डार्विन-फाउलर विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
वितरण कार्यों का उपयोग सांख्यिकीय भौतिकी में ऊर्जा स्तर पर रहने वाले कणों की औसत संख्या का अनुमान लगाने के लिए किया जाता है (इसलिए इसे व्यवसाय संख्या भी कहा जाता है)। ये वितरण अधिकतर उन संख्याओं के रूप में प्राप्त होते हैं जिनके लिए विचाराधीन प्रणाली अधिकतम संभावना की स्थिति में होती है। किंतु वास्तव में किसी को औसत संख्या की आवश्यकता होती है। ये औसत संख्याएं डार्विन-फाउलर विधि द्वारा प्राप्त की जा सकती हैं। अवश्य ही, सांख्यिकीय यांत्रिकी की तरह, [[थर्मोडायनामिक सीमा]] (कणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।
वितरण कार्यों का उपयोग सांख्यिकीय भौतिकी में ऊर्जा स्तर पर रहने वाले कणों की औसत संख्या का अनुमान लगाने के लिए किया जाता है (इसलिए इसे व्यवसाय संख्या भी कहा जाता है)। ये वितरण अधिकतर उन संख्याओं के रूप में प्राप्त होते हैं जिनके लिए विचाराधीन प्रणाली अधिकतम संभावना की स्थिति में होती है। किंतु वास्तव में किसी को औसत संख्या की आवश्यकता होती है। ये औसत संख्याएं डार्विन-फाउलर विधि द्वारा प्राप्त की जा सकती हैं। अवश्य ही, सांख्यिकीय यांत्रिकी की तरह, [[थर्मोडायनामिक सीमा]] (कणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।


'''की तरह, [[थर्मोडायनामिक सीमा]] (कणों की बड़ी संख्या) में प्रणाली के'''
'''की तरह, [[थर्मोडायनामिक सीमा]] (कणों की बड़ी संख्या) में प्रणाली केणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।'''


