गेल-मान मैट्रिसेस: Difference between revisions
(Created page with "{{short description|A basis for the SU(3) Lie algebra}} मरे गेल-मान द्वारा विकसित गेल-मैन मैट्रिसेस...") |
(→संदर्भ) |
||
Line 138: | Line 138: | ||
|lccn=69014391 | |lccn=69014391 | ||
}} | }} | ||
[[Category: मैट्रिसेस]] [[Category: क्वांटम क्रोमोडायनामिक्स]] [[Category: गणितीय भौतिकी]] [[Category: सैद्धांतिक भौतिकी]] [[Category: झूठ बीजगणित]] [[Category: झूठ बीजगणित का प्रतिनिधित्व सिद्धांत]] | [[Category: मैट्रिसेस]] [[Category: क्वांटम क्रोमोडायनामिक्स]] [[Category: गणितीय भौतिकी]] [[Category: सैद्धांतिक भौतिकी]] [[Category: झूठ बीजगणित]] [[Category: झूठ बीजगणित का प्रतिनिधित्व सिद्धांत]] | ||
Revision as of 11:17, 29 November 2023
मरे गेल-मान द्वारा विकसित गेल-मैन मैट्रिसेस, कण भौतिकी में मजबूत इंटरैक्शन के अध्ययन में उपयोग किए जाने वाले आठ रैखिक स्वतंत्रता 3×3 मैट्रिक्स ट्रेस हर्मिटियन मैट्रिसेस का एक सेट है। वे परिभाषित प्रतिनिधित्व में विशेष एकात्मक समूह #समूह SU(3)|SU(3) समूह के एक झूठ समूह से जुड़े लाई समूह#द लाई बीजगणित का विस्तार करते हैं।
मैट्रिसेस
गुण
ये मैट्रिक्स लापता , हर्मिटियन मैट्रिक्स हैं, और अतिरिक्त ट्रेस ऑर्थोनॉर्मलिटी रिलेशन का पालन करते हैं (इसलिए वे मैट्रिक्स घातांक के माध्यम से एसयू (3) के एकात्मक मैट्रिक्स समूह तत्व उत्पन्न कर सकते हैं)[1]). इन गुणों को गेल-मैन द्वारा चुना गया था क्योंकि वे तब स्वाभाविक रूप से एसयू (2) से एसयू (3) के लिए पॉल के मैट्रिक्स को सामान्यीकृत करते थे, जिसने गेल-मैन के क्वार्क मॉडल का आधार बनाया था।[2] गेल-मैन का सामान्यीकरण आगे पॉली मैट्रिसेस का सामान्यीकरण#निर्माण|सामान्य एसयू(एन) तक फैला हुआ है। ली अलजेब्रा की जड़ प्रणाली से उनके संबंध के लिए, एसयू(3)#मानक आधार|वेइल-कार्टन आधार के लिए क्लेबश-गॉर्डन गुणांक देखें।
ट्रेस ऑर्थोनोर्मैलिटी
गणित में, ऑर्थोनोर्मैलिटी का तात्पर्य आम तौर पर एक मानदंड से होता है जिसका मान एकता (1) होता है। हालाँकि, गेल-मैन मैट्रिसेस को 2 के मान पर सामान्यीकृत किया जाता है। इस प्रकार, जोड़ीवार उत्पाद के ट्रेस (रैखिक बीजगणित) के परिणामस्वरूप ऑर्थो-सामान्यीकरण स्थिति होती है
कहाँ क्रोनकर डेल्टा है।
ऐसा इसलिए है कि एसयू(2) के तीन एम्बेडेड सबलजेब्रा के अनुरूप एम्बेडेड पाउली मैट्रिसेस पारंपरिक रूप से सामान्यीकृत हैं। इस त्रि-आयामी मैट्रिक्स प्रतिनिधित्व में, कार्टन उपबीजगणित दो मैट्रिक्स के रैखिक संयोजन (वास्तविक गुणांक के साथ) का सेट है और , जो एक दूसरे के साथ आवागमन करते हैं।
तीन क्लेबश-गॉर्डन_गुणांक_for_SU(3)#Standard_basis SU(2) उपबीजगणित हैं:
- और
जहां x और y के रैखिक संयोजन हैं और . इन उपबीजगणित के एसयू(2) कासिमिर परस्पर विनिमय करते हैं।
हालाँकि, इन उपबीजगणितों के किसी भी एकात्मक समानता परिवर्तन से SU(2) उपबीजगणित प्राप्त होंगे। ऐसे परिवर्तनों की संख्या अनगिनत है।
संपरिवर्तन संबंध
SU(3) के 8 जनरेटर कम्यूटेटर|कम्यूटेशन और एंटी-कम्यूटेशन संबंधों को संतुष्ट करते हैं[3]
संरचना स्थिरांक के साथ
संरचना स्थिरांक तीन सूचकांकों में पूरी तरह से एंटीसिमेट्रिक हैं, जो लेवी-सिविटा प्रतीक की एंटीसिममेट्री को सामान्यीकृत करते हैं का SU(2). गेल-मैन मैट्रिसेस के वर्तमान क्रम के लिए वे मान लेते हैं
सामान्य तौर पर, वे शून्य का मूल्यांकन करते हैं, जब तक कि उनमें एंटीसिमेट्रिक (काल्पनिक) के अनुरूप सेट {2,5,7} से सूचकांकों की एक विषम गिनती न हो। λएस।
इन कम्यूटेशन संबंधों का उपयोग करते हुए, गेल-मैन मैट्रिसेस के उत्पाद को इस प्रकार लिखा जा सकता है
कहाँ I पहचान मैट्रिक्स है.
