बेथे लैटिस: Difference between revisions
m (Arti Shah moved page बेथे जाली to बेथे लैटिस without leaving a redirect) |
m (8 revisions imported from alpha:बेथे_लैटिस) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
[[Image:Reseau de Bethe.svg|thumb|225px|right|समन्वय संख्या z = 3 के साथ एक बेथ नियम]][[सांख्यिकीय यांत्रिकी]] और गणित में, '''बेथे नियम''' (जिसे '''समभुजकोणीय ट्री''' भी कहा जाता है) एक अनंत ट्री (ग्राफ सिद्धांत) है | जुड़ा हुआ चक्र-मुक्त ग्राफ है जहाँ सभी शीर्षों में निकट की संख्या समान होती है। बेथे नियम को 1935 में [[हंस बेथे]] द्वारा भौतिकी साहित्य में पेश किया गया था। ऐसे ग्राफ में, प्रत्येक नोड ''z'' निकट से जुड़ा होता है; संख्या ''z'' को क्षेत्र के आधार पर या तो [[समन्वय संख्या]] या [[डिग्री (ग्राफ सिद्धांत)]] कहा जाता है। | |||
[[Image:Reseau de Bethe.svg|thumb|225px|right|समन्वय संख्या z = 3 के साथ एक बेथ | |||
अपनी विशिष्ट | अपनी विशिष्ट सांस्थितिक संरचना के कारण, इस ग्राफ पर बेथे नियम (भौतिकी) के सांख्यिकीय यांत्रिकी को अन्य नियम की तुलना में हल करना अधिकांशत: आसान होता है। समाधान इन प्रणालियों के लिए अधिकांशत: उपयोग किए जाने वाले [[बेथे दृष्टिकोण]] से संबंधित हैं। | ||
== मूल गुण == | == मूल गुण == | ||
बेथे | बेथे नियम के साथ काम करते समय, किसी दिए गए शीर्ष को रूट के रूप में चिह्नित करना अधिकांशत: सुविधाजनक होता है, जिससे कि आरेख के स्थानीय गुणों पर विचार करते समय इसे संदर्भ बिंदु के रूप में उपयोग किया जा सके। | ||
=== परतों का आकार === | === परतों का आकार === | ||
एक बार जब एक शीर्ष को | एक बार जब एक शीर्ष को रूट के रूप में चिह्नित किया जाता है, तो हम अन्य शीर्षों को जड़ से उनकी दूरी के आधार पर परतों में समूहित कर सकते हैं। दूरी पर शीर्षों की संख्या <math>d>0</math> जड़ से है <math>z(z-1)^{d-1}</math>, क्योंकि रूट के अतिरिक्त प्रत्येक शीर्ष आसन्न है <math>z-1</math> शीर्ष जड़ से एक अधिक दूरी पर हैं और जड़ समीपवर्ती है1 की दूरी पर <math>z</math> । | ||
==सांख्यिकीय यांत्रिकी में == | ==सांख्यिकीय यांत्रिकी में == | ||
बेथे | बेथे नियम सांख्यिकीय यांत्रिकी में मुख्य रूप से रुचि रखती है क्योंकि बेथे नियम पर नियम मॉडल अधिकांशत: अन्य नियम, जैसे कि द्वि-आयामी वर्गाकार नियम की तुलना में हल करना आसान होता है। ऐसा इसलिए है क्योंकि चक्रों की कमी कुछ अधिक जटिल अंतःक्रियाओं को दूर कर देती है। जबकि बेथे नियम अन्य नियम की तरह भौतिक सामग्रियों में परस्पर क्रिया का उतना करीब से अनुमान नहीं लगाती है, फिर भी यह उपयोगी जानकारी प्रदान कर सकता है। | ||
=== [[आइसिंग मॉडल]] का सटीक समाधान === | === [[आइसिंग मॉडल]] का सटीक समाधान === | ||
