स्केलिंग आयाम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Number specifying how a quantum operator changes under dilations}}
{{Short description|Number specifying how a quantum operator changes under dilations}}
[[सैद्धांतिक भौतिकी]] में, [[क्वांटम क्षेत्र सिद्धांत]] में स्थानीय ऑपरेटर का स्केलिंग आयाम, या बस आयाम, स्पेसटाइम डिलेशन (एफ़िन ज्योमेट्री) के तहत ऑपरेटर के रीस्केलिंग गुणों की विशेषता बताता है। <math>x\to \lambda x</math>. यदि क्वांटम क्षेत्र सिद्धांत [[स्केल अपरिवर्तनीयता]] है, तो ऑपरेटरों के स्केलिंग आयाम निश्चित संख्याएं हैं, अन्यथा वे दूरी पैमाने के कार्य हैं।
[[सैद्धांतिक भौतिकी]] में, [[क्वांटम क्षेत्र सिद्धांत]] में स्थानीय प्रचालन का '''सोपानी आयाम''', या पूर्णतः आयाम, समष्टि काल विस्फारण <math>x\to \lambda x</math> के अंतर्गत प्रचालन के पुनः सोपानी गुणों की विशेषता बताता है। अतः यदि क्वांटम क्षेत्र सिद्धांत [[स्केल अपरिवर्तनीयता|सोपान अपरिवर्तनीयता]] है, तो प्रचालनों के सोपानी आयाम निश्चित संख्याएं हैं, अन्यथा वे दूरी पैमाने के प्रचालन हैं।


== स्केल-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत ==
== सोपान-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत ==
स्केल इनवेरिएंस क्वांटम फ़ील्ड सिद्धांत में, परिभाषा के अनुसार प्रत्येक ऑपरेटर O फैलाव के तहत प्राप्त करता है <math>x\to \lambda x</math> कारक <math>\lambda^{-\Delta}</math>, कहाँ <math>\Delta</math> संख्या है जिसे O का स्केलिंग आयाम कहा जाता है। इसका तात्पर्य विशेष रूप से यह है कि दो बिंदु सहसंबंध कार्य करते हैं <math>\langle O(x) O(0)\rangle</math> की दूरी पर निर्भर करता है <math>(x^2)^{-\Delta}</math>. अधिक आम तौर पर, कई स्थानीय ऑपरेटरों के सहसंबंध कार्यों को इस तरह से दूरियों पर निर्भर होना चाहिए
सोपान अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत में, परिभाषा के अनुसार प्रत्येक प्रचालन O एक विस्फारण <math>x\to \lambda x</math> के अंतर्गत एक कारक <math>\lambda^{-\Delta}</math> प्राप्त करता है, जहां <math>\Delta</math> एक संख्या है जिसे O का सोपानी आयाम कहा जाता है। अतः इसका तात्पर्य विशेष रूप से यह है कि दो बिंदु सहसंबंध फलन <math>\langle O(x) O(0)\rangle</math>, <math>(x^2)^{-\Delta}</math> के रूप में दूरी पर निर्भर करता है। अधिक सामान्यतः, कई स्थानीय प्रचालनों के सहसंबंध फलनों को इस प्रकार से दूरियों पर निर्भर होना चाहिए कि <math>
<math>
\langle O_1(\lambda x_1) O_2(\lambda x_2)\ldots\rangle=
\langle O_1(\lambda x_1) O_2(\lambda x_2)\ldots\rangle=
\lambda^{-\Delta_1-\Delta_2-\ldots}\langle O_1(x_1) O_2(x_2)\ldots\rangle
\lambda^{-\Delta_1-\Delta_2-\ldots}\langle O_1(x_1) O_2(x_2)\ldots\rangle
</math>
</math>
अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी [[अनुरूप क्षेत्र सिद्धांत]] हैं, जो स्थानीय ऑपरेटरों के सहसंबंध कार्यों पर और बाधाएं लगाते हैं।<ref name=CFT>{{Cite book
 
इस प्रकार से अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी [[अनुरूप क्षेत्र सिद्धांत]] हैं, जो स्थानीय प्रचालनों के सहसंबंध फलनों पर और बाधाएं लगाते हैं।<ref name="CFT">{{Cite book
| publisher = Springer
| publisher = Springer
| author = Philippe Di Francesco
| author = Philippe Di Francesco
Line 18: Line 18:
=== मुक्त क्षेत्र सिद्धांत ===
=== मुक्त क्षेत्र सिद्धांत ===


मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक ऑपरेटरों के बीच अंतर किया जाता है, जो [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में दिखाई देने वाले क्षेत्र हैं,
अतः मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक प्रचालनों के बीच अंतर किया जाता है, जो [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में दिखाई देने वाले क्षेत्र हैं, और मिश्रित प्रचालन जो प्राथमिक प्रचालनों के उत्पाद हैं। इस प्रकार से प्राथमिक प्रचालन O का सोपानी आयाम [[लैग्रेंजियन यांत्रिकी]] से आयामी विश्लेषण द्वारा निर्धारित किया जाता है (चार समष्टि काल आयामों में, यह सदिश क्षमता सहित प्राथमिक बोसोनिक क्षेत्रों के लिए 1 है, प्राथमिक फर्मिओनिक क्षेत्रों आदि के लिए 3/2 है)। अतः इस सोपानी आयाम को 'शास्त्रीय आयाम' कहा जाता है (शब्द 'कैनोनिकल आयाम' और 'इंजीनियरिंग आयाम' का भी उपयोग किया जाता है)। आयामों के दो प्रचालनों का उत्पाद लेकर प्राप्त मिश्रित प्रचालन <math>\Delta_1</math> और <math>\Delta_2</math> नवीन प्रचालन है जिसका आयाम योग <math>\Delta_1+\Delta_2</math> है।
और मिश्रित ऑपरेटर जो प्राथमिक ऑपरेटरों के उत्पाद हैं। प्राथमिक ऑपरेटर O का स्केलिंग आयाम [[लैग्रेंजियन यांत्रिकी]] से आयामी विश्लेषण द्वारा निर्धारित किया जाता है (चार स्पेसटाइम आयामों में, यह वेक्टर क्षमता सहित प्राथमिक बोसोनिक क्षेत्रों के लिए 1 है, प्राथमिक फर्मिओनिक क्षेत्रों आदि के लिए 3/2 है)। इस स्केलिंग आयाम को 'शास्त्रीय आयाम' कहा जाता है (शब्द 'कैनोनिकल आयाम' और 'इंजीनियरिंग आयाम' का भी उपयोग किया जाता है)। आयामों के दो ऑपरेटरों का उत्पाद लेकर प्राप्त मिश्रित ऑपरेटर <math>\Delta_1</math> और <math>\Delta_2</math> नया ऑपरेटर है जिसका आयाम योग है <math>\Delta_1+\Delta_2</math>.


जब इंटरैक्शन चालू होते हैं, तो स्केलिंग आयाम को सुधार प्राप्त होता है जिसे विषम आयाम कहा जाता है (नीचे देखें)।
अतः इस प्रकार से जब अन्योन्यक्रिया प्रारंभ होती हैं, तो सोपानी आयाम को सुधार प्राप्त होता है जिसे विषम आयाम कहा जाता है (नीचे देखें)।


=== इंटरैक्टिंग फील्ड सिद्धांत ===
=== अन्योन्यक्रिया क्षेत्र सिद्धांत ===


ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में ऑपरेटरों के स्केलिंग आयामों को लैग्रेंजियन (क्षेत्र सिद्धांत) से अलग नहीं किया जा सकता है; वे आवश्यक रूप से (आधा)पूर्णांक भी नहीं हैं। उदाहरण के लिए, द्वि-आयामी [[आइसिंग मॉडल]] के महत्वपूर्ण बिंदुओं का वर्णन करने वाले पैमाने (और अनुरूप) अपरिवर्तनीय सिद्धांत में ऑपरेटर होता है <math>\sigma</math> जिसका आयाम 1/8 है.<ref name="2d">In the [[conformal field theory]] nomenclature, this theory is the [[Minimal model (physics)|minimal model]] <math>M_{3,4}</math> which contains the operators <math>\sigma=\phi_{1,2}</math> and <math>\epsilon=\phi_{1,3}</math>.</ref><ref name=CFT/>
ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में प्रचालनों के सोपानी आयामों को लैग्रेंजियन (क्षेत्र सिद्धांत) से अलग नहीं किया जा सकता है; वे आवश्यक रूप से (आधा)पूर्णांक भी नहीं हैं। उदाहरण के लिए, द्वि-आयामी [[आइसिंग मॉडल|आइसिंग निदर्श]] के महत्वपूर्ण बिंदुओं का वर्णन करने वाले पैमाने (और अनुरूप) अपरिवर्तनीय सिद्धांत में <math>\sigma</math> प्रचालन होता है जिसका आयाम 1/8 है।<ref name="2d">In the [[conformal field theory]] nomenclature, this theory is the [[Minimal model (physics)|minimal model]] <math>M_{3,4}</math> which contains the operators <math>\sigma=\phi_{1,2}</math> and <math>\epsilon=\phi_{1,3}</math>.</ref><ref name=CFT/>


मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। आयामों के साथ दो ऑपरेटरों का [[ऑपरेटर उत्पाद विस्तार]] <math>\Delta_1</math> और <math>\Delta_2</math> आम तौर पर अद्वितीय ऑपरेटर नहीं बल्कि अनंत रूप से कई ऑपरेटर देगा, और उनका आयाम आम तौर पर बराबर नहीं होगा <math>\Delta_1+\Delta_2</math>. उपरोक्त द्वि-आयामी आइसिंग मॉडल उदाहरण में, ऑपरेटर उत्पाद <math>\sigma \times\sigma</math> ऑपरेटर देता है <math>\epsilon</math> जिसका आयाम 1 है और आयाम का दोगुना नहीं है <math>\sigma</math>.<ref name=2d/><ref name=CFT/>
अतः मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। आयामों के साथ दो प्रचालनों का [[ऑपरेटर उत्पाद विस्तार|प्रचालन उत्पाद विस्तार]] <math>\Delta_1</math> और <math>\Delta_2</math> सामान्यतः अद्वितीय प्रचालन नहीं बल्कि अनंत रूप से कई प्रचालन देगा, और उनका आयाम सामान्यतः <math>\Delta_1+\Delta_2</math> के बराबर नहीं होगा। उपरोक्त द्वि-आयामी आइसिंग निदर्श उदाहरण में, प्रचालन उत्पाद <math>\sigma \times\sigma</math> प्रचालन <math>\epsilon</math> देता है जिसका आयाम 1 है और आयाम <math>\sigma</math> का दोगुना नहीं है।<ref name=2d/><ref name=CFT/>
== गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत ==
== गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत ==


ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो बिल्कुल पैमाने पर अपरिवर्तनीय नहीं होने के बावजूद, लंबी दूरी की दूरी पर लगभग पैमाने पर अपरिवर्तित रहते हैं। ऐसे क्वांटम क्षेत्र सिद्धांतों को मुक्त क्षेत्र सिद्धांतों में छोटे आयाम रहित [[युग्मन स्थिरांक]] के साथ अंतःक्रिया शर्तों को जोड़कर प्राप्त किया जा सकता है। उदाहरण के लिए, चार स्पेसटाइम आयामों में कोई क्वार्टिक स्केलर कपलिंग, युकावा कपलिंग या गेज कपलिंग जोड़ सकता है। ऐसे सिद्धांतों में ऑपरेटरों के स्केलिंग आयामों को योजनाबद्ध रूप से व्यक्त किया जा सकता है <math>\Delta=\Delta_0 + \gamma(g)</math>, कहाँ <math>\Delta_0</math> वह आयाम है जब सभी कपलिंग शून्य पर सेट होते हैं (अर्थात शास्त्रीय आयाम), जबकि <math>\gamma(g)</math> इसे विषम आयाम कहा जाता है, और इसे सामूहिक रूप से दर्शाए गए कपलिंगों में शक्ति श्रृंखला के रूप में व्यक्त किया जाता है <math>g</math>.<ref>{{Cite book
इस प्रकार से ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो निश्चित पैमाने पर अपरिवर्तनीय नहीं होने के अतिरिक्त, लंबी दूरी की दूरी पर लगभग पैमाने पर अपरिवर्तित रहते हैं। ऐसे क्वांटम क्षेत्र सिद्धांतों को मुक्त क्षेत्र सिद्धांतों में छोटे आयाम रहित [[युग्मन स्थिरांक]] के साथ अंतःक्रिया प्रतिबंधों को जोड़कर प्राप्त किया जा सकता है। उदाहरण के लिए, चार समष्टि काल आयामों में कोई चतुर्थक अदिश युग्मन, युकावा युग्मन या गेज युग्मन जोड़ सकता है। अतः ऐसे सिद्धांतों में प्रचालनों <math>\Delta=\Delta_0 + \gamma(g)</math> के सोपानी आयामों को योजनाबद्ध रूप से व्यक्त किया जा सकता है, जहां <math>\Delta_0</math> वह आयाम है जब सभी युग्मन शून्य पर समूहित होते हैं (अर्थात शास्त्रीय आयाम), जबकि <math>\gamma(g)</math> इसे विषम आयाम कहा जाता है, और इसे सामूहिक रूप से दर्शाए गए युग्मनों में शक्ति श्रृंखला <math>g</math> के रूप में व्यक्त किया जाता है।<ref>{{Cite book
| publisher = Addison-Wesley
| publisher = Addison-Wesley
| last = Peskin
| last = Peskin
Line 38: Line 37:
| location = Reading [etc.]
| location = Reading [etc.]
| date = 1995
| date = 1995
}}</ref>
}}</ref> अतः शास्त्रीय और विसंगतिपूर्ण भाग में सोपानी आयामों का ऐसा पृथक्करण मात्र तभी सार्थक होता है जब युग्मन छोटी होती है, ताकि <math>\gamma(g)</math> छोटा सा सुधार है।
शास्त्रीय और विसंगतिपूर्ण भाग में स्केलिंग आयामों का ऐसा पृथक्करण केवल तभी सार्थक होता है जब कपलिंग छोटी होती है, ताकि <math>\gamma(g)</math> छोटा सा सुधार है.


