संरक्षी तापमान: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Thermodynamic property of seawater that represents the heat content}}'''संरक्षी तापमान <math>(\Theta)</math>''' [[समुद्री जल]] का ऊष्मागतिक गुण है। यह संभावित [[ तापीय धारिता |तापीय धारिता]] से प्राप्त होता है और इसे [[संभावित तापमान]] के प्रतिस्थापन के रूप में [[TEOS-10|टीईओएस-10]] मानक (समुद्री जल का ऊष्मागतिक समीकरण - 2010) के अंतर्गत अनुशंसित किया जाता है क्योंकि यह समुद्र में [[गर्मी|ऊष्मा]] की मात्रा को अधिक यथार्थ रूप से दर्शाता है।<ref name=teos10>{{cite book|author1=IOC|author2=SCOR|author3=IAPSO|name-list-style=amp|title=The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties |year=2010 |publisher=Intergovernmental Oceanographic Commission, UNESCO (English) |pages=196pp |url=http://www.TEOS-10.org}}</ref><ref name=":0">{{cite journal |last1=McDougall |first1= Trevor J. |date= 2003|title=Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes |journal= Journal of Physical Oceanography|volume=33 |issue= 5 |pages=945–963 |doi= 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2|bibcode= 2003JPO....33..945M |doi-access= free}}</ref>
{{short description|Thermodynamic property of seawater that represents the heat content}}'''संरक्षी तापमान <math>(\Theta)</math>''' [[समुद्री जल]] का ऊष्मागतिक गुण है। इस प्रकार से यह संभावित [[ तापीय धारिता |तापीय धारिता]] से प्राप्त होता है और इसे [[संभावित तापमान]] के प्रतिस्थापन के रूप में [[TEOS-10|टीईओएस-10]] मानक (समुद्री जल का ऊष्मागतिक समीकरण - 2010) के अंतर्गत अनुशंसित किया जाता है क्योंकि यह समुद्र में [[गर्मी|ऊष्मा]] की मात्रा को अधिक यथार्थ रूप से दर्शाता है।<ref name=teos10>{{cite book|author1=IOC|author2=SCOR|author3=IAPSO|name-list-style=amp|title=The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties |year=2010 |publisher=Intergovernmental Oceanographic Commission, UNESCO (English) |pages=196pp |url=http://www.TEOS-10.org}}</ref><ref name=":0">{{cite journal |last1=McDougall |first1= Trevor J. |date= 2003|title=Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes |journal= Journal of Physical Oceanography|volume=33 |issue= 5 |pages=945–963 |doi= 10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2|bibcode= 2003JPO....33..945M |doi-access= free}}</ref>
== प्रेरणा ==
== प्रेरणा ==
संरक्षी तापमान प्रारंभ में 2003 में [[ट्रेवर मैकडॉगल]] द्वारा प्रस्तावित किया गया था। प्रेरणा समुद्री चर को खोजने की थी जो दाब परिवर्तन और अशांत मिश्रण दोनों के समय संरक्षित ऊष्मा मात्रा का प्रतिनिधित्व करता है।<ref name=":0" /> यथास्थान तापमान <math>T</math> इस उद्देश्य के लिए पर्याप्त नहीं है, क्योंकि गहराई के साथ जल के पार्सल का संपीड़न किसी भी बाह्य तापन की अनुपस्थिति के अतिरिक्त तापमान में वृद्धि का कारण बनता है। संभावित तापमान <math>\theta</math> इस समस्या से निपटने के लिए इसका उपयोग किया जा सकता है, क्योंकि यह विशिष्ट दाब को संदर्भित करता है और इसलिए इन संपीड़न प्रभावों को अनदेखा करता है। वस्तुतः, संभावित तापमान शुष्क रुद्धोष्म स्थितियों में वायु पार्सल के लिए वातावरण में संरक्षी चर है, और कई वर्षों से समुद्री मॉडल में इसका उपयोग किया गया है।<ref name=":2">{{Cite journal|date=2015-04-01|title=Observational and energetics constraints on the non-conservation of potential/Conservative Temperature and implications for ocean modelling|url=https://www.sciencedirect.com/science/article/abs/pii/S1463500315000190|journal=Ocean Modelling|language=en|volume=88|pages=26–37|doi=10.1016/j.ocemod.2015.02.001|issn=1463-5003|last1=Tailleux |first1=Rémi |bibcode=2015OcMod..88...26T }}</ref> यद्यपि, समुद्र में अशांत मिश्रण प्रक्रियाएँ संभावित तापमान को नष्ट कर देती हैं, जिससे कभी-कभी बड़ी त्रुटियाँ हो जाती हैं जब इसे संरक्षी माना जाता है।<ref name=":1">{{Cite journal|last1=Graham|first1=Felicity S.|last2=McDougall|first2=Trevor J.|date=2013-05-01|title=रूढ़िवादी तापमान, संभावित तापमान और एन्ट्रॉपी के गैर-रूढ़िवादी उत्पादन की मात्रा निर्धारित करना|url=https://journals.ametsoc.org/view/journals/phoc/43/5/jpo-d-11-0188.1.xml|journal=Journal of Physical Oceanography|language=en|volume=43|issue=5|pages=838–862|doi=10.1175/jpo-d-11-0188.1|bibcode=2013JPO....43..838G |issn=0022-3670|doi-access=free}}</ref>
अतः संरक्षी तापमान प्रारंभ में 2003 में [[ट्रेवर मैकडॉगल]] द्वारा प्रस्तावित किया गया था। इस प्रकार से प्रेरणा समुद्री चर को खोजने की थी जो दाब परिवर्तन और अशांत मिश्रण दोनों के समय संरक्षित ऊष्मा मात्रा का पूर्ण रूप से प्रतिनिधित्व करता है।<ref name=":0" /> यथास्थान तापमान <math>T</math> इस उद्देश्य के लिए पर्याप्त नहीं है, क्योंकि गहराई के साथ जल के पार्सल का संपीड़न किसी भी बाह्य तापन की अनुपस्थिति के अतिरिक्त तापमान में वृद्धि का कारण बनता है। संभावित तापमान <math>\theta</math> इस समस्या से निपटने के लिए इसका उपयोग किया जा सकता है, क्योंकि यह विशिष्ट दाब को संदर्भित करता है और इसलिए इन संपीड़न प्रभावों को अनदेखा करता है। वस्तुतः, संभावित तापमान शुष्क रुद्धोष्म स्थितियों में वायु पार्सल के लिए वातावरण में संरक्षी चर है, और कई वर्षों से समुद्री मॉडल में इसका उपयोग किया गया है।<ref name=":2">{{Cite journal|date=2015-04-01|title=Observational and energetics constraints on the non-conservation of potential/Conservative Temperature and implications for ocean modelling|url=https://www.sciencedirect.com/science/article/abs/pii/S1463500315000190|journal=Ocean Modelling|language=en|volume=88|pages=26–37|doi=10.1016/j.ocemod.2015.02.001|issn=1463-5003|last1=Tailleux |first1=Rémi |bibcode=2015OcMod..88...26T }}</ref> यद्यपि, समुद्र में अशांत मिश्रण प्रक्रियाएँ संभावित तापमान को पूर्ण रूप से नष्ट कर देती हैं, जिससे कभी-कभी बड़ी त्रुटियाँ हो जाती हैं जब इसे संरक्षी माना जाता है।<ref name=":1">{{Cite journal|last1=Graham|first1=Felicity S.|last2=McDougall|first2=Trevor J.|date=2013-05-01|title=रूढ़िवादी तापमान, संभावित तापमान और एन्ट्रॉपी के गैर-रूढ़िवादी उत्पादन की मात्रा निर्धारित करना|url=https://journals.ametsoc.org/view/journals/phoc/43/5/jpo-d-11-0188.1.xml|journal=Journal of Physical Oceanography|language=en|volume=43|issue=5|pages=838–862|doi=10.1175/jpo-d-11-0188.1|bibcode=2013JPO....43..838G |issn=0022-3670|doi-access=free}}</ref>