आइसिंग मॉडल लौहचुंबकत्व का एक गणितीय मॉडल है, जिसमें किसी सामग्री के चुंबकीय गुणों को | आइसिंग मॉडल लौहचुंबकत्व का एक गणितीय मॉडल है, जिसमें किसी सामग्री के चुंबकीय गुणों को नियम में प्रत्येक नोड पर एक स्पिन द्वारा दर्शाया जाता है, जो या तो +1 या -1 है। मॉडल एक स्थिरांक से भी सुसज्जित है <math>K</math> आसन्न नोड्स और एक स्थिरांक के बीच परस्परक्रिया की ताकत का प्रतिनिधित्व करता है, <math>h</math> बाहरी चुंबकीय क्षेत्र का प्रतिनिधित्व करता है। | ||
बेथ | बेथ नियम पर आइसिंग मॉडल को विभाजन फलन द्वारा परिभाषित किया गया है। | ||
<math>Z=\sum_{\{\sigma\}}\exp\left(K\sum_{(i,j)}\sigma_i\sigma_j + h\sum_i \sigma_i\right).</math> | <math>Z=\sum_{\{\sigma\}}\exp\left(K\sum_{(i,j)}\sigma_i\sigma_j + h\sum_i \sigma_i\right).</math> | ||
==== चुम्बकत्व ==== | ==== चुम्बकत्व ==== | ||
स्थानीय चुंबकत्व की गणना करने के लिए, हम एक शीर्ष को हटाकर | स्थानीय चुंबकत्व की गणना करने के लिए, हम एक शीर्ष को हटाकर नियम को कई समान भागों में तोड़ सकते हैं। यह हमें एक पुनरावृत्ति संबंध देता है जो हमें ''n'' गोले (बेथ नियम के परिमित एनालॉग) के साथ केएले ट्री के चुंबकत्व की गणना करने की अनुमति देता है। | ||
<math>M=\frac{e^h-e^{-h}x_n^q}{e^h+e^{-h}x_n^q},</math> | <math>M=\frac{e^h-e^{-h}x_n^q}{e^h+e^{-h}x_n^q},</math> | ||
जहाँ <math>x_0=1</math> और के मूल्य <math>x_i</math> पुनरावृत्ति संबंध को संतुष्ट करें | |||
<math>x_n=\frac{e^{-K+h}+e^{K-h}x_{n-1}^{q-1}}{e^{K+h}+e^{-K-h}x_{n-1}^{q-1}}</math> | <math>x_n=\frac{e^{-K+h}+e^{K-h}x_{n-1}^{q-1}}{e^{K+h}+e^{-K-h}x_{n-1}^{q-1}}</math> | ||
में <math>K>0</math> जब सिस्टम लौहचुंबकीय होता है, तो उपरोक्त अनुक्रम अभिसरण करता है, इसलिए हम बेथ | |||
में <math>K>0</math> जब सिस्टम लौहचुंबकीय होता है, तो उपरोक्त अनुक्रम अभिसरण करता है, इसलिए हम बेथ नियम पर चुंबकत्व का मूल्यांकन करने के लिए सीमा ले सकते हैं। हम पाते हैं | |||
<math>M=\frac{e^{2h}-x^q}{e^{2h}+x_q},</math> जहां x एक समाधान है <math>x=\frac{e^{-K+h}+e^{K-h}x^{q-1}}{e^{K+h}+e^{-K-h}x^{q-1}}</math>. | <math>M=\frac{e^{2h}-x^q}{e^{2h}+x_q},</math> जहां x एक समाधान है <math>x=\frac{e^{-K+h}+e^{K-h}x^{q-1}}{e^{K+h}+e^{-K-h}x^{q-1}}</math>. | ||
इस समीकरण के या तो 1 या 3 समाधान हैं। ऐसे | इस समीकरण के या तो 1 या 3 समाधान हैं। ऐसे स्थितिे में जहाँ 3 अनुक्रम <math>x_n</math> है, जब सबसे छोटे में <math>h>0</math> और सबसे बड़े में <math>h<0</math> परिवर्तित हो जाएगा। | ||
==== | ==== मुक्त ऊर्जा ==== | ||
आइसिंग मॉडल में | आइसिंग मॉडल में नियम के प्रत्येक स्थल पर मुक्त ऊर्जा f द्वारा दी गई है | ||
<math>\frac{f}{kT}=\frac12[-Kq-q\ln(1-z^2)+\ln(z^2+1-z(x+1/x))+(q-2)\ln(x+1/x-2z)]</math>, | <math>\frac{f}{kT}=\frac12[-Kq-q\ln(1-z^2)+\ln(z^2+1-z(x+1/x))+(q-2)\ln(x+1/x-2z)]</math>, | ||