==डार्विन-फाउलर विधि==
==डार्विन-फाउलर विधि==
Line 10: Line 10:
सांख्यिकीय यांत्रिकी पर अधिकांश ग्रंथों में सांख्यिकीय वितरण कार्य <math>f</math> करता है मैक्सवेल-बोल्ट्ज़मैन आँकड़े, बोस-आइंस्टीन आँकड़े, फ़र्मी-डिराक आँकड़े) उन लोगों को निर्धारित करके प्राप्त किए जाते हैं जिनके लिए प्रणाली अधिकतम संभावना की स्थिति में है। किंतु किसी को वास्तव में औसत या औसत संभावना वाले लोगों की आवश्यकता होती है, चूँकि - निश्चित रूप से - परिणाम सामान्यतः बड़ी संख्या में तत्वों वाली प्रणाली के लिए समान होते हैं, जैसा कि सांख्यिकीय यांत्रिकी में होता है। माध्य संभाव्यता के साथ वितरण फलन प्राप्त करने की विधि सी.जी. डार्विन और आर.एच. फाउलर द्वारा विकसित की गई है<ref name=":0">{{cite journal |first=C. G. |last=Darwin |first2=R. H. |last2=Fowler |title=ऊर्जा के विभाजन पर|journal=Phil. Mag. |volume=44 |year=1922 |pages=450–479, 823–842 |doi=10.1080/14786440908565189 }}</ref> और इसलिए इसे डार्विन-फाउलर विधि के रूप में जाना जाता है। यह विधि सांख्यिकीय वितरण फलन प्राप्त करने के लिए सबसे विश्वसनीय सामान्य प्रक्रिया है। चूंकि विधि चयनकर्ता चर (गिनती प्रक्रिया की अनुमति देने के लिए प्रत्येक तत्व के लिए प्रस्तुत किया गया कारक) को नियोजित करती है, इसलिए विधि को चयनकर्ता चर की डार्विन-फाउलर विधि के रूप में भी जाना जाता है। ध्यान दें कि वितरण फ़ंक्शन प्रायिकता के समान नहीं है - सीएफ। मैक्सवेल-बोल्ट्ज़मैन वितरण, बोस-आइंस्टीन वितरण, फर्मी-डिराक वितरण। यह भी ध्यान दें कि वितरण फ़ंक्शन <math>f_i</math> जो उन अवस्थाओं के अंश का माप है जो वास्तव में तत्वों द्वारा व्याप्त हैं, <math>f_i = n_i/g_i </math> या <math> n_i= f_ig_i</math> द्वारा दिया गया है, जहाँ <math>g_i</math> ऊर्जा स्तर <math>i</math> की गिरावट है उर्जा से <math>\varepsilon_i</math> और <math>n_i</math> इस स्तर पर उपस्थित तत्वों की संख्या है (उदाहरण के लिए फर्मी-डिराक आंकड़ों में 0 या 1)। कुल ऊर्जा <math>E</math> और तत्वों की कुल संख्या <math>N</math>  को फिर  <math>E = \sum_i n_i\varepsilon_i</math> और <math>N = \sum n_i</math> द्वारा दिए जाते हैं।
सांख्यिकीय यांत्रिकी पर अधिकांश ग्रंथों में सांख्यिकीय वितरण कार्य <math>f</math> करता है मैक्सवेल-बोल्ट्ज़मैन आँकड़े, बोस-आइंस्टीन आँकड़े, फ़र्मी-डिराक आँकड़े) उन लोगों को निर्धारित करके प्राप्त किए जाते हैं जिनके लिए प्रणाली अधिकतम संभावना की स्थिति में है। किंतु किसी को वास्तव में औसत या औसत संभावना वाले लोगों की आवश्यकता होती है, चूँकि - निश्चित रूप से - परिणाम सामान्यतः बड़ी संख्या में तत्वों वाली प्रणाली के लिए समान होते हैं, जैसा कि सांख्यिकीय यांत्रिकी में होता है। माध्य संभाव्यता के साथ वितरण फलन प्राप्त करने की विधि सी.जी. डार्विन और आर.एच. फाउलर द्वारा विकसित की गई है<ref name=":0">{{cite journal |first=C. G. |last=Darwin |first2=R. H. |last2=Fowler |title=ऊर्जा के विभाजन पर|journal=Phil. Mag. |volume=44 |year=1922 |pages=450–479, 823–842 |doi=10.1080/14786440908565189 }}</ref> और इसलिए इसे डार्विन-फाउलर विधि के रूप में जाना जाता है। यह विधि सांख्यिकीय वितरण फलन प्राप्त करने के लिए सबसे विश्वसनीय सामान्य प्रक्रिया है। चूंकि विधि चयनकर्ता चर (गिनती प्रक्रिया की अनुमति देने के लिए प्रत्येक तत्व के लिए प्रस्तुत किया गया कारक) को नियोजित करती है, इसलिए विधि को चयनकर्ता चर की डार्विन-फाउलर विधि के रूप में भी जाना जाता है। ध्यान दें कि वितरण फ़ंक्शन प्रायिकता के समान नहीं है - सीएफ। मैक्सवेल-बोल्ट्ज़मैन वितरण, बोस-आइंस्टीन वितरण, फर्मी-डिराक वितरण। यह भी ध्यान दें कि वितरण फ़ंक्शन <math>f_i</math> जो उन अवस्थाओं के अंश का माप है जो वास्तव में तत्वों द्वारा व्याप्त हैं, <math>f_i = n_i/g_i </math> या <math> n_i= f_ig_i</math> द्वारा दिया गया है, जहाँ <math>g_i</math> ऊर्जा स्तर <math>i</math> की गिरावट है उर्जा से <math>\varepsilon_i</math> और <math>n_i</math> इस स्तर पर उपस्थित तत्वों की संख्या है (उदाहरण के लिए फर्मी-डिराक आंकड़ों में 0 या 1)। कुल ऊर्जा <math>E</math> और तत्वों की कुल संख्या <math>N</math>  को फिर  <math>E = \sum_i n_i\varepsilon_i</math> और <math>N = \sum n_i</math> द्वारा दिए जाते हैं।