इसके विपरीत, अशांत मिश्रण के समय पार्सल की एन्थैल्पी संरक्षित रहती है। यद्यपि, यह इन-सीटू तापमान के समान समस्या से ग्रस्त है क्योंकि इसमें दाब पर भी दृढ़ निर्भरता है। इसके अतिरिक्त, इस दाब निर्भरता को दूर करने के लिए संभावित एन्थैल्पी का प्रस्ताव किया गया है। फिर संरक्षी तापमान संभावित एन्थैल्पी के समानुपाती होता है।
इसके विपरीत, अशांत मिश्रण के समय पार्सल की एन्थैल्पी संरक्षित रहती है। यद्यपि, यह इन-सीटू तापमान के समान समस्या से ग्रस्त है क्योंकि इसमें दाब पर भी दृढ़ निर्भरता है। अतः इसके अतिरिक्त, इस दाब निर्भरता को दूर करने के लिए संभावित एन्थैल्पी का प्रस्ताव किया गया है। फिर संरक्षी तापमान संभावित एन्थैल्पी के समानुपाती होता है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==


===संभावित एन्थैल्पी ===
===संभावित एन्थैल्पी ===
[[मौलिक थर्मोडायनामिक संबंध|मौलिक ऊष्मागतिक संबंध]] इस प्रकार दिया गया है:<ref>{{Cite journal |last=Warren|first=Bruce A.|date=August 2006 |title=नमकीन महासागर में ऊष्मागतिकी का पहला नियम| url=https://www.sciencedirect.com/science/article/abs/pii/S0079661106000589| journal=Progress in Oceanography| language=en |volume=70 |issue=2–4 | pages=149–167 | doi=10.1016/j.pocean.2006.01.001|bibcode=2006PrOce..70..149W |hdl=1912/1289 | issn=0079-6611|hdl-access=free}}</ref><math display="block">dh - \frac{1}{\rho}dp = T \, d\sigma + \mu \, dS  </math>जहां <math>h</math> [[विशिष्ट एन्थैल्पी]] है, <math>p</math> दाब है, <math>\rho</math> [[घनत्व]] है, <math>T</math> [[तापमान]] है, <math>\sigma</math> विशिष्ट [[एन्ट्रॉपी (शास्त्रीय थर्मोडायनामिक्स)|एन्ट्रॉपी (शास्त्रीय ऊष्मागतिकी)]] है, <math>S</math> लवणता है और <math>\mu</math> समुद्री जल में लवण की सापेक्ष [[रासायनिक क्षमता]] है।
[[मौलिक थर्मोडायनामिक संबंध|मौलिक ऊष्मागतिक संबंध]] इस प्रकार से निम्नलिखित रूप से दिया गया है:<ref>{{Cite journal |last=Warren|first=Bruce A.|date=August 2006 |title=नमकीन महासागर में ऊष्मागतिकी का पहला नियम| url=https://www.sciencedirect.com/science/article/abs/pii/S0079661106000589| journal=Progress in Oceanography| language=en |volume=70 |issue=2–4 | pages=149–167 | doi=10.1016/j.pocean.2006.01.001|bibcode=2006PrOce..70..149W |hdl=1912/1289 | issn=0079-6611|hdl-access=free}}</ref><math display="block">dh - \frac{1}{\rho}dp = T \, d\sigma + \mu \, dS  </math>जहां <math>h</math> [[विशिष्ट एन्थैल्पी]] है, <math>p</math> दाब है, <math>\rho</math> [[घनत्व]] है, <math>T</math> [[तापमान]] है, <math>\sigma</math> विशिष्ट [[एन्ट्रॉपी (शास्त्रीय थर्मोडायनामिक्स)|एन्ट्रॉपी (शास्त्रीय ऊष्मागतिकी)]] है, <math>S</math> लवणता है और <math>\mu</math> समुद्री जल में लवण की सापेक्ष [[रासायनिक क्षमता]] है।


