स्केलिंग आयाम: Difference between revisions
No edit summary |
m (8 revisions imported from alpha:स्केलिंग_आयाम) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Number specifying how a quantum operator changes under dilations}} | {{Short description|Number specifying how a quantum operator changes under dilations}} | ||
[[सैद्धांतिक भौतिकी]] में, [[क्वांटम क्षेत्र सिद्धांत]] में स्थानीय ऑपरेटर का | [[सैद्धांतिक भौतिकी]] में, [[क्वांटम क्षेत्र सिद्धांत]] में स्थानीय ऑपरेटर का '''सोपानी आयाम''', या पूर्णतः आयाम, समष्टि काल विस्फारण <math>x\to \lambda x</math> के अंतर्गत ऑपरेटर के पुनः सोपानी गुणों की विशेषता बताता है। अतः यदि क्वांटम क्षेत्र सिद्धांत [[स्केल अपरिवर्तनीयता|सोपान अपरिवर्तनीयता]] है, तो ऑपरेटरों के सोपानी आयाम निश्चित संख्याएं हैं, अन्यथा वे दूरी पैमाने के ऑपरेटर हैं। | ||
== | == सोपान-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत == | ||
अतः इस प्रकार से सोपान अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत में, परिभाषा के अनुसार प्रत्येक ऑपरेटर O एक विस्फारण <math>x\to \lambda x</math> के अंतर्गत एक कारक <math>\lambda^{-\Delta}</math> प्राप्त करता है, जहां <math>\Delta</math> एक संख्या है जिसे O का सोपानी आयाम कहा जाता है। अतः इसका तात्पर्य विशेष रूप से यह है कि दो बिंदु सहसंबंध फलन <math>\langle O(x) O(0)\rangle</math>, <math>(x^2)^{-\Delta}</math> के रूप में दूरी पर पूर्ण रूप से निर्भर करता है। अधिक सामान्यतः, कई स्थानीय ऑपरेटरों के सहसंबंध फलनों को इस प्रकार से दूरियों पर निर्भर होना चाहिए कि <math> | |||
<math> | |||
\langle O_1(\lambda x_1) O_2(\lambda x_2)\ldots\rangle= | \langle O_1(\lambda x_1) O_2(\lambda x_2)\ldots\rangle= | ||
\lambda^{-\Delta_1-\Delta_2-\ldots}\langle O_1(x_1) O_2(x_2)\ldots\rangle | \lambda^{-\Delta_1-\Delta_2-\ldots}\langle O_1(x_1) O_2(x_2)\ldots\rangle | ||
</math> | </math>। | ||
अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी [[अनुरूप क्षेत्र सिद्धांत]] हैं, जो स्थानीय ऑपरेटरों के सहसंबंध | |||
इस प्रकार से अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी [[अनुरूप क्षेत्र सिद्धांत]] हैं, जो स्थानीय ऑपरेटरों के सहसंबंध फलनों पर और बाधाएं लगाते हैं।<ref name="CFT">{{Cite book | |||
| publisher = Springer | | publisher = Springer | ||
| author = Philippe Di Francesco | | author = Philippe Di Francesco | ||
Line 18: | Line 18: | ||
=== मुक्त क्षेत्र सिद्धांत === | === मुक्त क्षेत्र सिद्धांत === | ||
मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक ऑपरेटरों के बीच अंतर किया जाता है, जो [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में दिखाई देने वाले क्षेत्र हैं, | अतः मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक ऑपरेटरों के बीच अंतर किया जाता है, जो [[लैग्रेंजियन (क्षेत्र सिद्धांत)]] में दिखाई देने वाले क्षेत्र हैं, और मिश्रित ऑपरेटर जो प्राथमिक ऑपरेटरों के उत्पाद हैं। इस प्रकार से प्राथमिक ऑपरेटर O का सोपानी आयाम [[लैग्रेंजियन यांत्रिकी]] से आयामी विश्लेषण द्वारा निर्धारित किया जाता है (चार समष्टि काल आयामों में, यह सदिश क्षमता सहित प्राथमिक बोसोनिक क्षेत्रों के लिए 1 है, प्राथमिक फर्मिओनिक क्षेत्रों आदि के लिए 3/2 है)। अतः इस सोपानी आयाम को 'शास्त्रीय आयाम' कहा जाता है (शब्द 'कैनोनिकल आयाम' और 'इंजीनियरिंग आयाम' का भी उपयोग किया जाता है)। इन आयामों के दो ऑपरेटरों का उत्पाद लेकर प्राप्त मिश्रित ऑपरेटर <math>\Delta_1</math> और <math>\Delta_2</math> नवीन ऑपरेटर है जिसका आयाम योग <math>\Delta_1+\Delta_2</math> है। | ||
और मिश्रित ऑपरेटर जो प्राथमिक ऑपरेटरों के उत्पाद हैं। प्राथमिक ऑपरेटर O का | |||
जब | अतः इस प्रकार से जब अन्योन्यक्रिया पूर्ण रूप से प्रारंभ होती हैं, तो सोपानी आयाम को संशोधन प्राप्त होता है जिसे विषम आयाम कहा जाता है (नीचे देखें)। | ||
=== | === अन्योन्यक्रिया क्षेत्र सिद्धांत === | ||
ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में ऑपरेटरों के | ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में ऑपरेटरों के सोपानी आयामों को लैग्रेंजियन (क्षेत्र सिद्धांत) से अलग नहीं किया जा सकता है; वे आवश्यक रूप से (आधा)पूर्णांक भी नहीं हैं। इस प्रकार से उदाहरण के लिए, द्वि-आयामी [[आइसिंग मॉडल|आइसिंग निदर्श]] के महत्वपूर्ण बिंदुओं का वर्णन करने वाले पैमाने (और अनुरूप) अपरिवर्तनीय सिद्धांत में <math>\sigma</math> ऑपरेटर होता है, जिसका आयाम 1/8 है।<ref name="2d">In the [[conformal field theory]] nomenclature, this theory is the [[Minimal model (physics)|minimal model]] <math>M_{3,4}</math> which contains the operators <math>\sigma=\phi_{1,2}</math> and <math>\epsilon=\phi_{1,3}</math>.</ref><ref name=CFT/> | ||
मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। आयामों के साथ दो ऑपरेटरों का [[ऑपरेटर उत्पाद विस्तार]] <math>\Delta_1</math> और <math>\Delta_2</math> | अतः मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। इन आयामों के साथ दो ऑपरेटरों का [[ऑपरेटर उत्पाद विस्तार]] <math>\Delta_1</math> और <math>\Delta_2</math> सामान्यतः अद्वितीय ऑपरेटर नहीं परंतु अनंत रूप से कई ऑपरेटर देगा, और उनका आयाम सामान्यतः <math>\Delta_1+\Delta_2</math> के बराबर नहीं होगा। अतः उपरोक्त द्वि-आयामी आइसिंग निदर्श उदाहरण में, ऑपरेटर उत्पाद <math>\sigma \times\sigma</math> ऑपरेटर <math>\epsilon</math> देता है जिसका आयाम 1 है और आयाम <math>\sigma</math> का दोगुना नहीं है।<ref name=2d/><ref name=CFT/> | ||
== गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत == | == गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत == | ||
ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो | इस प्रकार से ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो निश्चित पैमाने पर अपरिवर्तनीय नहीं होने के अतिरिक्त, लंबी दूरी की दूरी पर लगभग पैमाने पर पूर्ण रूप से अपरिवर्तित रहते हैं। ऐसे क्वांटम क्षेत्र सिद्धांतों को मुक्त क्षेत्र सिद्धांतों में छोटे आयाम रहित [[युग्मन स्थिरांक]] के साथ अंतःक्रिया प्रतिबंधों को जोड़कर प्राप्त किया जा सकता है। इसी प्रकार से उदाहरण के लिए, चार समष्टि काल आयामों में कोई चतुर्थक अदिश युग्मन, युकावा युग्मन या गेज युग्मन जोड़ सकता है। अतः ऐसे सिद्धांतों में ऑपरेटरों <math>\Delta=\Delta_0 + \gamma(g)</math> के सोपानी आयामों को योजनाबद्ध रूप से व्यक्त किया जा सकता है, जहां <math>\Delta_0</math> वह आयाम है जब सभी युग्मन शून्य पर समूहित होते हैं (अर्थात शास्त्रीय आयाम), जबकि <math>\gamma(g)</math> इसे विषम आयाम कहा जाता है, और इसे सामूहिक रूप से दर्शाए गए युग्मनों में शक्ति श्रृंखला <math>g</math> के रूप में व्यक्त किया जाता है।<ref>{{Cite book | ||
| publisher = Addison-Wesley | | publisher = Addison-Wesley | ||
| last = Peskin | | last = Peskin | ||
Line 38: | Line 37: | ||
| location = Reading [etc.] | | location = Reading [etc.] | ||
| date = 1995 | | date = 1995 | ||
}}</ref> | }}</ref> अतः शास्त्रीय और विसंगतिपूर्ण भाग में सोपानी आयामों का ऐसा पृथक्करण मात्र तभी सार्थक होता है जब युग्मन छोटी होती है, जिससे कि <math>\gamma(g)</math> छोटा सा संशोधन है। | ||
शास्त्रीय और विसंगतिपूर्ण भाग में | |||
सामान्यतः, क्वांटम यांत्रिक प्रभावों के कारण, युग्मन <math>g</math> नियत युग्मन स्थिर नहीं रहते हैं, परंतु उनके [[बीटा फ़ंक्शन (भौतिकी)|बीटा फलन (भौतिकी)]] के अनुसार दूरी पैमाने के साथ भिन्न होते हैं (क्वांटम क्षेत्र सिद्धांत के शब्दजाल में, रन)। अतः इसलिए विषम आयाम <math>\gamma(g)</math> ऐसे सिद्धांतों में दूरी के पैमाने पर भी पूर्ण रूप से निर्भर करता है। इस प्रकार से विशेष रूप से स्थानीय ऑपरेटरों के सहसंबंध कार्य अब सरल शक्तियाँ नहीं हैं, परंतु सामान्यतः लघुगणकीय संशोधनों के साथ, दूरियों पर अधिक जटिल निर्भरता रखते हैं। | |||
ऐसा हो सकता है कि | अतः ऐसा हो सकता है कि युग्मन <math>g=g_*</math> के विकास से मान प्राप्त होगा जहां बीटा फलन (भौतिकी) विलुप्त हो जाता है। फिर लंबी दूरी पर सिद्धांत सोपान अपरिवर्तनीय बन जाता है, और विषम आयाम चलना संवृत हो जाते हैं। इस प्रकार के व्यवहार को अवरक्त निश्चित बिंदु कहा जाता है। | ||
बहुत विशेष | बहुत विशेष स्थितियों में, ऐसा तब हो सकता है जब युग्मन और असामान्य आयाम निश्चित नहीं चलते हैं, जिससे सिद्धांत सभी दूरी पर और युग्मन के किसी भी मान के लिए सोपान अपरिवर्तनीय होता है। इस प्रकार से उदाहरण के लिए, यह N = 4 अति सममित यांग-मिल्स सिद्धांत में होता है। | ||
== संदर्भ == | == संदर्भ == | ||