डार्विन-फाउलर पद्धति का इलाज इरविन श्रोडिंगर|के ग्रंथों में किया गया है। श्रोडिंगर,<ref>{{cite book |first=E. |last=Schrödinger |title=सांख्यिकीय ऊष्मप्रवैगिकी|publisher=Cambridge University Press |year=1952 }}</ref> बहेलिया<ref>{{cite book |first=R. H. |last=Fowler |title=सांख्यिकीय यांत्रिकी|publisher=Cambridge University Press |year=1952 }}</ref> और फाउलर और एडवर्ड ए. गुगेनहेम|ई. ए गुगेनहेम,<ref>{{cite book |first=R. H. |last=Fowler |first2=E. |last2=Guggenheim |title=सांख्यिकीय ऊष्मप्रवैगिकी|publisher=Cambridge University Press |year=1960 }}</ref> केर्सन हुआंग|के. हुआंग,<ref>{{cite book |first=K. |last=Huang |title=सांख्यिकीय यांत्रिकी|publisher=Wiley |year=1963 |isbn= }}</ref> और हेराल्ड जे. डब्ल्यू. म्यूएलर-कर्स्टन|एच. जे. डब्ल्यू. मुलर-कर्स्टन।<ref>{{cite book |first=H. J. W. |last=Müller–Kirsten |title=सांख्यिकीय भौतिकी की मूल बातें|edition=2nd |publisher=World Scientific |year=2013 |isbn=978-981-4449-53-3 }}</ref> आर.बी. डिंगल की पुस्तक में बोस-आइंस्टीन संघनन की व्युत्पत्ति के लिए इस विधि पर भी चर्चा की गई है और इसका उपयोग किया गया है।<ref>{{cite book |first=R. B. |last=Dingle |title=Asymptotic Expansions: Their Derivation and Interpretation |publisher=Academic Press |year=1973 |pages=267–271 |isbn=0-12-216550-0 }}</ref>
डार्विन-फाउलर पद्धति का उपचार . श्रोडिंगर,<ref>{{cite book |first=E. |last=Schrödinger |title=सांख्यिकीय ऊष्मप्रवैगिकी|publisher=Cambridge University Press |year=1952 }}</ref> फाउलर<ref>{{cite book |first=R. H. |last=Fowler |title=सांख्यिकीय यांत्रिकी|publisher=Cambridge University Press |year=1952 }}</ref> और फाउलर और ई. ए गुगेनहेम,<ref>{{cite book |first=R. H. |last=Fowler |first2=E. |last2=Guggenheim |title=सांख्यिकीय ऊष्मप्रवैगिकी|publisher=Cambridge University Press |year=1960 }}</ref> के. हुआंग,<ref>{{cite book |first=K. |last=Huang |title=सांख्यिकीय यांत्रिकी|publisher=Wiley |year=1963 |isbn= }}</ref> और एच. जे. डब्ल्यू. मुलर-कर्स्टनके ग्रंथों में किया गया है।<ref>{{cite book |first=H. J. W. |last=Müller–Kirsten |title=सांख्यिकीय भौतिकी की मूल बातें|edition=2nd |publisher=World Scientific |year=2013 |isbn=978-981-4449-53-3 }}</ref> आर.बी. डिंगल की पुस्तक में बोस-आइंस्टीन संघनन की व्युत्पत्ति के लिए इस विधि पर भी चर्चा की गई है और इसका उपयोग किया गया है।<ref>{{cite book |first=R. B. |last=Dingle |title=Asymptotic Expansions: Their Derivation and Interpretation |publisher=Academic Press |year=1973 |pages=267–271 |isbn=0-12-216550-0 }}</ref>
==शास्त्रीय आँकड़े==
==मौलिक आँकड़े==
के लिए <math>N=\sum_in_i</math> स्वतंत्र तत्वों के साथ <math>n_i</math> ऊर्जा के स्तर पर <math>\varepsilon_i</math> और <math>E=\sum_in_i\varepsilon_i</math> तापमान के साथ ताप स्नान में विहित प्रणाली के लिए <math>T</math> हमलोग तैयार हैं
<math>N=\sum_in_i</math> स्वतंत्र तत्वों के लिए <math>n_i</math> ऊर्जा <math>\varepsilon_i</math> के स्तर पर और <math>E=\sum_in_i\varepsilon_i</math> विहित प्रणाली के लिए तापमान <math>T</math> के साथ ताप स्नान हम निर्धारित करते हैं
