाव-तनाव व्यवहार का वर्णन करता है, जिसमें इमल्शन और स्लरी, कुछ विस्कोलेस्टिक सामग्री जैसे रक्त और कुछ पॉलिमर, और चिपचिपा तरल पदार्थ जैसे लेटेक्स, शहद और स्नेहक शामिल हैं। [3]

अदृश्य बनाम चिपचिपा बनाम स्टोक्स प्रवाह

न्यूटन के दूसरे नियम की मदद से द्रव पार्सल की गतिशीलता का वर्णन किया गया है। द्रव का एक त्वरित पार्सल जड़त्वीय प्रभावों के अधीन है।

रेनॉल्ड्स संख्या एक आयामहीन मात्रा है जो चिपचिपा प्रभावों के परिमाण की तुलना में जड़त्वीय प्रभावों के परिमाण की विशेषता है। एक कम रेनॉल्ड्स संख्या ( Re ≪ 1 ) इंगित करती है कि चिपचिपा बल जड़त्वीय बलों की तुलना में बहुत मजबूत हैं। ऐसे मामलों में, जड़त्वीय बलों की कभी-कभी उपेक्षा की जाती है; इस प्रवाह व्यवस्था को स्टोक्स या रेंगने वाला प्रवाह कहा जाता है।

इसके विपरीत, उच्च रेनॉल्ड्स संख्या ( Re ≫ 1 ) इंगित करती है कि चिपचिपा (घर्षण) प्रभावों की तुलना में जड़त्वीय प्रभाव वेग क्षेत्र पर अधिक प्रभाव डालते हैं। उच्च रेनॉल्ड्स संख्या प्रवाह में, प्रवाह को अक्सर एक अदृश्य प्रवाह के रूप में तैयार किया जाता है, एक अनुमान जिसमें चिपचिपापन पूरी तरह से उपेक्षित होता है। चिपचिपाहट को खत्म करने से नेवियर-स्टोक्स समीकरणों को यूलर समीकरणों में सरल बनाया जा सकता है। यूलर समीकरणों का एकीकरण एक अप्रत्यक्ष प्रवाह में एक धारा के साथ बर्नौली के समीकरण को उत्पन्न करता है। जब, अविवेकी होने के अलावा, प्रवाह हर जगह गतिहीन होता है, तो बर्नौली का समीकरण हर जगह प्रवाह का पूरी तरह से वर्णन कर सकता है। इस तरह के प्रवाह को संभावित प्रवाह कहा जाता है, क्योंकि वेग क्षेत्र को संभावित ऊर्जा अभिव्यक्ति के ढाल के रूप में व्यक्त किया जा सकता है।

रेनॉल्ड्स की संख्या अधिक होने पर यह विचार काफी अच्छा काम कर सकता है। हालांकि, ठोस सीमाओं को शामिल करने वाली समस्याओं के लिए चिपचिपाहट को शामिल करने की आवश्यकता हो सकती है। ठोस सीमाओं के पास चिपचिपाहट की उपेक्षा नहीं की जा सकती क्योंकि बिना पर्ची की स्थिति बड़े तनाव दर, सीमा परत का एक पतला क्षेत्र उत्पन्न करती है, जिसमें चिपचिपापन प्रभाव हावी होता है और इस प्रकार भंवर उत्पन्न करता है। इसलिए, निकायों (जैसे पंख) पर शुद्ध बलों की गणना करने के लिए, चिपचिपा प्रवाह समीकरणों का उपयोग किया जाना चाहिए: अदृश्य प्रवाह सिद्धांत ड्रैग फोर्स की भविष्यवाणी करने में विफल रहता है, एक सीमा जिसे डी'एलेम्बर्ट के विरोधाभास के रूप में जाना जाता है।

आमतौर पर इस्तेमाल किया जाने वाला [4] मॉडल, विशेष रूप से कम्प्यूटेशनल तरल गतिकी में, दो प्रवाह मॉडल का उपयोग करना है: शरीर से दूर यूलर समीकरण, और शरीर के करीब एक क्षेत्र में सीमा परत समीकरण। मिलान किए गए स्पर्शोन्मुख विस्तार की विधि का उपयोग करके दो समाधानों का एक दूसरे के साथ मिलान किया जा सकता है।

स्थिर बनाम अस्थिर प्रवाह

एक प्रवाह जो समय का कार्य नहीं है, स्थिर प्रवाह कहलाता है। स्थिर-अवस्था प्रवाह उस स्थिति को संदर्भित करता है जहां सिस्टम में एक बिंदु पर द्रव गुण समय के साथ नहीं बदलते हैं। समय पर निर्भर प्रवाह को अस्थिर (जिसे क्षणिक [5] भी कहा जाता है) के रूप में जाना जाता है। चाहे कोई विशेष प्रवाह स्थिर हो या अस्थिर, संदर्भ के चुने हुए फ्रेम पर निर्भर हो सकता है। उदाहरण के लिए, एक गोले पर लामिना का प्रवाह संदर्भ के फ्रेम में स्थिर होता है जो गोले के संबंध में स्थिर होता है। संदर्भ के एक फ्रेम में जो पृष्ठभूमि प्रवाह के संबंध में स्थिर है, प्रवाह अस्थिर है।।

