व्युत्क्रम रूपांतरण: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{short description|Type of transformations applicable to coordinate space-time}}गणितीय भौतिकी में, '''व्युत्क्रम परिवर्तन''' पॉइंकेरे परिवर्तनों का एक स्वाभाविक विस्तार है, जिसमें समन्वित स्थान-समय पर सभी अनुरूप, एक-से-एक परिवर्तन सम्मिलित होते हैं। <ref>{{Cite web|url=https://web.ma.utexas.edu/users/gilbert/M333L/chp5vers4.pdf|title=Chapter 5 Inversion|last=|first=|date=|website=|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite web|url=http://ium.mccme.ru/postscript/f10/geometry1-lect-7.pdf|title=हाइपरबोलिक ज्यामिति का पॉइंकेयर डिस्क मॉडल|last=|first=|date=|website=|archive-url=|archive-date=|access-date=}}</ref> भौतिकी में उनका अध्ययन कम किया जाता है क्योंकि, पोंकारे समरूपता के घूर्णन और अनुवाद के विपरीत, किसी वस्तु को व्युत्क्रम समरूपता द्वारा भौतिक रूप से परिवर्तित नहीं किया जा सकता है। इस समरूपता के अंतर्गत कुछ भौतिक सिद्धांत निश्चर हैं, इन स्तिथियों में इसे 'प्रच्छन्न समरूपता' के रूप में जाना जाता है। भौतिकी की अन्य प्रच्छन्न समरूपताओं में [[गेज समरूपता]] और [[सामान्य सहप्रसरण]] सम्मिलित हैं।
{{short description|Type of transformations applicable to coordinate space-time}}गणितीय भौतिकी में, '''व्युत्क्रम रूपांतरण''' पॉइंकेरे रूपांतरणों का एक स्वाभाविक विस्तार है, जिसमें समन्वित स्थान-समय पर सभी अनुरूप, एक-से-एक रूपांतरण सम्मिलित होते हैं। <ref>{{Cite web|url=https://web.ma.utexas.edu/users/gilbert/M333L/chp5vers4.pdf|title=Chapter 5 Inversion|last=|first=|date=|website=|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite web|url=http://ium.mccme.ru/postscript/f10/geometry1-lect-7.pdf|title=हाइपरबोलिक ज्यामिति का पॉइंकेयर डिस्क मॉडल|last=|first=|date=|website=|archive-url=|archive-date=|access-date=}}</ref> भौतिकी में उनका अध्ययन कम किया जाता है क्योंकि, पोंकारे समरूपता के घूर्णन और अनुवाद के विपरीत, किसी वस्तु को व्युत्क्रम समरूपता द्वारा भौतिक रूप से परिवर्तित नहीं किया जा सकता है। इस समरूपता के अंतर्गत कुछ भौतिक सिद्धांत निश्चर हैं, इन स्तिथियों में इसे 'प्रच्छन्न समरूपता' के रूप में जाना जाता है। भौतिकी की अन्य प्रच्छन्न समरूपताओं में [[गेज समरूपता]] और [[सामान्य सहप्रसरण]] सम्मिलित हैं।


==प्रारंभिक उपयोग==
==प्रारंभिक उपयोग==
1831 में गणितज्ञ [[लुडविग इमैनुएल मैग्नस]] ने त्रिज्या आर के एक वृत्त में व्युत्क्रम द्वारा उत्पन्न समतल के व्युत्क्रमण पर प्रकाशन प्रारम्भ किया। उनके काम ने प्रकाशनों का एक बड़ा संग्रह प्रारम्भ किया, जिसे अब [[व्युत्क्रम ज्यामिति]] कहा जाता है। सबसे प्रमुख रूप से नामित गणितज्ञ अगस्त फर्डिनेंड मोबियस बन गए, जब उन्होंने समतलीय परिवर्तनों को [[जटिल संख्या|समिश्र संख्या]] अंकगणित में बदल दिया। प्रारंभ में व्युत्क्रम परिवर्तन को नियोजित करने वाले भौतिकविदों की कंपनी में [[लॉर्ड केल्विन]] थे, और उनके  सहयोग के कारण इसे [[केल्विन परिवर्तन]] कहा जाता है।
1831 में गणितज्ञ [[लुडविग इमैनुएल मैग्नस]] ने त्रिज्या आर के एक वृत्त में व्युत्क्रम द्वारा उत्पन्न समतल के व्युत्क्रमण पर प्रकाशन प्रारम्भ किया। उनके काम ने प्रकाशनों का एक बड़ा संग्रह प्रारम्भ किया, जिसे अब [[व्युत्क्रम ज्यामिति]] कहा जाता है। सबसे प्रमुख रूप से नामित गणितज्ञ अगस्त फर्डिनेंड मोबियस बन गए, जब उन्होंने समतलीय रूपांतरणों को [[जटिल संख्या|समिश्र संख्या]] अंकगणित में बदल दिया। प्रारंभ में व्युत्क्रम रूपांतरण को नियोजित करने वाले भौतिकविदों की कंपनी में [[लॉर्ड केल्विन]] थे, और उनके  सहयोग के कारण इसे [[केल्विन परिवर्तन|केल्विन रूपांतरण]] कहा जाता है।