Line 57: | Line 55: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/11/2023]] | [[Category:Created On 17/11/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:49, 5 December 2023
सैद्धांतिक भौतिकी में, क्वांटम क्षेत्र सिद्धांत में स्थानीय ऑपरेटर का सोपानी आयाम, या पूर्णतः आयाम, समष्टि काल विस्फारण के अंतर्गत ऑपरेटर के पुनः सोपानी गुणों की विशेषता बताता है। अतः यदि क्वांटम क्षेत्र सिद्धांत सोपान अपरिवर्तनीयता है, तो ऑपरेटरों के सोपानी आयाम निश्चित संख्याएं हैं, अन्यथा वे दूरी पैमाने के ऑपरेटर हैं।
सोपान-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत
अतः इस प्रकार से सोपान अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत में, परिभाषा के अनुसार प्रत्येक ऑपरेटर O एक विस्फारण के अंतर्गत एक कारक प्राप्त करता है, जहां एक संख्या है जिसे O का सोपानी आयाम कहा जाता है। अतः इसका तात्पर्य विशेष रूप से यह है कि दो बिंदु सहसंबंध फलन , के रूप में दूरी पर पूर्ण रूप से निर्भर करता है। अधिक सामान्यतः, कई स्थानीय ऑपरेटरों के सहसंबंध फलनों को इस प्रकार से दूरियों पर निर्भर होना चाहिए कि ।
इस प्रकार से अधिकांश पैमाने के अपरिवर्तनीय सिद्धांत भी अनुरूप क्षेत्र सिद्धांत हैं, जो स्थानीय ऑपरेटरों के सहसंबंध फलनों पर और बाधाएं लगाते हैं।[1]
मुक्त क्षेत्र सिद्धांत
अतः मुक्त सिद्धांत सबसे सरल पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं। मुक्त सिद्धांतों में, प्राथमिक ऑपरेटरों के बीच अंतर किया जाता है, जो लैग्रेंजियन (क्षेत्र सिद्धांत) में दिखाई देने वाले क्षेत्र हैं, और मिश्रित ऑपरेटर जो प्राथमिक ऑपरेटरों के उत्पाद हैं। इस प्रकार से प्राथमिक ऑपरेटर O का सोपानी आयाम लैग्रेंजियन यांत्रिकी से आयामी विश्लेषण द्वारा निर्धारित किया जाता है (चार समष्टि काल आयामों में, यह सदिश क्षमता सहित प्राथमिक बोसोनिक क्षेत्रों के लिए 1 है, प्राथमिक फर्मिओनिक क्षेत्रों आदि के लिए 3/2 है)। अतः इस सोपानी आयाम को 'शास्त्रीय आयाम' कहा जाता है (शब्द 'कैनोनिकल आयाम' और 'इंजीनियरिंग आयाम' का भी उपयोग किया जाता है)। इन आयामों के दो ऑपरेटरों का उत्पाद लेकर प्राप्त मिश्रित ऑपरेटर और नवीन ऑपरेटर है जिसका आयाम योग है।
अतः इस प्रकार से जब अन्योन्यक्रिया पूर्ण रूप से प्रारंभ होती हैं, तो सोपानी आयाम को संशोधन प्राप्त होता है जिसे विषम आयाम कहा जाता है (नीचे देखें)।
अन्योन्यक्रिया क्षेत्र सिद्धांत
ऐसे कई पैमाने के अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत हैं जो स्वतंत्र सिद्धांत नहीं हैं; इन्हें अंतःक्रिया करना कहा जाता है। ऐसे सिद्धांतों में ऑपरेटरों के सोपानी आयामों को लैग्रेंजियन (क्षेत्र सिद्धांत) से अलग नहीं किया जा सकता है; वे आवश्यक रूप से (आधा)पूर्णांक भी नहीं हैं। इस प्रकार से उदाहरण के लिए, द्वि-आयामी आइसिंग निदर्श के महत्वपूर्ण बिंदुओं का वर्णन करने वाले पैमाने (और अनुरूप) अपरिवर्तनीय सिद्धांत में ऑपरेटर होता है, जिसका आयाम 1/8 है।[2][1]