:<math> Z = \sum_\text{arrangements}e^{-E/kT} = \sum_\text{arrangements}\prod_iz_i^{n_i}, \;\;\; z_i = e^{-\varepsilon_i/kT}.</math>
:<math> Z = \sum_\text{arrangements}e^{-E/kT} = \sum_\text{arrangements}\prod_iz_i^{n_i}, \;\;\; z_i = e^{-\varepsilon_i/kT}.</math>
सभी व्यवस्थाओं का औसत औसत व्यवसाय संख्या है
सभी व्यवस्थाओं का औसत, माध्य व्यवसाय संख्या है
:<math> (n_i)_\text{av} = \frac{\sum_jn_jZ}{Z} = z_j\frac{\partial}{\partial z_j}\ln Z. </math>
:<math> (n_i)_\text{av} = \frac{\sum_jn_jZ}{Z} = z_j\frac{\partial}{\partial z_j}\ln Z. </math>
एक चयनकर्ता चर सम्मिलित करें <math>\omega</math> व्यवस्थित करके
एक चयनकर्ता चर <math>\omega</math> व्यवस्थित करके सम्मिलित करें
:<math> Z_\omega = \sum \prod_i(\omega z_i)^{n_i}.</math>
:<math> Z_\omega = \sum \prod_i(\omega z_i)^{n_i}.</math>
शास्त्रीय सांख्यिकी में <math>N</math> तत्व (ए) अलग-अलग हैं और इन्हें पैकेट के साथ व्यवस्थित किया जा सकता है <math>n_i</math> स्तर पर तत्व <math>\varepsilon_i</math> जिसका नंबर है
मौलिक सांख्यिकी में <math>N</math> तत्व (ए) अलग-अलग हैं और इन्हें पैकेट <math>n_i</math> के साथ व्यवस्थित किया जा सकता है स्तर <math>\varepsilon_i</math> पर तत्व जिनकी संख्या है
:<math> \frac{N!}{\prod_in_i!}, </math>
:<math> \frac{N!}{\prod_in_i!}, </math>
ताकि इस मामले में
जिससे इस स्थिति में
:<math> Z_\omega = N!\sum_{n_i}\prod_i\frac{(\omega z_i)^{n_i}}{n_i!}.</math>
:<math> Z_\omega = N!\sum_{n_i}\prod_i\frac{(\omega z_i)^{n_i}}{n_i!}.</math>
(बी) अधोगति के लिए अनुमति देना <math>g_i</math> स्तर का <math>\varepsilon_i</math> यह अभिव्यक्ति बन जाती है
(बी) स्तर <math>\varepsilon_i</math> की अधोगति <math>g_i</math> के लिए अनुमति देते हुए यह अभिव्यक्ति बन जाती है
:<math> Z_\omega = N!\prod_{i=1}^{\infty}\left(\sum_{n_i=0,1,2,\ldots}\frac{(\omega z_i)^{n_i}}{n_i!}\right)^{g_i} = N!e^{\omega\sum_ig_iz_i}. </math>
:<math> Z_\omega = N!\prod_{i=1}^{\infty}\left(\sum_{n_i=0,1,2,\ldots}\frac{(\omega z_i)^{n_i}}{n_i!}\right)^{g_i} = N!e^{\omega\sum_ig_iz_i}. </math>
चयनकर्ता चर <math>\omega</math> का गुणांक निकालने की अनुमति देता है <math>\omega^N</math> जो है <math>Z</math>. इस प्रकार
चयनकर्ता चर <math>\omega</math> किसी को <math>\omega^N</math> गुणांक निकालने की अनुमति देता है जो की <math>Z</math> है। इस प्रकार
:<math> Z = \left(\sum_ig_iz_i\right)^N, </math>
:<math> Z = \left(\sum_ig_iz_i\right)^N, </math>
और इसलिए
और इसलिए
:<math> (n_j)_\text{av} = z_j\frac{\partial}{\partial z_j}\ln Z = N\frac{g_je^{-\varepsilon_j/kT}}{\sum_ig_ie^{-\varepsilon_i/kT}}.</math>
:<math> (n_j)_\text{av} = z_j\frac{\partial}{\partial z_j}\ln Z = N\frac{g_je^{-\varepsilon_j/kT}}{\sum_ig_ie^{-\varepsilon_i/kT}}.</math>
यह परिणाम जो अधिकतमीकरण द्वारा प्राप्त सबसे संभावित मूल्य से सहमत है, इसमें एक भी सन्निकटन शामिल नहीं है और इसलिए यह सटीक है, और इस प्रकार इस डार्विन-फाउलर विधि की शक्ति को प्रदर्शित करता है।
यह परिणाम जो अधिकतमीकरण द्वारा प्राप्त सबसे संभावित मूल्य से सहमत है, इसमें एक भी सन्निकटन सम्मिलित नहीं है और इसलिए यह स्पष्ट है, और इस प्रकार इस डार्विन-फाउलर विधि की शक्ति को प्रदर्शित करता है।