ऐसी प्रक्रिया के समय जिसमें ऊष्मा या लवण का आदान-प्रदान नहीं होता है, एन्ट्रापी और लवणता को स्थिर माना जा सकता है। इसलिए, दाब उत्पन्नता के संबंध में इस संबंध का आंशिक व्युत्पन्न लेना:<math display="block">\left({\partial h \over \partial p}\right)_{S, \, \sigma} = \frac{1}{\rho}</math>इस समीकरण को एकीकृत करके, संभावित एन्थैल्पी <math>h^0</math> को संदर्भ दाब <math>p_r</math> पर एन्थैल्पी के रूप में परिभाषित किया गया है:<math display="block">h^0(S, \, \theta, \, p_r) = h(S, \, \theta, \, p)  - \int^p_{p_r} \frac{1}{\rho(S, \, \theta, \, p')} dp'</math>यहां एन्थैल्पी और घनत्व को तीन अवस्था चरों के संदर्भ में परिभाषित किया गया है: लवणता, संभावित तापमान और दाब।
 
ऐसी प्रक्रिया के समय जिसमें ऊष्मा या लवण का आदान-प्रदान नहीं होता है, एन्ट्रापी और लवणता को पूर्ण रूप से स्थिर माना जा सकता है। इसलिए, दाब उत्पन्नता के संबंध में इस निम्नलिखित संबंध का आंशिक व्युत्पन्न लेना:<math display="block">\left({\partial h \over \partial p}\right)_{S, \, \sigma} = \frac{1}{\rho}</math>अतः इस समीकरण को एकीकृत करके, संभावित एन्थैल्पी <math>h^0</math> को संदर्भ दाब <math>p_r</math> पर एन्थैल्पी के निम्नवत रूप में परिभाषित किया गया है:<math display="block">h^0(S, \, \theta, \, p_r) = h(S, \, \theta, \, p)  - \int^p_{p_r} \frac{1}{\rho(S, \, \theta, \, p')} dp'</math>यहां एन्थैल्पी और घनत्व को तीन अवस्था चरों के संदर्भ में परिभाषित किया गया है: लवणता, संभावित तापमान और दाब।


=== संरक्षी तापमान में रूपांतरण ===
=== संरक्षी तापमान में रूपांतरण ===
संरक्षी तापमान <math>\Theta</math> को संभावित एन्थैल्पी के प्रत्यक्ष आनुपातिक के रूप में परिभाषित किया गया है। इसे इन-सीटू तापमान के समान इकाइयों ([[केल्विन]]) में पुन: मापन किया गया है:<math display="block">\Theta = \frac{h^0}{C^0_p}</math>जहां <math>C^0_p </math> = 3989.24495292815 J kg<sup>−1</sup>K<sup>−1</sup> विशिष्ट ताप क्षमता का संदर्भ मान है, जिसे संपूर्ण महासागर की सतह पर ताप क्षमता के स्थानिक औसत के जितना संभव हो उतना निकट चुना जाता है।<ref name=":0" /><ref>{{Cite journal| date=2003-07-01|title=समुद्री जल की एक नई विस्तारित गिब्स थर्मोडायनामिक क्षमता|url=https://www.sciencedirect.com/science/article/abs/pii/S0079661103000880 |journal=Progress in Oceanography |language=en |volume=58|issue=1| pages=43–114| doi=10.1016/S0079-6611(03)00088-0 |issn=0079-6611|last1=Feistel |first1=Rainer }}</ref>
इस प्रकार से संरक्षी तापमान <math>\Theta</math> को संभावित एन्थैल्पी के प्रत्यक्ष आनुपातिक के रूप में परिभाषित किया गया है। अतः इसे इन-सीटू तापमान के समान इकाइयों ([[केल्विन]]) में पुन: मापन किया गया है:<math display="block">\Theta = \frac{h^0}{C^0_p}</math>जहां <math>C^0_p </math> = 3989.24495292815 J kg<sup>−1</sup>K<sup>−1</sup> विशिष्ट ताप क्षमता का संदर्भ मान है, जिसे संपूर्ण महासागर की सतह पर ताप क्षमता के स्थानिक औसत के जितना संभव हो उतना निकट चुना जाता है।<ref name=":0" /><ref>{{Cite journal| date=2003-07-01|title=समुद्री जल की एक नई विस्तारित गिब्स थर्मोडायनामिक क्षमता|url=https://www.sciencedirect.com/science/article/abs/pii/S0079661103000880 |journal=Progress in Oceanography |language=en |volume=58|issue=1| pages=43–114| doi=10.1016/S0079-6611(03)00088-0 |issn=0079-6611|last1=Feistel |first1=Rainer }}</ref>
== विभव एन्थैल्पी के संरक्षी गुण ==
== विभव एन्थैल्पी के संरक्षी गुण ==