==निर्देशांक पर परिवर्तन==
==निर्देशांक पर रूपांतरण==
निम्नलिखित में हम काल्पनिक समय (<math>t'=it</math>) का उपयोग करेंगे ताकि समष्टि काल यूक्लिडियन हो और समीकरण सरल हों। पोंकारे परिवर्तन 4-सदिश वी द्वारा प्राचलीकरण समष्टि काल पर समन्वय परिवर्तन द्वारा दिए गए हैं
निम्नलिखित में हम काल्पनिक समय (<math>t'=it</math>) का उपयोग करेंगे ताकि समष्टि काल यूक्लिडियन हो और समीकरण सरल हों। पोंकारे रूपांतरण 4-सदिश वी द्वारा प्राचलीकरण समष्टि काल पर समन्वय रूपांतरण द्वारा दिए गए हैं


:<math>V_\mu ^\prime = O_\mu ^\nu V_\nu +P_\mu \,  </math>
:<math>V_\mu ^\prime = O_\mu ^\nu V_\nu +P_\mu \,  </math>
जहाँ <math>O</math> एक [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] है और <math>P</math> एक [[4-वेक्टर|4-सदिश]] है। इस परिवर्तन को 4-सदिश पर दो बार लागू करने से उसी रूप का तीसरा परिवर्तन मिलता है। इस परिवर्तन के अंतर्गत मूल निश्चर स्थान-समय की लंबाई है जो 4-सदिश x और y द्वारा दिए गए दो समष्टि काल बिंदुओं के बीच की दूरी द्वारा दी गई है:
जहाँ <math>O</math> एक [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] है और <math>P</math> एक [[4-वेक्टर|4-सदिश]] है। इस रूपांतरण को 4-सदिश पर दो बार लागू करने से उसी रूप का तीसरा रूपांतरण मिलता है। इस रूपांतरण के अंतर्गत मूल निश्चर स्थान-समय की लंबाई है जो 4-सदिश x और y द्वारा दिए गए दो समष्टि काल बिंदुओं के बीच की दूरी द्वारा दी गई है:


:<math>r = |x - y |. \, </math>
:<math>r = |x - y |. \, </math>
ये परिवर्तन समष्टि काल पर सामान्य 1-1 अनुरूप परिवर्तनों के उपसमूह हैं। समष्टि काल पर सभी 1-1 अनुरूप परिवर्तनों को सम्मिलित करने के लिए इन परिवर्तनों का विस्तार करना संभव है
ये रूपांतरण समष्टि काल पर सामान्य 1-1 अनुरूप रूपांतरणों के उपसमूह हैं। समष्टि काल पर सभी 1-1 अनुरूप रूपांतरणों को सम्मिलित करने के लिए इन रूपांतरणों का विस्तार करना संभव है


:<math>V_\mu ^\prime =\left( A_\tau ^\nu V_\nu +B_\tau \right) \left( C_{\tau \mu
:<math>V_\mu ^\prime =\left( A_\tau ^\nu V_\nu +B_\tau \right) \left( C_{\tau \mu
}^\nu V_\nu +D_{\tau \mu }\right) ^{-1}.</math>
}^\nu V_\nu +D_{\tau \mu }\right) ^{-1}.</math>
हमारे पास पोंकारे परिवर्तनों की रूढ़िवादिता स्थिति के समतुल्य स्थिति भी होनी चाहिए:
हमारे पास पोंकारे रूपांतरणों की रूढ़िवादिता स्थिति के समतुल्य स्थिति भी होनी चाहिए:


:<math>AA^T+BC=DD^T+CB \, </math>
:<math>AA^T+BC=DD^T+CB \, </math>
क्योंकि परिवर्तन <math>D</math> को ऊपर और नीचे से विभाजित किया जा सकता है। <math>D</math> को इकाई आव्यूह में सम्मुच्चय करके हम कोई व्यापकता नहीं खोते हैं। हम निम्न के साथ समाप्त करते हैं
क्योंकि रूपांतरण <math>D</math> को ऊपर और नीचे से विभाजित किया जा सकता है। <math>D</math> को इकाई आव्यूह में सम्मुच्चय करके हम कोई व्यापकता नहीं खोते हैं। हम निम्न के साथ समाप्त करते हैं


:<math>V_\mu ^\prime =\left( O_\mu ^\nu V_\nu +P_\tau \right) \left( \delta _{\tau
:<math>V_\mu ^\prime =\left( O_\mu ^\nu V_\nu +P_\tau \right) \left( \delta _{\tau
\mu} + Q_{\tau \mu }^\nu V_\nu \right) ^{-1}. \, </math>
\mu} + Q_{\tau \mu }^\nu V_\nu \right) ^{-1}. \, </math>
इस परिवर्तन को 4-सदिश पर दो बार लागू करने से एक ही रूप का परिवर्तन मिलता है। 'व्युत्क्रम' की नई समरूपता 3-प्रदिश <math>Q</math> द्वारा दी गई है। यदि हम सम्मुच्चय करते हैं तो यह समरूपता पोंकारे समरूपता <math>Q=0</math> बन जाती है। जब <math>Q=0</math>  होता है तो दूसरी स्थिति के लिए आवश्यक है कि <math>O</math> एक लांबिक आव्यूह है। यह परिवर्तन 1-1 है जिसका अर्थ है कि प्रत्येक बिंदु को एक अद्वितीय बिंदु पर तभी प्रतिचित्र किया जाता है जब हम सैद्धांतिक रूप से अनंत पर बिंदुओं को सम्मिलित करते हैं।
इस रूपांतरण को 4-सदिश पर दो बार लागू करने से एक ही रूप का रूपांतरण मिलता है। 'व्युत्क्रम' की नई समरूपता 3-प्रदिश <math>Q</math> द्वारा दी गई है। यदि हम सम्मुच्चय करते हैं तो यह समरूपता पोंकारे समरूपता <math>Q=0</math> बन जाती है। जब <math>Q=0</math>  होता है तो दूसरी स्थिति के लिए आवश्यक है कि <math>O</math> एक लांबिक आव्यूह है। यह रूपांतरण 1-1 है जिसका अर्थ है कि प्रत्येक बिंदु को एक अद्वितीय बिंदु पर तभी प्रतिचित्र किया जाता है जब हम सैद्धांतिक रूप से अनंत पर बिंदुओं को सम्मिलित करते हैं।


==निश्चर==
==निश्चर==
4 आयामों में इस समरूपता के लिए निश्चर अज्ञात है, हालांकि यह ज्ञात है कि निश्चर को न्यूनतम 4 समष्टि काल बिंदुओं की आवश्यकता होती है। एक आयाम में, निश्चर मोबियस परिवर्तनों से प्रसिद्ध वज्रानुपात है:
4 आयामों में इस समरूपता के लिए निश्चर अज्ञात है, हालांकि यह ज्ञात है कि निश्चर को न्यूनतम 4 समष्टि काल बिंदुओं की आवश्यकता होती है। एक आयाम में, निश्चर मोबियस रूपांतरणों से प्रसिद्ध वज्रानुपात है:


:<math>\frac{(x-X)(y-Y)}{(x-Y)(y-X)}.</math>
:<math>\frac{(x-X)(y-Y)}{(x-Y)(y-X)}.</math>
क्योंकि इस समरूपता के अंतर्गत एकमात्र निश्चर में न्यूनतम 4 बिंदु सम्मिलित होते हैं, यह समरूपता बिंदु कण सिद्धांत की समरूपता नहीं हो सकती है। बिंदु कण सिद्धांत समष्टि काल (जैसे, <math>x</math> को <math>y</math>) के माध्यम से कणों के पथ की लंबाई जानने पर निर्भर करता है। समरूपता एक [[स्ट्रिंग सिद्धांत|तंतु सिद्धांत]] की समरूपता हो सकती है जिसमें तंतु को उनके अंतिम बिंदुओं द्वारा विशिष्ट रूप से निर्धारित किया जाता है। एंडपॉइंट <math>(x,X)</math> से प्रारम्भ होने वाली और एंडपॉइंट <math>(y,Y)</math> पर समाप्त होने वाली तंतु के लिए इस सिद्धांत का प्रचारक 4-आयामी अपरिवर्तनीय का एक अनुरूप कार्य है। एंडपॉइंट-तंतु सिद्धांत में एक तंतु अनुक्षेत्र एंडपॉइंट पर एक फलन है।
क्योंकि इस समरूपता के अंतर्गत एकमात्र निश्चर में न्यूनतम 4 बिंदु सम्मिलित होते हैं, यह समरूपता बिंदु कण सिद्धांत की समरूपता नहीं हो सकती है। बिंदु कण सिद्धांत समष्टि काल (जैसे, <math>x</math> को <math>y</math>) के माध्यम से कणों के पथ की लंबाई जानने पर निर्भर करता है। समरूपता एक [[स्ट्रिंग सिद्धांत|तंतु सिद्धांत]] की समरूपता हो सकती है जिसमें तंतु को उनके अंतिम बिंदुओं द्वारा विशिष्ट रूप से निर्धारित किया जाता है। एंडपॉइंट <math>(x,X)</math> से प्रारम्भ होने वाली और एंडपॉइंट <math>(y,Y)</math> पर समाप्त होने वाली तंतु के लिए इस सिद्धांत का प्रचारक 4-आयामी अरूपांतरणीय का एक अनुरूप कार्य है। एंडपॉइंट-तंतु सिद्धांत में एक तंतु अनुक्षेत्र एंडपॉइंट पर एक फलन है।


:<math>\phi(x,X). \, </math>
:<math>\phi(x,X). \, </math>
Line 34: Line 34:


==भौतिक साक्ष्य==
==भौतिक साक्ष्य==
यद्यपि भौतिकी में प्रच्छन्न समरूपता को खोजने के लिए पोंकारे परिवर्तनों को सामान्य बनाना और इस प्रकार [[उच्च-ऊर्जा भौतिकी]] के संभावित सिद्धांतों की संख्या को कम करना स्वाभाविक है, इस समरूपता की प्रयोगात्मक जांच करना कठिन है क्योंकि इसके अंतर्गत किसी वस्तु को बदलना संभव नहीं है। इस समरूपता का अप्रत्यक्ष प्रमाण इस बात से मिलता है कि भौतिकी के मौलिक सिद्धांत, जो इस समरूपता के अंतर्गत निश्चर हैं, कितनी सटीकता से भविष्यवाणियाँ करते हैं। अन्य अप्रत्यक्ष प्रमाण यह है कि क्या इस समरूपता के अंतर्गत निश्चर सिद्धांत 1 से अधिक संभावनाएं देने जैसे विरोधाभासों को जन्म देते हैं। अब तक कोई प्रत्यक्ष प्रमाण नहीं मिला है कि ब्रह्मांड के मूलभूत घटक तार हैं। समरूपता एक [[टूटी हुई समरूपता|विघटित समरूपता]] भी हो सकती है जिसका अर्थ है कि यद्यपि यह भौतिकी की समरूपता है, व्योम एक विशेष दिशा में 'जम गया है' इसलिए यह समरूपता अब स्पष्ट नहीं है।
यद्यपि भौतिकी में प्रच्छन्न समरूपता को खोजने के लिए पोंकारे रूपांतरणों को सामान्य बनाना और इस प्रकार [[उच्च-ऊर्जा भौतिकी]] के संभावित सिद्धांतों की संख्या को कम करना स्वाभाविक है, इस समरूपता की प्रयोगात्मक जांच करना कठिन है क्योंकि इसके अंतर्गत किसी वस्तु को बदलना संभव नहीं है। इस समरूपता का अप्रत्यक्ष प्रमाण इस बात से मिलता है कि भौतिकी के मौलिक सिद्धांत, जो इस समरूपता के अंतर्गत निश्चर हैं, कितनी सटीकता से भविष्यवाणियाँ करते हैं। अन्य अप्रत्यक्ष प्रमाण यह है कि क्या इस समरूपता के अंतर्गत निश्चर सिद्धांत 1 से अधिक संभावनाएं देने जैसे विरोधाभासों को जन्म देते हैं। अब तक कोई प्रत्यक्ष प्रमाण नहीं मिला है कि ब्रह्मांड के मूलभूत घटक तार हैं। समरूपता एक [[टूटी हुई समरूपता|विघटित समरूपता]] भी हो सकती है जिसका अर्थ है कि यद्यपि यह भौतिकी की समरूपता है, व्योम एक विशेष दिशा में 'जम गया है' इसलिए यह समरूपता अब स्पष्ट नहीं है।