==क्वांटम आँकड़े==
==क्वांटम आँकड़े==

Revision as of 11:13, 5 December 2023

सांख्यिकीय यांत्रिकी में, माध्य संभाव्यता के साथ वितरण फ़ंक्शन (भौतिकी) प्राप्त करने के लिए डार्विन-फाउलर विधि का उपयोग किया जाता है। इसे 1922-1923 में चार्ल्स गैल्टन डार्विन और राल्फ एच. फाउलर द्वारा विकसित किया गया था।[1][2]

वितरण कार्यों का उपयोग सांख्यिकीय भौतिकी में ऊर्जा स्तर पर रहने वाले कणों की औसत संख्या का अनुमान लगाने के लिए किया जाता है (इसलिए इसे व्यवसाय संख्या भी कहा जाता है)। ये वितरण अधिकतर उन संख्याओं के रूप में प्राप्त होते हैं जिनके लिए विचाराधीन प्रणाली अधिकतम संभावना की स्थिति में होती है। किंतु वास्तव में किसी को औसत संख्या की आवश्यकता होती है। ये औसत संख्याएं डार्विन-फाउलर विधि द्वारा प्राप्त की जा सकती हैं। अवश्य ही, सांख्यिकीय यांत्रिकी की तरह, थर्मोडायनामिक सीमा (कणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।

की तरह, थर्मोडायनामिक सीमा (कणों की बड़ी संख्या) में प्रणाली केणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।