अशांत प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह सांख्यिकीय रूप से स्थिर हो सकता है। यादृच्छिक वेग क्षेत्र U(x, t) सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। [6] : 75 इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य क्षेत्र रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।

स्थिर प्रवाह अशांत प्रवाह परिभाषा के अनुसार अस्थिर हैं। हालांकि, एक अशांत प्रवाह सांख्यिकीय रूप से स्थिर हो सकता है। यादृच्छिक वेग क्षेत्र U(x, t) सांख्यिकीय रूप से स्थिर होता है यदि सभी आँकड़े समय में बदलाव के तहत अपरिवर्तनीय हैं। [7] : 75 इसका मोटे तौर पर मतलब है कि सभी सांख्यिकीय गुण समय में स्थिर हैं। अक्सर, माध्य क्षेत्र रुचि का विषय होता है, और यह सांख्यिकीय रूप से स्थिर प्रवाह में भी स्थिर होता है।अक्सर समान अस्थिर प्रवाह की तुलना में अधिक ट्रैक्टेबल होते हैं। एक स्थिर समस्या के शासी समीकरणों में प्रवाह क्षेत्र की स्थिरता का लाभ उठाए बिना एक ही समस्या के शासी समीकरणों की तुलना में एक आयाम कम (समय) होता है।

लामिना बनाम अशांत प्रवाह

लामिना से अशांत प्रवाह में संक्रमण

अशांति एक प्रवाह है जो पुनरावर्तन, एडीज और स्पष्ट यादृच्छिकता द्वारा विशेषता है। वह प्रवाह जिसमें अशांति प्रदर्शित नहीं होती है, लामिना कहलाती है। केवल एडीज़ या रीसर्क्युलेशन की उपस्थिति अशांत प्रवाह का संकेत नहीं देती है - ये घटनाएं लामिना के प्रवाह में भी मौजूद हो सकती हैं। गणितीय रूप से, अशांत प्रवाह को अक्सर रेनॉल्ड्स अपघटन के माध्यम से दर्शाया जाता है, जिसमें प्रवाह को एक औसत घटक और एक गड़बड़ी घटक के योग में विभाजित किया जाता है।

यह माना जाता है कि नेवियर-स्टोक्स समीकरणों के उपयोग के माध्यम से अशांत प्रवाह का अच्छी तरह से वर्णन किया जा सकता है। नेवियर-स्टोक्स समीकरणों के आधार पर प्रत्यक्ष संख्यात्मक सिमुलेशन (डीएनएस), मध्यम रेनॉल्ड्स संख्याओं पर अशांत प्रवाह को अनुकरण करना संभव बनाता है। प्रतिबंध उपयोग किए गए कंप्यूटर की शक्ति और समाधान एल्गोरिदम की दक्षता पर निर्भर करते हैं। डीएनएस के परिणाम कुछ प्रवाहों के प्रयोगात्मक डेटा से अच्छी तरह सहमत पाए गए हैं। [8]

ब्याज के अधिकांश प्रवाहों में रेनॉल्ड्स की संख्या बहुत अधिक है, क्योंकि DNS एक व्यवहार्य विकल्प है, [9] : 344 अगले कुछ दशकों के लिए कम्प्यूटेशनल शक्ति की स्थिति को देखते हुए। कोई भी उड़ान वाहन जो मानव को ले जाने के लिए काफी बड़ा है ( L > 3 मी), 20 . से अधिक तेज गति से चल रहा है डीएनएस सिमुलेशन की सीमा से काफी आगे है ( Re = 4 दस लाख)। ट्रांसपोर्ट एयरक्राफ्ट विंग्स (जैसे कि एयरबस A300 या बोइंग 747 पर) में रेनॉल्ड्स की संख्या 40 मिलियन (विंग कॉर्ड आयाम के आधार पर) है। इन वास्तविक जीवन प्रवाह समस्याओं को हल करने के लिए निकट भविष्य के लिए अशांति मॉडल की आवश्यकता होती है। रेनॉल्ड्स-औसत नेवियर-स्टोक्स समीकरण (आरएएनएस) अशांति मॉडलिंग के साथ संयुक्त रूप से अशांत प्रवाह के प्रभावों का एक मॉडल प्रदान करता है। इस तरह की मॉडलिंग मुख्य रूप से रेनॉल्ड्स तनाव द्वारा अतिरिक्त गति हस्तांतरण प्रदान करती है, हालांकि अशांति गर्मी और द्रव्यमान हस्तांतरण को भी बढ़ाती है। एक और आशाजनक पद्धति बड़ी एड़ी सिमुलेशन (एलईएस) है, विशेष रूप से अलग एड़ी सिमुलेशन (डीईएस) की आड़ में - जो आरएएनएस टर्बुलेंस मॉडलिंग और बड़े एड़ी सिमुलेशन का एक संयोजन है।