जहाँ <math>z=\exp(-2K)</math> और <math>x</math> पहले जैसा है।<ref>{{cite book | first=Rodney J. | last=Baxter | authorlink=Rodney J. Baxter | title=सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| publisher=Academic Press | year=1982 | isbn=0-12-083182-1 | zbl= 0538.60093 }}</ref> | |||
== गणित में == | == गणित में == | ||
=== यादृच्छिक | === यादृच्छिक वॉक की वापसी संभावना === | ||
संभावना है कि डिग्री की बेथ | संभावना है कि डिग्री की बेथ नियम पर एक <math>z</math> किसी दिए गए शीर्ष से प्रारंभ करके अंततः उसी शीर्ष पर वापस लौट आता है <math>\frac{1}{z-1}</math>। यह दिखाने के लिए यदि हम <math>P(k)</math> दूरी पर हैं तो हमारे आरंभिकी बिंदु पर लौटने की संभावना होगी यदि हमारी दूरी <math>k</math> है। हमारे पास पुनरावृत्ति संबंध है। | ||
<math>P(k)=\frac1zP(k-1)+\frac{z-1}zP(k+1)</math> | <math>P(k)=\frac1zP(k-1)+\frac{z-1}zP(k+1)</math> | ||
सभी के लिए <math>k>1</math>, जैसा कि प्रारंभिक शीर्ष के | |||
सभी के लिए <math>k>1</math>, जैसा कि प्रारंभिक शीर्ष के अतिरिक्त प्रत्येक स्थान पर होता है <math>z-1</math> किनारे प्रारंभिक शीर्ष से दूर जा रहे हैं और 1 किनारा इसकी ओर जा रहा है। इस समीकरण को कुल मिलाकर सारांशित करें <math>k>1</math>, हम पाते हैं। | |||
<math>\sum_{k=1}^{\infty}P(k)=\frac1zP(0)+\frac1zP(1)+\sum_{k=2}^{\infty}P(k)</math>. | <math>\sum_{k=1}^{\infty}P(k)=\frac1zP(0)+\frac1zP(1)+\sum_{k=2}^{\infty}P(k)</math>. | ||
हमारे पास है <math>P(0)=1</math>, क्योंकि यह इंगित करता है कि हम अभी | हमारे पास है <math>P(0)=1</math>, क्योंकि यह इंगित करता है कि हम अभी आरंभिकी शीर्ष पर लौट आए हैं, इसलिए <math>P(1)=1/(z-1)</math>, वह मूल्य है जो हम चाहते हैं। | ||
ध्यान दें कि यह द्वि-आयामी वर्गाकार | ध्यान दें कि यह द्वि-आयामी वर्गाकार नियम पर यादृच्छिक वॉक की स्थितिे के बिल्कुल विपरीत है, जिसकी प्रसिद्ध वापसी संभावना 1 है।<ref>{{cite book | first=Rick | last=Durrett | authorlink=Rick Durrett | title=Probability: Theory and Examples | publisher=Wadsworth & Brooks/Cole | year=1991 | isbn=0-534-13206-5 }}</ref> ऐसी 4-सतत नियम है, लेकिन 4-सतत बेथे नियम की वापसी संभावना 1/3 है। | ||
=== बंद वॉक की संख्या === | === बंद वॉक की संख्या === | ||
नीचे से <math>2k</math> डिग्री के साथ बेथ लैटिस के दिए गए शीर्ष पर आरंभ होने वाली लंबाई के बंद वॉक की संख्या को आसानी से <math>z</math> से बांधा जा सकता है। प्रत्येक चरण को या तो एक बाहरी कदम (प्रारंभिक शीर्ष से दूर) या एक आंतरिक कदम (प्रारंभिक शीर्ष की ओर) के रूप में विचार करके, हम देखते हैं कि लंबाई का कोई भी बंद कदम <math>2k</math> बिलकुल होना चाहिए <math>k</math> बाहरी कदम और <math>k</math> अंदर के कदम है। हमने किसी भी बिंदु पर बाहरी कदमों की तुलना में अंदर की ओर अधिक कदम नहीं उठाए होंगे, इसलिए कदम दिशाओं (या तो अंदर या बाहर) के अनुक्रम की संख्या दी गई है <math>k</math> [[कैटलन संख्या]] <math>C_k</math>। कम से कम हैं <math>z-1</math> प्रत्येक बाहरी कदम के लिए विकल्प, और प्रत्येक अंदर की ओर जाने वाले कदम के लिए हमेशा ठीक 1 विकल्प, इसलिए बंद वॉक की संख्या कम से कम होती है <math>(z-1)^kC_k</math>। | |||