आम तौर पर, क्वांटम यांत्रिक प्रभावों के कारण, कपलिंग <math>g</math> कपलिंग_कॉन्स्टेंट#रनिंग_कपलिंग|स्थिर नहीं रहते हैं, लेकिन उनके [[बीटा फ़ंक्शन (भौतिकी)]]|बीटा-फ़ंक्शन के अनुसार दूरी पैमाने के साथ भिन्न होते हैं (क्वांटम फ़ील्ड सिद्धांत के शब्दजाल में, रन)। इसलिए विषम आयाम <math>\gamma(g)</math> ऐसे सिद्धांतों में दूरी के पैमाने पर भी निर्भर करता है। विशेष रूप से स्थानीय ऑपरेटरों के सहसंबंध कार्य अब सरल शक्तियाँ नहीं हैं, बल्कि आम तौर पर लघुगणकीय सुधारों के साथ, दूरियों पर अधिक जटिल निर्भरता रखते हैं।
सामान्यतः, क्वांटम यांत्रिक प्रभावों के कारण, युग्मन <math>g</math> नियत युग्मन स्थिर नहीं रहते हैं, परंतु उनके [[बीटा फ़ंक्शन (भौतिकी)|बीटा फलन (भौतिकी)]]| के अनुसार दूरी पैमाने के साथ भिन्न होते हैं (क्वांटम क्षेत्र सिद्धांत के शब्दजाल में, रन)। इसलिए विषम आयाम <math>\gamma(g)</math> ऐसे सिद्धांतों में दूरी के पैमाने पर भी निर्भर करता है। विशेष रूप से स्थानीय प्रचालनों के सहसंबंध कार्य अब सरल शक्तियाँ नहीं हैं, बल्कि सामान्यतः लघुगणकीय संशोधनों के साथ, दूरियों पर अधिक जटिल निर्भरता रखते हैं।


ऐसा हो सकता है कि कपलिंग के विकास से मूल्य प्राप्त होगा <math>g=g_*</math> जहां बीटा फ़ंक्शन (भौतिकी)|बीटा-फ़ंक्शन गायब हो जाता है। फिर लंबी दूरी पर सिद्धांत स्केल इनवेरिएंस बन जाता है, और विषम आयाम चलना बंद हो जाते हैं। इस तरह के व्यवहार को इन्फ्रारेड निश्चित बिंदु कहा जाता है।
अतः ऐसा हो सकता है कि युग्मन <math>g=g_*</math> के विकास से मान प्राप्त होगा जहां बीटा फलन (भौतिकी) विलुप्त हो जाता है। फिर लंबी दूरी पर सिद्धांत सोपान अपरिवर्तनीय बन जाता है, और विषम आयाम चलना संवृत हो जाते हैं। इस प्रकार के व्यवहार को अवरक्त निश्चित बिंदु कहा जाता है।