अन्य सन्निकटन

द्रव गतिशील समस्याओं के लिए बड़ी संख्या में अन्य संभावित अनुमान हैं। अधिक सामान्यतः उपयोग किए जाने वाले कुछ नीचे सूचीबद्ध हैं।

बहुआयामी प्रकार

मच शासन के अनुसार बहती है

जबकि कई प्रवाह (जैसे कि एक पाइप के माध्यम से पानी का प्रवाह) कम मच संख्या ( सबसोनिक प्रवाह) पर होता है, वायुगतिकी या टर्बोमशीन में व्यावहारिक रुचि के कई प्रवाह M = 1 ( ट्रांसोनिक प्रवाह ) के उच्च अंशों पर या इससे अधिक होते हैं। ( सुपरसोनिक या हाइपरसोनिक प्रवाह )। इन व्यवस्थाओं में नई घटनाएं घटित होती हैं जैसे कि ट्रांसोनिक प्रवाह में अस्थिरता, सुपरसोनिक प्रवाह के लिए शॉक वेव्स, या हाइपरसोनिक प्रवाह में आयनीकरण के कारण गैर-संतुलन रासायनिक व्यवहार। व्यवहार में, उन प्रवाह व्यवस्थाओं में से प्रत्येक को अलग से व्यवहार किया जाता है।

प्रतिक्रियाशील बनाम गैर-प्रतिक्रियाशील प्रवाह

प्रतिक्रियाशील प्रवाह ऐसे प्रवाह होते हैं जो रासायनिक रूप से प्रतिक्रियाशील होते हैं, जो दहन ( आईसी इंजन ), प्रणोदन उपकरणों ( रॉकेट, जेट इंजन, और इसी तरह), विस्फोट, आग और सुरक्षा खतरों और खगोल भौतिकी सहित कई क्षेत्रों में अपने अनुप्रयोगों को ढूंढता है। द्रव्यमान, संवेग और ऊर्जा के संरक्षण के अलावा, व्यक्तिगत प्रजातियों के संरक्षण (उदाहरण के लिए, मीथेन दहन में मीथेन का द्रव्यमान अंश) को प्राप्त करने की आवश्यकता होती है, जहां किसी भी प्रजाति के उत्पादन/कमी की दर एक साथ रासायनिक समीकरणों को हल करके प्राप्त की जाती है। गतिकी

मैग्नेटोहाइड्रोडायनामिक्स

मैग्नेटोहाइड्रोडायनामिक्स विद्युत चुम्बकीय क्षेत्रों में विद्युत प्रवाहकीय तरल पदार्थों के प्रवाह का बहु-विषयक अध्ययन है। ऐसे तरल पदार्थों के उदाहरणों में प्लाज़्मा, तरल धातु और खारे पानी शामिल हैं। मैक्सवेल के विद्युत चुंबकत्व के समीकरणों के साथ द्रव प्रवाह समीकरणों को एक साथ हल किया जाता है।

सापेक्ष द्रव गतिकी

सापेक्षिक द्रव गतिकी प्रकाश के वेग की तुलना में बड़े वेगों पर स्थूल और सूक्ष्म द्रव गति का अध्ययन करती है। [10] द्रव गतिकी की यह शाखा सापेक्षता के विशेष सिद्धांत और सापेक्षता के सामान्य सिद्धांत दोनों से सापेक्षतावादी प्रभावों के लिए जिम्मेदार है। शासी समीकरण मिन्कोवस्की स्पेसटाइम के लिए रिमेंनियन ज्यामिति में व्युत्पन्न हैं।

शब्दावली

दबाव की अवधारणा द्रव स्थैतिक और द्रव गतिकी दोनों के अध्ययन के लिए केंद्रीय है। द्रव के शरीर में प्रत्येक बिंदु के लिए एक दबाव की पहचान की जा सकती है, भले ही द्रव गति में हो या नहीं। दबाव को एरोइड, बॉर्डन ट्यूब, मरकरी कॉलम या कई अन्य तरीकों का उपयोग करके मापा जा सकता है।

द्रव गतिकी के अध्ययन में आवश्यक कुछ शब्दावली अध्ययन के अन्य समान क्षेत्रों में नहीं पाई जाती है। विशेष रूप से, द्रव गतिकी में उपयोग की जाने वाली कुछ शब्दावली का उपयोग द्रव स्टैटिक्स में नहीं किया जाता है।