अतः मुक्त सिद्धांतों की तुलना में सिद्धांतों की परस्पर क्रिया में संचालिका गुणन सूक्ष्म है। इन आयामों के साथ दो ऑपरेटरों का ऑपरेटर उत्पाद विस्तार और सामान्यतः अद्वितीय ऑपरेटर नहीं परंतु अनंत रूप से कई ऑपरेटर देगा, और उनका आयाम सामान्यतः के बराबर नहीं होगा। अतः उपरोक्त द्वि-आयामी आइसिंग निदर्श उदाहरण में, ऑपरेटर उत्पाद ऑपरेटर देता है जिसका आयाम 1 है और आयाम का दोगुना नहीं है।[2][1]
गैर पैमाने-अपरिवर्तनीय क्वांटम क्षेत्र सिद्धांत
इस प्रकार से ऐसे कई क्वांटम क्षेत्र सिद्धांत हैं, जो निश्चित पैमाने पर अपरिवर्तनीय नहीं होने के अतिरिक्त, लंबी दूरी की दूरी पर लगभग पैमाने पर पूर्ण रूप से अपरिवर्तित रहते हैं। ऐसे क्वांटम क्षेत्र सिद्धांतों को मुक्त क्षेत्र सिद्धांतों में छोटे आयाम रहित युग्मन स्थिरांक के साथ अंतःक्रिया प्रतिबंधों को जोड़कर प्राप्त किया जा सकता है। इसी प्रकार से उदाहरण के लिए, चार समष्टि काल आयामों में कोई चतुर्थक अदिश युग्मन, युकावा युग्मन या गेज युग्मन जोड़ सकता है। अतः ऐसे सिद्धांतों में ऑपरेटरों के सोपानी आयामों को योजनाबद्ध रूप से व्यक्त किया जा सकता है, जहां वह आयाम है जब सभी युग्मन शून्य पर समूहित होते हैं (अर्थात शास्त्रीय आयाम), जबकि इसे विषम आयाम कहा जाता है, और इसे सामूहिक रूप से दर्शाए गए युग्मनों में शक्ति श्रृंखला के रूप में व्यक्त किया जाता है।[3] अतः शास्त्रीय और विसंगतिपूर्ण भाग में सोपानी आयामों का ऐसा पृथक्करण मात्र तभी सार्थक होता है जब युग्मन छोटी होती है, जिससे कि छोटा सा संशोधन है।
सामान्यतः, क्वांटम यांत्रिक प्रभावों के कारण, युग्मन नियत युग्मन स्थिर नहीं रहते हैं, परंतु उनके बीटा फलन (भौतिकी) के अनुसार दूरी पैमाने के साथ भिन्न होते हैं (क्वांटम क्षेत्र सिद्धांत के शब्दजाल में, रन)। अतः इसलिए विषम आयाम ऐसे सिद्धांतों में दूरी के पैमाने पर भी पूर्ण रूप से निर्भर करता है। इस प्रकार से विशेष रूप से स्थानीय ऑपरेटरों के सहसंबंध कार्य अब सरल शक्तियाँ नहीं हैं, परंतु सामान्यतः लघुगणकीय संशोधनों के साथ, दूरियों पर अधिक जटिल निर्भरता रखते हैं।
अतः ऐसा हो सकता है कि युग्मन के विकास से मान प्राप्त होगा जहां बीटा फलन (भौतिकी) विलुप्त हो जाता है। फिर लंबी दूरी पर सिद्धांत सोपान अपरिवर्तनीय बन जाता है, और विषम आयाम चलना संवृत हो जाते हैं। इस प्रकार के व्यवहार को अवरक्त निश्चित बिंदु कहा जाता है।
बहुत विशेष स्थितियों में, ऐसा तब हो सकता है जब युग्मन और असामान्य आयाम निश्चित नहीं चलते हैं, जिससे सिद्धांत सभी दूरी पर और युग्मन के किसी भी मान के लिए सोपान अपरिवर्तनीय होता है। इस प्रकार से उदाहरण के लिए, यह N = 4 अति सममित यांग-मिल्स सिद्धांत में होता है।
संदर्भ
- ↑ 1.0 1.1 1.2 Philippe Di Francesco; Pierre Mathieu; David Sénéchal (1997). Conformal field theory. New York: Springer.
- ↑ 2.0 2.1 In the conformal field theory nomenclature, this theory is the minimal model which contains the operators and .
- ↑ Peskin, Michael E; Daniel V Schroeder (1995). An Introduction to quantum field theory. Reading [etc.]: Addison-Wesley.