=== संरक्षण प्रपत्र ===
=== संरक्षण रूप ===
[[ऊष्मागतिकी का पहला नियम|ऊष्मागतिकी का प्रथम नियम]] इस प्रकार लिखा जा सकता है:<ref name=":0" /><ref>{{Cite journal|last=Davis|first=Russ E.|date=1994-04-01|title=Diapycnal Mixing in the Ocean: Equations for Large-Scale Budgets|url=https://journals.ametsoc.org/view/journals/phoc/24/4/1520-0485_1994_024_0777_dmitoe_2_0_co_2.xml| journal=Journal of Physical Oceanography |language=EN|volume=24| issue=4|pages=777–800|doi=10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2 |issn=0022-3670|doi-access=free}}</ref><math display="block">\rho \left( {D \epsilon \over Dt} - (p_0 + p)\frac{1}{\rho^2} {D\rho \over Dt} \right) = - \nabla \cdot \mathbf{F_Q} + \rho \epsilon_M</math>या समकक्ष:<math display="block">\rho \left( {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt} \right) = - \nabla \cdot \mathbf{F_Q} + \rho \epsilon_M</math>जहां <math>\epsilon</math> [[आंतरिक ऊर्जा]] को दर्शाता है, <math>\mathbf{F_Q}</math> ऊष्मा के प्रवाह का प्रतिनिधित्व करता है और <math>\rho \epsilon_M</math> अपव्यय की दर है, जो अन्य प्रतिबंधों की तुलना में छोटी है और इसलिए इसे उपेक्षित किया जा सकता है। संक्रियक <math>{D \over Dt} = {\partial \over \partial t} + \mathbf{u} \cdot \nabla</math> द्रव प्रवाह <math>\mathbf{u}</math> के संबंध में [[सामग्री व्युत्पन्न|मात्रा व्युत्पन्न]] है, और <math>\nabla</math> [[ की |नाबला]] संक्रियक है।
अतः [[ऊष्मागतिकी का पहला नियम|ऊष्मागतिकी का प्रथम नियम]] निम्न प्रकार से लिखा जा सकता है:<ref name=":0" /><ref>{{Cite journal|last=Davis|first=Russ E.|date=1994-04-01|title=Diapycnal Mixing in the Ocean: Equations for Large-Scale Budgets|url=https://journals.ametsoc.org/view/journals/phoc/24/4/1520-0485_1994_024_0777_dmitoe_2_0_co_2.xml| journal=Journal of Physical Oceanography |language=EN|volume=24| issue=4|pages=777–800|doi=10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2 |issn=0022-3670|doi-access=free}}</ref><math display="block">\rho \left( {D \epsilon \over Dt} - (p_0 + p)\frac{1}{\rho^2} {D\rho \over Dt} \right) = - \nabla \cdot \mathbf{F_Q} + \rho \epsilon_M</math>या समकक्ष:<math display="block">\rho \left( {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt} \right) = - \nabla \cdot \mathbf{F_Q} + \rho \epsilon_M</math>जहां <math>\epsilon</math> [[आंतरिक ऊर्जा]] को दर्शाता है, <math>\mathbf{F_Q}</math> ऊष्मा के प्रवाह का पूर्ण रूप से प्रतिनिधित्व करता है और <math>\rho \epsilon_M</math> अपव्यय की दर है, जो अन्य प्रतिबंधों की तुलना में छोटी है और इसलिए इसे उपेक्षित किया जा सकता है। संक्रियक <math>{D \over Dt} = {\partial \over \partial t} + \mathbf{u} \cdot \nabla</math> द्रव प्रवाह <math>\mathbf{u}</math> के संबंध में [[सामग्री व्युत्पन्न|मात्रा व्युत्पन्न]] है, और <math>\nabla</math> [[ की |नाबला]] संक्रियक है।
 


यह दिखाने के लिए कि समुद्र में संभावित एन्थैल्पी संरक्षी है, यह दिखाया जाना चाहिए कि ऊष्मागतिकी के प्रथम नियम को संरक्षण रूप में फिर से लिखा जा सकता है। संभावित एन्थैल्पी उत्पन्नता के समीकरण का भौतिक व्युत्पन्न लेने पर:<math display="block"> {Dh^0 \over Dt} =  {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt} - {D\theta \over Dt} \int^p_{p_r} \frac{\tilde{\alpha}(S, \, \theta, \, p')}{\rho(S, \, \theta, \, p')} dp' +  {DS \over Dt} \int^p_{p_r} \frac{\tilde{\beta}(S, \, \theta, \, p')}{\rho(S, \, \theta, \, p')} dp'</math>जहां <math> \tilde{\alpha} = - \frac{1}{\rho} \left( { \partial \rho \over \partial \theta } \right)_{S, \, p}</math> और <math> \tilde{\beta} = \frac{1}{\rho} \left( { \partial \rho \over \partial S } \right)_{\theta, \, p}</math>। यह दिखाया जा सकता है कि इस समीकरण के दाहिनी ओर के अंतिम दो पद पहले छोड़े गए अपव्यय दर की तुलना में छोटे या उससे भी कम हैं<ref name=":0" /><ref name=":1" /> और समीकरण को इस प्रकार अनुमानित किया जा सकता है:<math display="block"> {Dh^0 \over Dt} =  {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt}</math>इसे ऊष्मागतिकी के प्रथम नियम के साथ जोड़ने पर निम्न समीकरण प्राप्त होता है:<math display="block">\rho {Dh^0 \over Dt} = - \nabla \cdot \mathbf{F_Q}</math>जो वांछित संरक्षण स्वरूप में है।
यह दिखाने के लिए कि समुद्र में संभावित एन्थैल्पी संरक्षी है, यह दिखाया जाना चाहिए कि ऊष्मागतिकी के प्रथम नियम को संरक्षण रूप में फिर से लिखा जा सकता है। संभावित एन्थैल्पी उत्पन्नता के समीकरण का भौतिक व्युत्पन्न लेने पर:<math display="block"> {Dh^0 \over Dt} =  {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt} - {D\theta \over Dt} \int^p_{p_r} \frac{\tilde{\alpha}(S, \, \theta, \, p')}{\rho(S, \, \theta, \, p')} dp' +  {DS \over Dt} \int^p_{p_r} \frac{\tilde{\beta}(S, \, \theta, \, p')}{\rho(S, \, \theta, \, p')} dp'</math>जहां <math> \tilde{\alpha} = - \frac{1}{\rho} \left( { \partial \rho \over \partial \theta } \right)_{S, \, p}</math> और <math> \tilde{\beta} = \frac{1}{\rho} \left( { \partial \rho \over \partial S } \right)_{\theta, \, p}</math>। इस प्रकार से यह दिखाया जा सकता है कि इस समीकरण के दाहिनी ओर के अंतिम दो पद पहले छोड़े गए अपव्यय दर की तुलना में छोटे या उससे भी कम हैं<ref name=":0" /><ref name=":1" /> और समीकरण को इस प्रकार से अनुमानित किया जा सकता है:<math display="block"> {Dh^0 \over Dt} =  {Dh \over Dt} - \frac{1}{\rho} {Dp \over Dt}</math>अतः इसे ऊष्मागतिकी के प्रथम नियम के साथ जोड़ने पर निम्नलिखित समीकरण प्राप्त होता है:<math display="block">\rho {Dh^0 \over Dt} = - \nabla \cdot \mathbf{F_Q}</math>जो वांछित संरक्षण स्वरूप में है।