फिर्ज़ पूर्णता संबंध
चूँकि आठ आव्यूह और पहचान सभी 3×3 आव्यूहों में फैला हुआ एक पूर्ण ट्रेस-ऑर्थोगोनल सेट है, इसलिए दो फ़िएर्ज़ पूर्णता संबंध, (ली और चेंग, 4.134) खोजना आसान है, जो कि पाउली आव्यूह#पूर्णता के अनुरूप है। संबंध 2. अर्थात्, आठ आव्यूहों का योग करने के लिए बिंदु का उपयोग करना और उनकी पंक्ति/स्तंभ सूचकांकों के लिए ग्रीक सूचकांकों का उपयोग करना, निम्नलिखित पहचान रखता है,
और
उपरोक्त के रैखिक संयोजन से उत्पन्न पुनर्रचना संस्करण को कोई पसंद कर सकता है,
प्रतिनिधित्व सिद्धांत
मैट्रिक्स की एक विशेष पसंद को समूह प्रतिनिधित्व कहा जाता है, क्योंकि SU(3) के किसी भी तत्व को फॉर्म में लिखा जा सकता है आइंस्टीन संकेतन का उपयोग करते हुए, जहां आठ वास्तविक संख्याएँ और सूचकांक पर एक योग हैं j निहित है. एक प्रतिनिधित्व को देखते हुए, एक समतुल्य एक मनमाना एकात्मक समानता परिवर्तन द्वारा प्राप्त किया जा सकता है, क्योंकि इससे कम्यूटेटर अपरिवर्तित रहता है।
मैट्रिक्स को लाई समूह के प्रतिनिधित्व के रूप में महसूस किया जा सकता है#स्पेशल_यूनिटरी_ग्रुप#द_ग्रुप_एसयू(3)|एसयू(3) नामक विशेष एकात्मक समूह के लाई समूहों से जुड़े लाई बीजगणित। इस समूह के लाई बीजगणित (वास्तव में एक वास्तविक लाई बीजगणित) का आयाम आठ है और इसलिए इसमें आठ रैखिक स्वतंत्रता जनरेटर के साथ कुछ सेट हैं, जिन्हें इस प्रकार लिखा जा सकता है , मैं 1 से 8 तक मान ले रहा हूँ।[1]
कैसिमिर ऑपरेटर्स और इनवेरिएंट
गेल-मैन मैट्रिक्स का वर्ग योग द्विघात कासिमिर ऑपरेटर, एक समूह अपरिवर्तनीय देता है,
कहाँ 3×3 पहचान मैट्रिक्स है। SU(3)#Casimir ऑपरेटरों के लिए एक और, स्वतंत्र, क्लेबश-गॉर्डन गुणांक भी है।
क्वांटम क्रोमोडायनामिक्स पर अनुप्रयोग
ये मैट्रिक्स क्वांटम क्रोमोडायनामिक्स (cf. ग्लूऑन#आठ ग्लूऑन रंग) के रंगीन क्वार्क से जुड़े ग्लूऑन क्षेत्रों के आंतरिक (रंग) घुमावों का अध्ययन करने के लिए काम करते हैं। गेज रंग रोटेशन एक स्पेसटाइम-निर्भर एसयू (3) समूह तत्व है
जहां आठ सूचकांकों का योग है k निहित है.
यह भी देखें
- कासिमिर तत्व
- एसयू(3) के लिए क्लेबश-गॉर्डन गुणांक
- पाउली मैट्रिसेस का सामान्यीकरण
- समूह प्रतिनिधित्व
- संहार रूप
- पाउली मैट्रिसेस
- कुट्रिट
- विशेष एकात्मक समूह#समूह SU(3)|SU(3)
संदर्भ
- ↑ 1.0 1.1 Stefan Scherer; Matthias R. Schindler (31 May 2005). "एक चिरल गड़बड़ी सिद्धांत प्राइमर". p. 1–2. arXiv:hep-ph/0505265.
- ↑ David Griffiths (2008). Introduction to Elementary Particles (2nd ed.). John Wiley & Sons. pp. 283–288, 366–369. ISBN 978-3-527-40601-2.
- ↑ Haber, Howard. "गेल-मैन मैट्रिसेस के गुण" (PDF). Physics 251 Group Theory and Modern Physics. U.C. Santa Cruz. Retrieved 1 April 2019.
- Gell-Mann, Murray (1962-02-01). "Symmetries of Baryons and Mesons". Physical Review. American Physical Society (APS). 125 (3): 1067–1084. Bibcode:1962PhRv..125.1067G. doi:10.1103/physrev.125.1067. ISSN 0031-899X.
- Cheng, T.-P.; Li, L.-F. (1983). Gauge Theory of Elementary Particle Physics. Oxford University Press. ISBN 0-19-851961-3.
- Georgi, H. (1999). Lie Algebras in Particle Physics (2nd ed.). Westview Press. ISBN 978-0-7382-0233-4.
- Arfken, G. B.; Weber, H. J.; Harris, F. E. (2000). Mathematical Methods for Physicists (7th ed.). Academic Press. ISBN 978-0-12-384654-9.
- Kokkedee, J. J. J. (1969). The Quark Model. W. A. Benjamin. LCCN 69014391.