असंपीड्य द्रव गतिकी में शब्दावली

कुल दबाव और गतिशील दबाव की अवधारणाएं बर्नौली के समीकरण से उत्पन्न होती हैं और सभी द्रव प्रवाहों के अध्ययन में महत्वपूर्ण हैं। (ये दो दबाव सामान्य अर्थों में दबाव नहीं हैं- इन्हें एरोइड, बौर्डन ट्यूब या पारा कॉलम का उपयोग करके मापा नहीं जा सकता है। ) द्रव गतिकी में दबाव का जिक्र करते समय संभावित अस्पष्टता से बचने के लिए, कई लेखक इसे कुल दबाव और गतिशील दबाव से अलग करने के लिए स्थिर दबाव शब्द का उपयोग करते हैं। स्थैतिक दबाव दबाव के समान है और द्रव प्रवाह क्षेत्र में प्रत्येक बिंदु के लिए पहचाना जा सकता है।

द्रव प्रवाह में वह बिंदु जहाँ प्रवाह विराम अवस्था में आ गया हो (अर्थात् द्रव प्रवाह में डूबे हुए किसी ठोस पिंड के समीप गति शून्य के बराबर हो) विशेष महत्व का है। इसका इतना महत्व है कि इसे एक विशेष नाम दिया गया है - एक ठहराव बिंदु । ठहराव बिंदु पर स्थिर दबाव का विशेष महत्व है और इसे अपना नाम दिया गया है- ठहराव दबाव । असंपीड्य प्रवाह में, ठहराव बिंदु पर ठहराव दबाव पूरे प्रवाह क्षेत्र में कुल दबाव के बराबर होता है।

संपीड़ित द्रव गतिकी में शब्दावली

एक संपीड़ित द्रव में, सभी थर्मोडायनामिक राज्य गुणों (जैसे कुल तापमान, कुल थैलीपी, ध्वनि की कुल गति) के लिए कुल स्थितियों (जिन्हें ठहराव की स्थिति भी कहा जाता है) को परिभाषित करना सुविधाजनक होता है। ये कुल प्रवाह की स्थिति द्रव वेग का एक कार्य है और अलग-अलग गति के संदर्भ के फ्रेम में अलग-अलग मान हैं।

संभावित अस्पष्टता से बचने के लिए जब द्रव की गति के बजाय द्रव की स्थिति से जुड़े द्रव के गुणों का जिक्र किया जाता है, तो उपसर्ग "स्थैतिक" का आमतौर पर उपयोग किया जाता है (जैसे स्थिर तापमान और स्थिर थैलीपी)। जहां कोई उपसर्ग नहीं है, द्रव संपत्ति स्थिर स्थिति है (इसलिए "घनत्व" और "स्थिर घनत्व" का अर्थ एक ही बात है)। स्थिर स्थितियां संदर्भ के फ्रेम से स्वतंत्र हैं।

चूंकि कुल प्रवाह की स्थिति को तरल पदार्थ को आराम से लाने के द्वारा परिभाषित किया जाता है, इसलिए कुल एन्ट्रॉपी और स्थिर एन्ट्रॉपी के बीच अंतर करने की कोई आवश्यकता नहीं है क्योंकि वे हमेशा परिभाषा के बराबर होते हैं। जैसे, एंट्रोपी को आमतौर पर "एन्ट्रॉपी" के रूप में जाना जाता है।

References

  1. Eckert, Michael (2006). The Dawn of Fluid Dynamics: A Discipline Between Science and Technology. Wiley. p. ix. ISBN 3-527-40513-5.
  2. White, F. M. (1974). Viscous Fluid Flow. New York: McGraw–Hill. ISBN 0-07-069710-8.
  3. Wilson, DI (February 2018). "What is Rheology?". Eye. 32 (2): 179–183. doi:10.1038/eye.2017.267. PMC 5811736. PMID 29271417.
  4. Platzer, B. (2006-12-01). "Book Review: Cebeci, T. and Cousteix, J., Modeling and Computation of Boundary-Layer Flows". ZAMM. 86 (12): 981–982. doi:10.1002/zamm.200690053. ISSN 0044-2267.
  5. "Transient state or unsteady state? -- CFD Online Discussion Forums". www.cfd-online.com.
  6. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  7. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  8. See, for example, Schlatter et al, Phys. Fluids 21, 051702 (2009); doi:10.1063/1.3139294
  9. Pope, Stephen B. (2000). Turbulent Flows. Cambridge University Press. ISBN 0-521-59886-9.
  10. Landau, Lev Davidovich; Lifshitz, Evgenii Mikhailovich (1987). Fluid Mechanics. London: Pergamon. ISBN 0-08-033933-6.

Further reading

External links