=== संभावित तापमान की तुलना ===
=== संभावित तापमान की तुलना ===
यह देखते हुए कि संरक्षी तापमान को प्रारंभ में समुद्री ताप मात्रा में त्रुटियों को ठीक करने के लिए प्रस्तुत किया गया था, यह मानते हुए कि संरक्षी तापमान संरक्षित है, मूल रूप से संभावित तापमान संरक्षित है, यह मानकर की गई सापेक्ष त्रुटियों की तुलना करना महत्वपूर्ण है। ये त्रुटियाँ गैर-संरक्षण प्रभावों से होती हैं जो पूर्ण रूप से अलग प्रक्रियाओं के कारण होती हैं; संरक्षी तापमान के लिए ऊष्मा संपीड़न द्वारा किए गए कार्य के कारण नष्ट हो जाती है, जबकि संभावित तापमान के लिए यह ऊष्मा और मीठे जल के सतही प्रवाह के कारण होता है।<ref name=":2" /> यह दिखाया जा सकता है कि ये त्रुटियाँ संभावित तापमान की तुलना में संरक्षी तापमान के लिए लगभग 120 गुना छोटी हैं, जो इसे समुद्र में ऊष्मा के संरक्षण के प्रतिनिधित्व के रूप में कहीं अधिक यथार्थ बनाती हैं।<ref name=":1" />
इस प्रकार से यह देखते हुए कि संरक्षी तापमान को प्रारंभ में समुद्री ताप मात्रा में त्रुटियों को ठीक करने के लिए प्रस्तुत किया गया था, यह मानते हुए कि संरक्षी तापमान संरक्षित है, मूल रूप से संभावित तापमान संरक्षित है, यह मानकर की गई सापेक्ष त्रुटियों की तुलना करना महत्वपूर्ण है। अतः ये त्रुटियाँ गैर-संरक्षण प्रभावों से होती हैं जो पूर्ण रूप से अलग प्रक्रियाओं के कारण होती हैं; संरक्षी तापमान के लिए ऊष्मा संपीड़न द्वारा किए गए कार्य के कारण नष्ट हो जाती है, जबकि संभावित तापमान के लिए यह ऊष्मा और मीठे जल के सतही प्रवाह के कारण होता है।<ref name=":2" /> यह दिखाया जा सकता है कि ये त्रुटियाँ संभावित तापमान की तुलना में संरक्षी तापमान के लिए लगभग 120 गुना छोटी हैं, जो इसे समुद्र में ऊष्मा के संरक्षण के प्रतिनिधित्व के रूप में कहीं अधिक यथार्थ बनाती हैं।<ref name=":1" />
== उपयोग ==
== उपयोग ==


Line 28: Line 30:
{{Further|टीईओएस-10}}
{{Further|टीईओएस-10}}


समुद्री मॉडलों में संभावित तापमान के प्रतिस्थापन के रूप में टीईओएस-10 प्राधार के अंतर्गत संरक्षी तापमान की संस्तुति की जाती है।<ref name="teos10" /> टीईओएस-10 में अन्य विकासों में सम्मिलित हैं:
अतः समुद्री मॉडलों में संभावित तापमान के प्रतिस्थापन के रूप में टीईओएस-10 प्राधार के अंतर्गत संरक्षी तापमान की संस्तुति की जाती है।<ref name="teos10" /> इस प्रकार से टीईओएस-10 में अन्य विकासों में सम्मिलित हैं:


* प्राथमिक लवणता चर के रूप में व्यावहारिक लवणता को पूर्ण लवणता <math>S_A</math> से प्रतिस्थापित करना, <ref>{{Cite journal|last1=Wright|first1=D. G.|last2=Pawlowicz|first2=R.|last3=McDougall|first3=T. J.|last4=Feistel|first4=R.|last5=Marion|first5=G. M.|date=2011-01-06|title=Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10|url=https://os.copernicus.org/articles/7/1/2011/|journal=Ocean Science|language=English|volume=7|issue=1|pages=1–26|doi=10.5194/os-7-1-2011|bibcode=2011OcSci...7....1W |issn=1812-0784|doi-access=free}}</ref>
* प्राथमिक लवणता चर के रूप में व्यावहारिक लवणता को पूर्ण लवणता <math>S_A</math> से प्रतिस्थापित करना, <ref>{{Cite journal|last1=Wright|first1=D. G.|last2=Pawlowicz|first2=R.|last3=McDougall|first3=T. J.|last4=Feistel|first4=R.|last5=Marion|first5=G. M.|date=2011-01-06|title=Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10|url=https://os.copernicus.org/articles/7/1/2011/|journal=Ocean Science|language=English|volume=7|issue=1|pages=1–26|doi=10.5194/os-7-1-2011|bibcode=2011OcSci...7....1W |issn=1812-0784|doi-access=free}}</ref>
Line 34: Line 36:
* [[गिब्स फ़ंक्शन|गिब्स फलन]] के संबंध में सभी समुद्री चर को परिभाषित करना।<ref>{{Cite journal|date=2008-12-01|title=A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg–1|url=https://www.sciencedirect.com/science/article/pii/S0967063708001489|journal=Deep Sea Research Part I: Oceanographic Research Papers|language=en|volume=55|issue=12|pages=1639–1671|doi=10.1016/j.dsr.2008.07.004|issn=0967-0637|last1=Feistel |first1=Rainer |bibcode=2008DSRI...55.1639F }}</ref>
* [[गिब्स फ़ंक्शन|गिब्स फलन]] के संबंध में सभी समुद्री चर को परिभाषित करना।<ref>{{Cite journal|date=2008-12-01|title=A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg–1|url=https://www.sciencedirect.com/science/article/pii/S0967063708001489|journal=Deep Sea Research Part I: Oceanographic Research Papers|language=en|volume=55|issue=12|pages=1639–1671|doi=10.1016/j.dsr.2008.07.004|issn=0967-0637|last1=Feistel |first1=Rainer |bibcode=2008DSRI...55.1639F }}</ref>
=== मॉडल ===
=== मॉडल ===
कई [[महासागर सामान्य परिसंचरण मॉडल]] में संरक्षी तापमान लागू किया गया है जैसे कि [[युग्मित मॉडल अंतरतुलना परियोजना]] चरण 6 (सीएमआईपी 6) में सम्मिलित हैं।<ref>{{Cite journal|last1=McDougall|first1=Trevor J.|last2=Barker|first2=Paul M.|last3=Holmes|first3=Ryan M.|last4=Pawlowicz|first4=Rich|last5=Griffies|first5=Stephen M.|last6=Durack|first6=Paul J.|date=2021-01-19|title=संख्यात्मक महासागर मॉडल आउटपुट में तापमान और लवणता चर की व्याख्या, और गर्मी प्रवाह और गर्मी सामग्री की गणना|url=https://gmd.copernicus.org/preprints/gmd-2020-426/|journal=Geoscientific Model Development Discussions|volume=14 |issue=10 |language=English|pages=6445–6466|doi=10.5194/gmd-2020-426|s2cid=234212726 |issn=1991-959X|doi-access=free}}</ref> यद्यपि, चूंकि इन मॉडलों ने प्राचीन पीढ़ियों में मुख्य रूप से संभावित तापमान का उपयोग किया है, इसलिए सभी मॉडलों ने संरक्षी तापमान पर स्विच करने का निर्णय नहीं लिया है।
इस प्रकार से कई [[महासागर सामान्य परिसंचरण मॉडल]] में संरक्षी तापमान लागू किया गया है जैसे कि [[युग्मित मॉडल अंतरतुलना परियोजना]] चरण 6 (सीएमआईपी 6) में सम्मिलित हैं।<ref>{{Cite journal|last1=McDougall|first1=Trevor J.|last2=Barker|first2=Paul M.|last3=Holmes|first3=Ryan M.|last4=Pawlowicz|first4=Rich|last5=Griffies|first5=Stephen M.|last6=Durack|first6=Paul J.|date=2021-01-19|title=संख्यात्मक महासागर मॉडल आउटपुट में तापमान और लवणता चर की व्याख्या, और गर्मी प्रवाह और गर्मी सामग्री की गणना|url=https://gmd.copernicus.org/preprints/gmd-2020-426/|journal=Geoscientific Model Development Discussions|volume=14 |issue=10 |language=English|pages=6445–6466|doi=10.5194/gmd-2020-426|s2cid=234212726 |issn=1991-959X|doi-access=free}}</ref> यद्यपि, चूंकि इन मॉडलों ने प्राचीन पीढ़ियों में मुख्य रूप से संभावित तापमान का उपयोग किया है, इसलिए सभी मॉडलों ने संरक्षी तापमान पर स्विच करने का निर्णय नहीं लिया है।


==संदर्भ==
==संदर्भ==
Line 44: Line 46:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/11/2023]]
[[Category:Created On 17/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:48, 5 December 2023

संरक्षी तापमान समुद्री जल का ऊष्मागतिक गुण है। इस प्रकार से यह संभावित तापीय धारिता से प्राप्त होता है और इसे संभावित तापमान के प्रतिस्थापन के रूप में टीईओएस-10 मानक (समुद्री जल का ऊष्मागतिक समीकरण - 2010) के अंतर्गत अनुशंसित किया जाता है क्योंकि यह समुद्र में ऊष्मा की मात्रा को अधिक यथार्थ रूप से दर्शाता है।[1][2]