डार्विन-फाउलर विधि

सांख्यिकीय यांत्रिकी पर अधिकांश ग्रंथों में सांख्यिकीय वितरण कार्य करता है मैक्सवेल-बोल्ट्ज़मैन आँकड़े, बोस-आइंस्टीन आँकड़े, फ़र्मी-डिराक आँकड़े) उन लोगों को निर्धारित करके प्राप्त किए जाते हैं जिनके लिए प्रणाली अधिकतम संभावना की स्थिति में है। किंतु किसी को वास्तव में औसत या औसत संभावना वाले लोगों की आवश्यकता होती है, चूँकि - निश्चित रूप से - परिणाम सामान्यतः बड़ी संख्या में तत्वों वाली प्रणाली के लिए समान होते हैं, जैसा कि सांख्यिकीय यांत्रिकी में होता है। माध्य संभाव्यता के साथ वितरण फलन प्राप्त करने की विधि सी.जी. डार्विन और आर.एच. फाउलर द्वारा विकसित की गई है[2] और इसलिए इसे डार्विन-फाउलर विधि के रूप में जाना जाता है। यह विधि सांख्यिकीय वितरण फलन प्राप्त करने के लिए सबसे विश्वसनीय सामान्य प्रक्रिया है। चूंकि विधि चयनकर्ता चर (गिनती प्रक्रिया की अनुमति देने के लिए प्रत्येक तत्व के लिए प्रस्तुत किया गया कारक) को नियोजित करती है, इसलिए विधि को चयनकर्ता चर की डार्विन-फाउलर विधि के रूप में भी जाना जाता है। ध्यान दें कि वितरण फ़ंक्शन प्रायिकता के समान नहीं है - सीएफ। मैक्सवेल-बोल्ट्ज़मैन वितरण, बोस-आइंस्टीन वितरण, फर्मी-डिराक वितरण। यह भी ध्यान दें कि वितरण फ़ंक्शन जो उन अवस्थाओं के अंश का माप है जो वास्तव में तत्वों द्वारा व्याप्त हैं, या द्वारा दिया गया है, जहाँ ऊर्जा स्तर की गिरावट है उर्जा से और इस स्तर पर उपस्थित तत्वों की संख्या है (उदाहरण के लिए फर्मी-डिराक आंकड़ों में 0 या 1)। कुल ऊर्जा और तत्वों की कुल संख्या को फिर और द्वारा दिए जाते हैं।

डार्विन-फाउलर पद्धति का उपचार ई. श्रोडिंगर,[3] फाउलर[4] और फाउलर और ई. ए गुगेनहेम,[5] के. हुआंग,[6] और एच. जे. डब्ल्यू. मुलर-कर्स्टनके ग्रंथों में किया गया है।[7] आर.बी. डिंगल की पुस्तक में बोस-आइंस्टीन संघनन की व्युत्पत्ति के लिए इस विधि पर भी चर्चा की गई है और इसका उपयोग किया गया है।[8]

मौलिक आँकड़े

स्वतंत्र तत्वों के लिए ऊर्जा के स्तर पर और विहित प्रणाली के लिए तापमान के साथ ताप स्नान हम निर्धारित करते हैं

सभी व्यवस्थाओं का औसत, माध्य व्यवसाय संख्या है

एक चयनकर्ता चर व्यवस्थित करके सम्मिलित करें

मौलिक सांख्यिकी में तत्व (ए) अलग-अलग हैं और इन्हें पैकेट के साथ व्यवस्थित किया जा सकता है स्तर पर तत्व जिनकी संख्या है

जिससे इस स्थिति में

(बी) स्तर की अधोगति के लिए अनुमति देते हुए यह अभिव्यक्ति बन जाती है

चयनकर्ता चर किसी को गुणांक निकालने की अनुमति देता है जो की है। इस प्रकार

और इसलिए

यह परिणाम जो अधिकतमीकरण द्वारा प्राप्त सबसे संभावित मूल्य से सहमत है, इसमें एक भी सन्निकटन सम्मिलित नहीं है और इसलिए यह स्पष्ट है, और इस प्रकार इस डार्विन-फाउलर विधि की शक्ति को प्रदर्शित करता है।

क्वांटम आँकड़े

हमारे पास ऊपर जैसा है

कहाँ ऊर्जा स्तर में तत्वों की संख्या है . चूंकि क्वांटम सांख्यिकी में तत्व अप्रभेद्य हैं, इसलिए तत्वों को पैकेटों में विभाजित करने के तरीकों की संख्या की कोई प्रारंभिक गणना नहीं की गई है आवश्यक है। इसलिए योग केवल संभावित मानों के योग को संदर्भित करता है .