यह बंधन उतना कड़ा नहीं है, जितना वास्तव में | यह बंधन उतना कड़ा नहीं है, जितना वास्तव में <math>z</math> है, आरंभिक शीर्ष से बाहरी कदम के लिए विकल्प, जो आरंभ में और वॉक के दौरान किसी भी संख्या में होता है। वॉक की सटीक संख्या की गणना करना कठिन है, और सूत्र द्वारा दिया गया है | ||
<math>(z-1)^kC_k\cdot \frac{z-1}{z}\ _2F_1(k+1/2,1,k+2,4(z-1)/z^2),</math> | <math>(z-1)^kC_k\cdot \frac{z-1}{z}\ _2F_1(k+1/2,1,k+2,4(z-1)/z^2),</math> | ||
हम इस तथ्य का उपयोग | जहाँ <math>_2F_1(\alpha,\beta,\gamma,z)</math> [[हाइपरजियोमेट्रिक फ़ंक्शन|हाइपरजियोमेट्रिक फलन]] है.<ref>{{cite journal | first=A. | last=Giacometti | title=बेथे जाली पर वापसी संभावना का सटीक बंद रूप| arxiv=cond-mat/9411113v1 | doi=10.1088/0305-4470/28/1/003 | journal = Phys A. Math. Gen. | volume=28 | issue=1 | year=1994 | pages=L13–L17 | s2cid=13298204 }}</ref> | ||
हम इस तथ्य का उपयोग दूसरे सबसे बड़े इगेनवैल्यू <math>d</math>-सतत ग्राफ को बांधने के लिए कर सकते हैं। माना <math>G</math> एक <math>d</math>-सतत आरेख <math>n</math> शीर्ष के साथ, और <math>A</math> इसकी आसन्नता मैट्रिक्स है, तब <math>\text{tr }A^{2k}</math> लंबाई के बंद रास्तों की संख्या है <math>2k</math> है बंद वॉक की संख्या <math>G</math> कम से कम <math>n</math> है डिग्री के साथ बेथे नियम पर बंद वॉक की संख्या का <math>d</math> गुना एक विशेष शिखर से आरंभ करते हुए, हम बेथ नियम पर वॉक वाले रास्तों को मैप कर सकते हैं <math>G</math> जो किसी दिए गए शिखर से आरंभ होते हैं और केवल उन रास्तों पर वापस जाते हैं जिन पर पहले से ही वॉक कर रहे थे। <math>G</math> पर अधिकांशत: अधिक वॉक होती हैं, क्योंकि हम अतिरिक्त वॉक के लिए चक्र का उपयोग कर सकते हैं। <math>A</math> की सबसे बड़ा इगेनवैल्यू <math>d</math> है, और माना <math>\lambda_2</math> हमारे पास एक इगेनवैल्यू का दूसरा सबसे बड़ा निरपेक्ष मान है | |||
<math>n(d-1)^kC_k\le\text{tr} A^{2k}\le d^{2k}+(n-1)\lambda_2^{2k}.</math> | <math>n(d-1)^kC_k\le\text{tr} A^{2k}\le d^{2k}+(n-1)\lambda_2^{2k}.</math> | ||
=== | यह देता है <math>\lambda_2^{2k}\ge\frac{1}{n-1}(n(d-1)^kC_k-d^{2k})</math>. नोट किया कि <math>C_k=(4-o(1))^k</math> जैसा <math>k</math> बढ़ता है, हम मान सकते हैं <math>n</math> तेजी से बढ़ता हैं <math>k</math> की तुलना में, यह देखने के लिए कि केवल बहुत से <math>d</math>-सतत आरेख <math>G</math> है, जिसके लिए एक इगेनवैल्यू का दूसरा सबसे बड़ा निरपेक्ष मान अधिकतम <math>\lambda</math> है, किसी के लिए <math>\lambda < 2\sqrt{d-1}.</math> एक्सपेंडर ग्राफ (n,d,λ)-ग्राफ के अध्ययन में यह एक दिलचस्प परिणाम है। | ||