प्रेरणा

अतः संरक्षी तापमान प्रारंभ में 2003 में ट्रेवर मैकडॉगल द्वारा प्रस्तावित किया गया था। इस प्रकार से प्रेरणा समुद्री चर को खोजने की थी जो दाब परिवर्तन और अशांत मिश्रण दोनों के समय संरक्षित ऊष्मा मात्रा का पूर्ण रूप से प्रतिनिधित्व करता है।[2] यथास्थान तापमान इस उद्देश्य के लिए पर्याप्त नहीं है, क्योंकि गहराई के साथ जल के पार्सल का संपीड़न किसी भी बाह्य तापन की अनुपस्थिति के अतिरिक्त तापमान में वृद्धि का कारण बनता है। संभावित तापमान इस समस्या से निपटने के लिए इसका उपयोग किया जा सकता है, क्योंकि यह विशिष्ट दाब को संदर्भित करता है और इसलिए इन संपीड़न प्रभावों को अनदेखा करता है। वस्तुतः, संभावित तापमान शुष्क रुद्धोष्म स्थितियों में वायु पार्सल के लिए वातावरण में संरक्षी चर है, और कई वर्षों से समुद्री मॉडल में इसका उपयोग किया गया है।[3] यद्यपि, समुद्र में अशांत मिश्रण प्रक्रियाएँ संभावित तापमान को पूर्ण रूप से नष्ट कर देती हैं, जिससे कभी-कभी बड़ी त्रुटियाँ हो जाती हैं जब इसे संरक्षी माना जाता है।[4]

इसके विपरीत, अशांत मिश्रण के समय पार्सल की एन्थैल्पी संरक्षित रहती है। यद्यपि, यह इन-सीटू तापमान के समान समस्या से ग्रस्त है क्योंकि इसमें दाब पर भी दृढ़ निर्भरता है। अतः इसके अतिरिक्त, इस दाब निर्भरता को दूर करने के लिए संभावित एन्थैल्पी का प्रस्ताव किया गया है। फिर संरक्षी तापमान संभावित एन्थैल्पी के समानुपाती होता है।

व्युत्पत्ति

संभावित एन्थैल्पी

मौलिक ऊष्मागतिक संबंध इस प्रकार से निम्नलिखित रूप से दिया गया है:[5]

जहां विशिष्ट एन्थैल्पी है, दाब है, घनत्व है, तापमान है, विशिष्ट एन्ट्रॉपी (शास्त्रीय ऊष्मागतिकी) है, लवणता है और समुद्री जल में लवण की सापेक्ष रासायनिक क्षमता है।


ऐसी प्रक्रिया के समय जिसमें ऊष्मा या लवण का आदान-प्रदान नहीं होता है, एन्ट्रापी और लवणता को पूर्ण रूप से स्थिर माना जा सकता है। इसलिए, दाब उत्पन्नता के संबंध में इस निम्नलिखित संबंध का आंशिक व्युत्पन्न लेना:

अतः इस समीकरण को एकीकृत करके, संभावित एन्थैल्पी को संदर्भ दाब पर एन्थैल्पी के निम्नवत रूप में परिभाषित किया गया है:
यहां एन्थैल्पी और घनत्व को तीन अवस्था चरों के संदर्भ में परिभाषित किया गया है: लवणता, संभावित तापमान और दाब।

संरक्षी तापमान में रूपांतरण

इस प्रकार से संरक्षी तापमान को संभावित एन्थैल्पी के प्रत्यक्ष आनुपातिक के रूप में परिभाषित किया गया है। अतः इसे इन-सीटू तापमान के समान इकाइयों (केल्विन) में पुन: मापन किया गया है:

जहां = 3989.24495292815 J kg−1K−1 विशिष्ट ताप क्षमता का संदर्भ मान है, जिसे संपूर्ण महासागर की सतह पर ताप क्षमता के स्थानिक औसत के जितना संभव हो उतना निकट चुना जाता है।[2][6]

विभव एन्थैल्पी के संरक्षी गुण

संरक्षण रूप

अतः ऊष्मागतिकी का प्रथम नियम निम्न प्रकार से लिखा जा सकता है:[2][7]

या समकक्ष:
जहां आंतरिक ऊर्जा को दर्शाता है, ऊष्मा के प्रवाह का पूर्ण रूप से प्रतिनिधित्व करता है और अपव्यय की दर है, जो अन्य प्रतिबंधों की तुलना में छोटी है और इसलिए इसे उपेक्षित किया जा सकता है। संक्रियक द्रव प्रवाह के संबंध में मात्रा व्युत्पन्न है, और नाबला संक्रियक है।


यह दिखाने के लिए कि समुद्र में संभावित एन्थैल्पी संरक्षी है, यह दिखाया जाना चाहिए कि ऊष्मागतिकी के प्रथम नियम को संरक्षण रूप में फिर से लिखा जा सकता है। संभावित एन्थैल्पी उत्पन्नता के समीकरण का भौतिक व्युत्पन्न लेने पर:

जहां और । इस प्रकार से यह दिखाया जा सकता है कि इस समीकरण के दाहिनी ओर के अंतिम दो पद पहले छोड़े गए अपव्यय दर की तुलना में छोटे या उससे भी कम हैं[2][4] और समीकरण को इस प्रकार से अनुमानित किया जा सकता है:
अतः इसे ऊष्मागतिकी के प्रथम नियम के साथ जोड़ने पर निम्नलिखित समीकरण प्राप्त होता है:
जो वांछित संरक्षण स्वरूप में है।