फर्मी-डिराक आँकड़ों के मामले में हमारे पास है

या

प्रति राज्य. वहाँ हैं ऊर्जा स्तर के लिए राज्य . इसलिए हमारे पास है

बोस-आइंस्टीन सांख्यिकी के मामले में हमारे पास है

पहले जैसी ही प्रक्रिया से हम वर्तमान मामले में प्राप्त करते हैं

किंतु

इसलिए

दोनों मामलों को सारांशित करना और इसकी परिभाषा को याद करना , हमारे पास वह है का गुणांक है में

जहां ऊपरी संकेत फर्मी-डिराक सांख्यिकी पर लागू होते हैं, और निचले संकेत बोस-आइंस्टीन सांख्यिकी पर लागू होते हैं।

आगे हमें के गुणांक का मूल्यांकन करना होगा में किसी फ़ंक्शन के मामले में जिसे इस प्रकार विस्तारित किया जा सकता है

का गुणांक कॉची के अवशेष प्रमेय की सहायता से,

हम ध्यान दें कि इसी प्रकार गुणांक उपरोक्त के रूप में प्राप्त किया जा सकता है

कहाँ

विभेद करने से व्यक्ति प्राप्त होता है

और

अब कोई पहले और दूसरे डेरिवेटिव का मूल्यांकन करता है स्थिर बिंदु पर जिस पर . मूल्यांकन की यह विधि काठी बिंदु के आसपास तीव्रतम अवतरण की विधि के रूप में जाना जाता है। तब कोई प्राप्त करता है

हमारे पास है और इसलिए

(तब से +1 नगण्य है बड़ी है)। हम क्षण में देखेंगे कि यह अंतिम संबंध केवल सूत्र है

हमें माध्य व्यवसाय संख्या प्राप्त होती है मूल्यांकन करके

यह अभिव्यक्ति कुल के तत्वों की औसत संख्या बताती है मात्रा में जो तापमान पर कब्जा कर लेते हैं 1-कण स्तर पतन के साथ (उदाहरण के लिए प्राथमिक संभाव्यता देखें)। संबंध के विश्वसनीय होने के लिए यह जांचना चाहिए कि उच्च क्रम के योगदान शुरू में परिमाण में कम हो रहे हैं ताकि सैडल बिंदु के आसपास का विस्तार वास्तव में स्पर्शोन्मुख विस्तार उत्पन्न कर सके।

संदर्भ

  1. "Darwin–Fowler method". Encyclopedia of Mathematics (in English). Retrieved 2018-09-27.
  2. 2.0 2.1 Darwin, C. G.; Fowler, R. H. (1922). "ऊर्जा के विभाजन पर". Phil. Mag. 44: 450–479, 823–842. doi:10.1080/14786440908565189.
  3. Schrödinger, E. (1952). सांख्यिकीय ऊष्मप्रवैगिकी. Cambridge University Press.
  4. Fowler, R. H. (1952). सांख्यिकीय यांत्रिकी. Cambridge University Press.
  5. Fowler, R. H.; Guggenheim, E. (1960). सांख्यिकीय ऊष्मप्रवैगिकी. Cambridge University Press.
  6. Huang, K. (1963). सांख्यिकीय यांत्रिकी. Wiley.
  7. Müller–Kirsten, H. J. W. (2013). सांख्यिकीय भौतिकी की मूल बातें (2nd ed.). World Scientific. ISBN 978-981-4449-53-3.
  8. Dingle, R. B. (1973). Asymptotic Expansions: Their Derivation and Interpretation. Academic Press. pp. 267–271. ISBN 0-12-216550-0.

अग्रिम पठन