बहुत विशेष मामलों में, ऐसा तब हो सकता है जब कपलिंग और असामान्य आयाम बिल्कुल नहीं चलते हैं, जिससे सिद्धांत सभी दूरी पर और कपलिंग के किसी भी मूल्य के लिए स्केल अपरिवर्तनीय होता है। उदाहरण के लिए, यह N = 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत में होता है|N=4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत।
बहुत विशेष स्थितियों में, ऐसा तब हो सकता है जब युग्मन और असामान्य आयाम निश्चित नहीं चलते हैं, जिससे सिद्धांत सभी दूरी पर और युग्मन के किसी भी मान के लिए सोपान अपरिवर्तनीय होता है। इस प्रकार से उदाहरण के लिए, यह N = 4 अति सममित यांग-मिल्स सिद्धांत में होता है।


== संदर्भ ==
== संदर्भ ==

Revision as of 11:55, 24 November 2023

सैद्धांतिक भौतिकी में, क्वांटम क्षेत्र सिद्धांत में स्थानीय प्रचालन का सोपानी आयाम, या पूर्णतः आयाम, समष्टि काल विस्फारण के अंतर्गत प्रचालन के पुनः सोपानी गुणों की विशेषता बताता है। अतः यदि क्वांटम क्षेत्र सिद्धांत सोपान अपरिवर्तनीयता है, तो प्रचालनों के सोपानी आयाम निश्चित संख्याएं हैं, अन्यथा वे दूरी पैमाने के प्रचालन हैं।

सोपान-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत

सोपान अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत में, परिभाषा के अनुसार प्रत्येक प्रचालन O एक विस्फारण के अंतर्गत एक कारक प्राप्त करता है, जहां एक संख्या है जिसे O का सोपानी आयाम कहा जाता है। अतः इसका तात्पर्य विशेष रूप से यह है कि दो बिंदु सहसंबंध फलन , के रूप में दूरी पर निर्भर करता है। अधिक सामान्यतः, कई स्थानीय प्रचालनों के सहसंबंध फलनों को इस प्रकार से दूरियों पर निर्भर होना चाहिए कि

इस प्रकार से अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी अनुरूप क्षेत्र सिद्धांत हैं, जो स्थानीय प्रचालनों के सहसंबंध फलनों पर और बाधाएं लगाते हैं।[1]

मुक्त क्षेत्र सिद्धांत

अतः मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक प्रचालनों के बीच अंतर किया जाता है, जो लैग्रेंजियन (क्षेत्र सिद्धांत) में दिखाई देने वाले क्षेत्र हैं, और मिश्रित प्रचालन जो प्राथमिक प्रचालनों के उत्पाद हैं। इस प्रकार से प्राथमिक प्रचालन O का सोपानी आयाम लैग्रेंजियन यांत्रिकी से आयामी विश्लेषण द्वारा निर्धारित किया जाता है (चार समष्टि काल आयामों में, यह सदिश क्षमता सहित प्राथमिक बोसोनिक क्षेत्रों के लिए 1 है, प्राथमिक फर्मिओनिक क्षेत्रों आदि के लिए 3/2 है)। अतः इस सोपानी आयाम को 'शास्त्रीय आयाम' कहा जाता है (शब्द 'कैनोनिकल आयाम' और 'इंजीनियरिंग आयाम' का भी उपयोग किया जाता है)। आयामों के दो प्रचालनों का उत्पाद लेकर प्राप्त मिश्रित प्रचालन और नवीन प्रचालन है जिसका आयाम योग है।

अतः इस प्रकार से जब अन्योन्यक्रिया प्रारंभ होती हैं, तो सोपानी आयाम को सुधार प्राप्त होता है जिसे विषम आयाम कहा जाता है (नीचे देखें)।

अन्योन्यक्रिया क्षेत्र सिद्धांत

ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में प्रचालनों के सोपानी आयामों को लैग्रेंजियन (क्षेत्र सिद्धांत) से अलग नहीं किया जा सकता है; वे आवश्यक रूप से (आधा)पूर्णांक भी नहीं हैं। उदाहरण के लिए, द्वि-आयामी आइसिंग निदर्श के महत्वपूर्ण बिंदुओं का वर्णन करने वाले पैमाने (और अनुरूप) अपरिवर्तनीय सिद्धांत में प्रचालन होता है जिसका आयाम 1/8 है।[2][1]