संभावित तापमान की तुलना

इस प्रकार से यह देखते हुए कि संरक्षी तापमान को प्रारंभ में समुद्री ताप मात्रा में त्रुटियों को ठीक करने के लिए प्रस्तुत किया गया था, यह मानते हुए कि संरक्षी तापमान संरक्षित है, मूल रूप से संभावित तापमान संरक्षित है, यह मानकर की गई सापेक्ष त्रुटियों की तुलना करना महत्वपूर्ण है। अतः ये त्रुटियाँ गैर-संरक्षण प्रभावों से होती हैं जो पूर्ण रूप से अलग प्रक्रियाओं के कारण होती हैं; संरक्षी तापमान के लिए ऊष्मा संपीड़न द्वारा किए गए कार्य के कारण नष्ट हो जाती है, जबकि संभावित तापमान के लिए यह ऊष्मा और मीठे जल के सतही प्रवाह के कारण होता है।[3] यह दिखाया जा सकता है कि ये त्रुटियाँ संभावित तापमान की तुलना में संरक्षी तापमान के लिए लगभग 120 गुना छोटी हैं, जो इसे समुद्र में ऊष्मा के संरक्षण के प्रतिनिधित्व के रूप में कहीं अधिक यथार्थ बनाती हैं।[4]

उपयोग

टीईओएस-10 प्राधार

अतः समुद्री मॉडलों में संभावित तापमान के प्रतिस्थापन के रूप में टीईओएस-10 प्राधार के अंतर्गत संरक्षी तापमान की संस्तुति की जाती है।[1] इस प्रकार से टीईओएस-10 में अन्य विकासों में सम्मिलित हैं:

  • प्राथमिक लवणता चर के रूप में व्यावहारिक लवणता को पूर्ण लवणता से प्रतिस्थापित करना, [8]
  • जैव भू-रसायन प्रक्रियाओं के अंतर्गत एक संरक्षी चर के रूप में पूर्वनिर्मित लवणता का परिचय,[9]
  • गिब्स फलन के संबंध में सभी समुद्री चर को परिभाषित करना।[10]

मॉडल

इस प्रकार से कई महासागर सामान्य परिसंचरण मॉडल में संरक्षी तापमान लागू किया गया है जैसे कि युग्मित मॉडल अंतरतुलना परियोजना चरण 6 (सीएमआईपी 6) में सम्मिलित हैं।[11] यद्यपि, चूंकि इन मॉडलों ने प्राचीन पीढ़ियों में मुख्य रूप से संभावित तापमान का उपयोग किया है, इसलिए सभी मॉडलों ने संरक्षी तापमान पर स्विच करने का निर्णय नहीं लिया है।

संदर्भ

  1. 1.0 1.1 IOC; SCOR & IAPSO (2010). The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, UNESCO (English). pp. 196pp.
  2. 2.0 2.1 2.2 2.3 2.4 McDougall, Trevor J. (2003). "Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes". Journal of Physical Oceanography. 33 (5): 945–963. Bibcode:2003JPO....33..945M. doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.
  3. 3.0 3.1 Tailleux, Rémi (2015-04-01). "Observational and energetics constraints on the non-conservation of potential/Conservative Temperature and implications for ocean modelling". Ocean Modelling (in English). 88: 26–37. Bibcode:2015OcMod..88...26T. doi:10.1016/j.ocemod.2015.02.001. ISSN 1463-5003.
  4. 4.0 4.1 4.2 Graham, Felicity S.; McDougall, Trevor J. (2013-05-01). "रूढ़िवादी तापमान, संभावित तापमान और एन्ट्रॉपी के गैर-रूढ़िवादी उत्पादन की मात्रा निर्धारित करना". Journal of Physical Oceanography (in English). 43 (5): 838–862. Bibcode:2013JPO....43..838G. doi:10.1175/jpo-d-11-0188.1. ISSN 0022-3670.
  5. Warren, Bruce A. (August 2006). "नमकीन महासागर में ऊष्मागतिकी का पहला नियम". Progress in Oceanography (in English). 70 (2–4): 149–167. Bibcode:2006PrOce..70..149W. doi:10.1016/j.pocean.2006.01.001. hdl:1912/1289. ISSN 0079-6611.
  6. Feistel, Rainer (2003-07-01). "समुद्री जल की एक नई विस्तारित गिब्स थर्मोडायनामिक क्षमता". Progress in Oceanography (in English). 58 (1): 43–114. doi:10.1016/S0079-6611(03)00088-0. ISSN 0079-6611.
  7. Davis, Russ E. (1994-04-01). "Diapycnal Mixing in the Ocean: Equations for Large-Scale Budgets". Journal of Physical Oceanography (in English). 24 (4): 777–800. doi:10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2. ISSN 0022-3670.
  8. Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M. (2011-01-06). "Absolute Salinity, Density Salinity and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10". Ocean Science (in English). 7 (1): 1–26. Bibcode:2011OcSci...7....1W. doi:10.5194/os-7-1-2011. ISSN 1812-0784.
  9. Pawlowicz, R.; Wright, D. G.; Millero, F. J. (2011-06-01). "The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater". Ocean Science (in English). 7 (3): 363–387. Bibcode:2011OcSci...7..363P. doi:10.5194/os-7-363-2011. ISSN 1812-0784.
  10. Feistel, Rainer (2008-12-01). "A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg–1". Deep Sea Research Part I: Oceanographic Research Papers (in English). 55 (12): 1639–1671. Bibcode:2008DSRI...55.1639F. doi:10.1016/j.dsr.2008.07.004. ISSN 0967-0637.
  11. McDougall, Trevor J.; Barker, Paul M.; Holmes, Ryan M.; Pawlowicz, Rich; Griffies, Stephen M.; Durack, Paul J. (2021-01-19). "संख्यात्मक महासागर मॉडल आउटपुट में तापमान और लवणता चर की व्याख्या, और गर्मी प्रवाह और गर्मी सामग्री की गणना". Geoscientific Model Development Discussions (in English). 14 (10): 6445–6466. doi:10.5194/gmd-2020-426. ISSN 1991-959X. S2CID 234212726.