{{further| | |||
=== केएले आरेख और केएले ट्री से संबंध === | |||
{{further|केएले आरेख}} | |||
सम समन्वय संख्या 2n का एक बेथ ग्राफ एक मुक्त जनरेटिंग सेट के संबंध में रैंक n के एक [[मुक्त समूह]] के असम्बद्ध केली ग्राफ के लिए आइसोमोर्फिक है। | सम समन्वय संख्या 2n का एक बेथ ग्राफ एक मुक्त जनरेटिंग सेट के संबंध में रैंक n के एक [[मुक्त समूह]] के असम्बद्ध केली ग्राफ के लिए आइसोमोर्फिक है। | ||
=== | === लाई समूहों में नियम === | ||
बेथे लैटिस कुछ अतिशयोक्तिपूर्ण | बेथे लैटिस कुछ अतिशयोक्तिपूर्ण लाई समूहों के [[असतत उपसमूह]] के रूप में भी पाए जाते हैं, जैसे कि फ़ुचियन समूह। इस प्रकार, वे [[जाली (समूह)|नियम (समूह)]] के अर्थ में भी नियम हैं। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 89: | Line 94: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/11/2023]] | [[Category:Created On 17/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:36, 5 December 2023
सांख्यिकीय यांत्रिकी और गणित में, बेथे नियम (जिसे समभुजकोणीय ट्री भी कहा जाता है) एक अनंत ट्री (ग्राफ सिद्धांत) है | जुड़ा हुआ चक्र-मुक्त ग्राफ है जहाँ सभी शीर्षों में निकट की संख्या समान होती है। बेथे नियम को 1935 में हंस बेथे द्वारा भौतिकी साहित्य में पेश किया गया था। ऐसे ग्राफ में, प्रत्येक नोड z निकट से जुड़ा होता है; संख्या z को क्षेत्र के आधार पर या तो समन्वय संख्या या डिग्री (ग्राफ सिद्धांत) कहा जाता है।
अपनी विशिष्ट सांस्थितिक संरचना के कारण, इस ग्राफ पर बेथे नियम (भौतिकी) के सांख्यिकीय यांत्रिकी को अन्य नियम की तुलना में हल करना अधिकांशत: आसान होता है। समाधान इन प्रणालियों के लिए अधिकांशत: उपयोग किए जाने वाले बेथे दृष्टिकोण से संबंधित हैं।
मूल गुण
बेथे नियम के साथ काम करते समय, किसी दिए गए शीर्ष को रूट के रूप में चिह्नित करना अधिकांशत: सुविधाजनक होता है, जिससे कि आरेख के स्थानीय गुणों पर विचार करते समय इसे संदर्भ बिंदु के रूप में उपयोग किया जा सके।
परतों का आकार
एक बार जब एक शीर्ष को रूट के रूप में चिह्नित किया जाता है, तो हम अन्य शीर्षों को जड़ से उनकी दूरी के आधार पर परतों में समूहित कर सकते हैं। दूरी पर शीर्षों की संख्या जड़ से है , क्योंकि रूट के अतिरिक्त प्रत्येक शीर्ष आसन्न है शीर्ष जड़ से एक अधिक दूरी पर हैं और जड़ समीपवर्ती है1 की दूरी पर ।
सांख्यिकीय यांत्रिकी में
बेथे नियम सांख्यिकीय यांत्रिकी में मुख्य रूप से रुचि रखती है क्योंकि बेथे नियम पर नियम मॉडल अधिकांशत: अन्य नियम, जैसे कि द्वि-आयामी वर्गाकार नियम की तुलना में हल करना आसान होता है। ऐसा इसलिए है क्योंकि चक्रों की कमी कुछ अधिक जटिल अंतःक्रियाओं को दूर कर देती है। जबकि बेथे नियम अन्य नियम की तरह भौतिक सामग्रियों में परस्पर क्रिया का उतना करीब से अनुमान नहीं लगाती है, फिर भी यह उपयोगी जानकारी प्रदान कर सकता है।