अतः मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। आयामों के साथ दो प्रचालनों का प्रचालन उत्पाद विस्तार और सामान्यतः अद्वितीय प्रचालन नहीं बल्कि अनंत रूप से कई प्रचालन देगा, और उनका आयाम सामान्यतः के बराबर नहीं होगा। उपरोक्त द्वि-आयामी आइसिंग निदर्श उदाहरण में, प्रचालन उत्पाद प्रचालन देता है जिसका आयाम 1 है और आयाम का दोगुना नहीं है।[2][1]

गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत

इस प्रकार से ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो निश्चित पैमाने पर अपरिवर्तनीय नहीं होने के अतिरिक्त, लंबी दूरी की दूरी पर लगभग पैमाने पर अपरिवर्तित रहते हैं। ऐसे क्वांटम क्षेत्र सिद्धांतों को मुक्त क्षेत्र सिद्धांतों में छोटे आयाम रहित युग्मन स्थिरांक के साथ अंतःक्रिया प्रतिबंधों को जोड़कर प्राप्त किया जा सकता है। उदाहरण के लिए, चार समष्टि काल आयामों में कोई चतुर्थक अदिश युग्मन, युकावा युग्मन या गेज युग्मन जोड़ सकता है। अतः ऐसे सिद्धांतों में प्रचालनों के सोपानी आयामों को योजनाबद्ध रूप से व्यक्त किया जा सकता है, जहां वह आयाम है जब सभी युग्मन शून्य पर समूहित होते हैं (अर्थात शास्त्रीय आयाम), जबकि इसे विषम आयाम कहा जाता है, और इसे सामूहिक रूप से दर्शाए गए युग्मनों में शक्ति श्रृंखला के रूप में व्यक्त किया जाता है।[3] अतः शास्त्रीय और विसंगतिपूर्ण भाग में सोपानी आयामों का ऐसा पृथक्करण मात्र तभी सार्थक होता है जब युग्मन छोटी होती है, ताकि छोटा सा सुधार है।

सामान्यतः, क्वांटम यांत्रिक प्रभावों के कारण, युग्मन नियत युग्मन स्थिर नहीं रहते हैं, परंतु उनके बीटा फलन (भौतिकी)| के अनुसार दूरी पैमाने के साथ भिन्न होते हैं (क्वांटम क्षेत्र सिद्धांत के शब्दजाल में, रन)। इसलिए विषम आयाम ऐसे सिद्धांतों में दूरी के पैमाने पर भी निर्भर करता है। विशेष रूप से स्थानीय प्रचालनों के सहसंबंध कार्य अब सरल शक्तियाँ नहीं हैं, बल्कि सामान्यतः लघुगणकीय संशोधनों के साथ, दूरियों पर अधिक जटिल निर्भरता रखते हैं।

अतः ऐसा हो सकता है कि युग्मन के विकास से मान प्राप्त होगा जहां बीटा फलन (भौतिकी) विलुप्त हो जाता है। फिर लंबी दूरी पर सिद्धांत सोपान अपरिवर्तनीय बन जाता है, और विषम आयाम चलना संवृत हो जाते हैं। इस प्रकार के व्यवहार को अवरक्त निश्चित बिंदु कहा जाता है।

बहुत विशेष स्थितियों में, ऐसा तब हो सकता है जब युग्मन और असामान्य आयाम निश्चित नहीं चलते हैं, जिससे सिद्धांत सभी दूरी पर और युग्मन के किसी भी मान के लिए सोपान अपरिवर्तनीय होता है। इस प्रकार से उदाहरण के लिए, यह N = 4 अति सममित यांग-मिल्स सिद्धांत में होता है।

संदर्भ

  1. 1.0 1.1 1.2 Philippe Di Francesco; Pierre Mathieu; David Sénéchal (1997). Conformal field theory. New York: Springer.
  2. 2.0 2.1 In the conformal field theory nomenclature, this theory is the minimal model which contains the operators and .
  3. Peskin, Michael E; Daniel V Schroeder (1995). An Introduction to quantum field theory. Reading [etc.]: Addison-Wesley.