आइसिंग मॉडल का सटीक समाधान
आइसिंग मॉडल लौहचुंबकत्व का एक गणितीय मॉडल है, जिसमें किसी सामग्री के चुंबकीय गुणों को नियम में प्रत्येक नोड पर एक स्पिन द्वारा दर्शाया जाता है, जो या तो +1 या -1 है। मॉडल एक स्थिरांक से भी सुसज्जित है आसन्न नोड्स और एक स्थिरांक के बीच परस्परक्रिया की ताकत का प्रतिनिधित्व करता है, बाहरी चुंबकीय क्षेत्र का प्रतिनिधित्व करता है।
बेथ नियम पर आइसिंग मॉडल को विभाजन फलन द्वारा परिभाषित किया गया है।
चुम्बकत्व
स्थानीय चुंबकत्व की गणना करने के लिए, हम एक शीर्ष को हटाकर नियम को कई समान भागों में तोड़ सकते हैं। यह हमें एक पुनरावृत्ति संबंध देता है जो हमें n गोले (बेथ नियम के परिमित एनालॉग) के साथ केएले ट्री के चुंबकत्व की गणना करने की अनुमति देता है।
जहाँ और के मूल्य पुनरावृत्ति संबंध को संतुष्ट करें
में जब सिस्टम लौहचुंबकीय होता है, तो उपरोक्त अनुक्रम अभिसरण करता है, इसलिए हम बेथ नियम पर चुंबकत्व का मूल्यांकन करने के लिए सीमा ले सकते हैं। हम पाते हैं
जहां x एक समाधान है .
इस समीकरण के या तो 1 या 3 समाधान हैं। ऐसे स्थितिे में जहाँ 3 अनुक्रम है, जब सबसे छोटे में और सबसे बड़े में परिवर्तित हो जाएगा।
मुक्त ऊर्जा
आइसिंग मॉडल में नियम के प्रत्येक स्थल पर मुक्त ऊर्जा f द्वारा दी गई है
,
जहाँ और पहले जैसा है।[1]
गणित में
यादृच्छिक वॉक की वापसी संभावना
संभावना है कि डिग्री की बेथ नियम पर एक किसी दिए गए शीर्ष से प्रारंभ करके अंततः उसी शीर्ष पर वापस लौट आता है । यह दिखाने के लिए यदि हम दूरी पर हैं तो हमारे आरंभिकी बिंदु पर लौटने की संभावना होगी यदि हमारी दूरी है। हमारे पास पुनरावृत्ति संबंध है।
सभी के लिए , जैसा कि प्रारंभिक शीर्ष के अतिरिक्त प्रत्येक स्थान पर होता है किनारे प्रारंभिक शीर्ष से दूर जा रहे हैं और 1 किनारा इसकी ओर जा रहा है। इस समीकरण को कुल मिलाकर सारांशित करें , हम पाते हैं।
.
हमारे पास है , क्योंकि यह इंगित करता है कि हम अभी आरंभिकी शीर्ष पर लौट आए हैं, इसलिए , वह मूल्य है जो हम चाहते हैं।
ध्यान दें कि यह द्वि-आयामी वर्गाकार नियम पर यादृच्छिक वॉक की स्थितिे के बिल्कुल विपरीत है, जिसकी प्रसिद्ध वापसी संभावना 1 है।[2] ऐसी 4-सतत नियम है, लेकिन 4-सतत बेथे नियम की वापसी संभावना 1/3 है।
बंद वॉक की संख्या
नीचे से डिग्री के साथ बेथ लैटिस के दिए गए शीर्ष पर आरंभ होने वाली लंबाई के बंद वॉक की संख्या को आसानी से से बांधा जा सकता है। प्रत्येक चरण को या तो एक बाहरी कदम (प्रारंभिक शीर्ष से दूर) या एक आंतरिक कदम (प्रारंभिक शीर्ष की ओर) के रूप में विचार करके, हम देखते हैं कि लंबाई का कोई भी बंद कदम बिलकुल होना चाहिए बाहरी कदम और अंदर के कदम है। हमने किसी भी बिंदु पर बाहरी कदमों की तुलना में अंदर की ओर अधिक कदम नहीं उठाए होंगे, इसलिए कदम दिशाओं (या तो अंदर या बाहर) के अनुक्रम की संख्या दी गई है कैटलन संख्या । कम से कम हैं प्रत्येक बाहरी कदम के लिए विकल्प, और प्रत्येक अंदर की ओर जाने वाले कदम के लिए हमेशा ठीक 1 विकल्प, इसलिए बंद वॉक की संख्या कम से कम होती है ।
यह बंधन उतना कड़ा नहीं है, जितना वास्तव में है, आरंभिक शीर्ष से बाहरी कदम के लिए विकल्प, जो आरंभ में और वॉक के दौरान किसी भी संख्या में होता है। वॉक की सटीक संख्या की गणना करना कठिन है, और सूत्र द्वारा दिया गया है
जहाँ हाइपरजियोमेट्रिक फलन है.[3]
हम इस तथ्य का उपयोग दूसरे सबसे बड़े इगेनवैल्यू -सतत ग्राफ को बांधने के लिए कर सकते हैं। माना एक -सतत आरेख शीर्ष के साथ, और इसकी आसन्नता मैट्रिक्स है, तब लंबाई के बंद रास्तों की संख्या है है बंद वॉक की संख्या कम से कम है डिग्री के साथ बेथे नियम पर बंद वॉक की संख्या का गुना एक विशेष शिखर से आरंभ करते हुए, हम बेथ नियम पर वॉक वाले रास्तों को मैप कर सकते हैं जो किसी दिए गए शिखर से आरंभ होते हैं और केवल उन रास्तों पर वापस जाते हैं जिन पर पहले से ही वॉक कर रहे थे। पर अधिकांशत: अधिक वॉक होती हैं, क्योंकि हम अतिरिक्त वॉक के लिए चक्र का उपयोग कर सकते हैं। की सबसे बड़ा इगेनवैल्यू है, और माना हमारे पास एक इगेनवैल्यू का दूसरा सबसे बड़ा निरपेक्ष मान है
यह देता है . नोट किया कि जैसा बढ़ता है, हम मान सकते हैं तेजी से बढ़ता हैं की तुलना में, यह देखने के लिए कि केवल बहुत से -सतत आरेख है, जिसके लिए एक इगेनवैल्यू का दूसरा सबसे बड़ा निरपेक्ष मान अधिकतम है, किसी के लिए एक्सपेंडर ग्राफ (n,d,λ)-ग्राफ के अध्ययन में यह एक दिलचस्प परिणाम है।
केएले आरेख और केएले ट्री से संबंध
सम समन्वय संख्या 2n का एक बेथ ग्राफ एक मुक्त जनरेटिंग सेट के संबंध में रैंक n के एक मुक्त समूह के असम्बद्ध केली ग्राफ के लिए आइसोमोर्फिक है।
लाई समूहों में नियम
बेथे लैटिस कुछ अतिशयोक्तिपूर्ण लाई समूहों के असतत उपसमूह के रूप में भी पाए जाते हैं, जैसे कि फ़ुचियन समूह। इस प्रकार, वे नियम (समूह) के अर्थ में भी नियम हैं।
यह भी देखें
संदर्भ
- ↑ Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press. ISBN 0-12-083182-1. Zbl 0538.60093.
- ↑ Durrett, Rick (1991). Probability: Theory and Examples. Wadsworth & Brooks/Cole. ISBN 0-534-13206-5.
- ↑ Giacometti, A. (1994). "बेथे जाली पर वापसी संभावना का सटीक बंद रूप". Phys A. Math. Gen. 28 (1): L13–L17. arXiv:cond-mat/9411113v1. doi:10.1088/0305-4470/28/1/003. S2CID 13298204.
- Bethe, H. A. (1935). "Statistical theory of superlattices". Proc. R. Soc. Lond. A. 150 (871): 552–575. Bibcode:1935RSPSA.150..552B. doi:10.1098/rspa.1935.0122. Zbl 0012.04501.
- Ostilli, M. (2012). "Cayley Trees and Bethe Lattices, a concise analysis for mathematicians and physicists". Physica A. 391 (12): 3417. arXiv:1109.6725. Bibcode:2012PhyA..391.3417O. doi:10.1016/j.physa.2012.01.038. S2CID 119693543.