==यह भी देखें==
==यह भी देखें==
Line 53: Line 53:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/11/2023]]
[[Category:Created On 18/11/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 10:19, 11 December 2023

गणितीय भौतिकी में, व्युत्क्रम रूपांतरण पॉइंकेरे रूपांतरणों का एक स्वाभाविक विस्तार है, जिसमें समन्वित स्थान-समय पर सभी अनुरूप, एक-से-एक रूपांतरण सम्मिलित होते हैं। [1][2] भौतिकी में उनका अध्ययन कम किया जाता है क्योंकि, पोंकारे समरूपता के घूर्णन और अनुवाद के विपरीत, किसी वस्तु को व्युत्क्रम समरूपता द्वारा भौतिक रूप से परिवर्तित नहीं किया जा सकता है। इस समरूपता के अंतर्गत कुछ भौतिक सिद्धांत निश्चर हैं, इन स्तिथियों में इसे 'प्रच्छन्न समरूपता' के रूप में जाना जाता है। भौतिकी की अन्य प्रच्छन्न समरूपताओं में गेज समरूपता और सामान्य सहप्रसरण सम्मिलित हैं।

प्रारंभिक उपयोग

1831 में गणितज्ञ लुडविग इमैनुएल मैग्नस ने त्रिज्या आर के एक वृत्त में व्युत्क्रम द्वारा उत्पन्न समतल के व्युत्क्रमण पर प्रकाशन प्रारम्भ किया। उनके काम ने प्रकाशनों का एक बड़ा संग्रह प्रारम्भ किया, जिसे अब व्युत्क्रम ज्यामिति कहा जाता है। सबसे प्रमुख रूप से नामित गणितज्ञ अगस्त फर्डिनेंड मोबियस बन गए, जब उन्होंने समतलीय रूपांतरणों को समिश्र संख्या अंकगणित में बदल दिया। प्रारंभ में व्युत्क्रम रूपांतरण को नियोजित करने वाले भौतिकविदों की कंपनी में लॉर्ड केल्विन थे, और उनके सहयोग के कारण इसे केल्विन रूपांतरण कहा जाता है।

निर्देशांक पर रूपांतरण

निम्नलिखित में हम काल्पनिक समय () का उपयोग करेंगे ताकि समष्टि काल यूक्लिडियन हो और समीकरण सरल हों। पोंकारे रूपांतरण 4-सदिश वी द्वारा प्राचलीकरण समष्टि काल पर समन्वय रूपांतरण द्वारा दिए गए हैं

जहाँ एक लांबिक आव्यूह है और एक 4-सदिश है। इस रूपांतरण को 4-सदिश पर दो बार लागू करने से उसी रूप का तीसरा रूपांतरण मिलता है। इस रूपांतरण के अंतर्गत मूल निश्चर स्थान-समय की लंबाई है जो 4-सदिश x और y द्वारा दिए गए दो समष्टि काल बिंदुओं के बीच की दूरी द्वारा दी गई है:

ये रूपांतरण समष्टि काल पर सामान्य 1-1 अनुरूप रूपांतरणों के उपसमूह हैं। समष्टि काल पर सभी 1-1 अनुरूप रूपांतरणों को सम्मिलित करने के लिए इन रूपांतरणों का विस्तार करना संभव है

हमारे पास पोंकारे रूपांतरणों की रूढ़िवादिता स्थिति के समतुल्य स्थिति भी होनी चाहिए:

क्योंकि रूपांतरण को ऊपर और नीचे से विभाजित किया जा सकता है। को इकाई आव्यूह में सम्मुच्चय करके हम कोई व्यापकता नहीं खोते हैं। हम निम्न के साथ समाप्त करते हैं

इस रूपांतरण को 4-सदिश पर दो बार लागू करने से एक ही रूप का रूपांतरण मिलता है। 'व्युत्क्रम' की नई समरूपता 3-प्रदिश द्वारा दी गई है। यदि हम सम्मुच्चय करते हैं तो यह समरूपता पोंकारे समरूपता बन जाती है। जब होता है तो दूसरी स्थिति के लिए आवश्यक है कि एक लांबिक आव्यूह है। यह रूपांतरण 1-1 है जिसका अर्थ है कि प्रत्येक बिंदु को एक अद्वितीय बिंदु पर तभी प्रतिचित्र किया जाता है जब हम सैद्धांतिक रूप से अनंत पर बिंदुओं को सम्मिलित करते हैं।

निश्चर

4 आयामों में इस समरूपता के लिए निश्चर अज्ञात है, हालांकि यह ज्ञात है कि निश्चर को न्यूनतम 4 समष्टि काल बिंदुओं की आवश्यकता होती है। एक आयाम में, निश्चर मोबियस रूपांतरणों से प्रसिद्ध वज्रानुपात है:

क्योंकि इस समरूपता के अंतर्गत एकमात्र निश्चर में न्यूनतम 4 बिंदु सम्मिलित होते हैं, यह समरूपता बिंदु कण सिद्धांत की समरूपता नहीं हो सकती है। बिंदु कण सिद्धांत समष्टि काल (जैसे, को ) के माध्यम से कणों के पथ की लंबाई जानने पर निर्भर करता है। समरूपता एक तंतु सिद्धांत की समरूपता हो सकती है जिसमें तंतु को उनके अंतिम बिंदुओं द्वारा विशिष्ट रूप से निर्धारित किया जाता है। एंडपॉइंट से प्रारम्भ होने वाली और एंडपॉइंट पर समाप्त होने वाली तंतु के लिए इस सिद्धांत का प्रचारक 4-आयामी अरूपांतरणीय का एक अनुरूप कार्य है। एंडपॉइंट-तंतु सिद्धांत में एक तंतु अनुक्षेत्र एंडपॉइंट पर एक फलन है।


भौतिक साक्ष्य

यद्यपि भौतिकी में प्रच्छन्न समरूपता को खोजने के लिए पोंकारे रूपांतरणों को सामान्य बनाना और इस प्रकार उच्च-ऊर्जा भौतिकी के संभावित सिद्धांतों की संख्या को कम करना स्वाभाविक है, इस समरूपता की प्रयोगात्मक जांच करना कठिन है क्योंकि इसके अंतर्गत किसी वस्तु को बदलना संभव नहीं है। इस समरूपता का अप्रत्यक्ष प्रमाण इस बात से मिलता है कि भौतिकी के मौलिक सिद्धांत, जो इस समरूपता के अंतर्गत निश्चर हैं, कितनी सटीकता से भविष्यवाणियाँ करते हैं। अन्य अप्रत्यक्ष प्रमाण यह है कि क्या इस समरूपता के अंतर्गत निश्चर सिद्धांत 1 से अधिक संभावनाएं देने जैसे विरोधाभासों को जन्म देते हैं। अब तक कोई प्रत्यक्ष प्रमाण नहीं मिला है कि ब्रह्मांड के मूलभूत घटक तार हैं। समरूपता एक विघटित समरूपता भी हो सकती है जिसका अर्थ है कि यद्यपि यह भौतिकी की समरूपता है, व्योम एक विशेष दिशा में 'जम गया है' इसलिए यह समरूपता अब स्पष्ट नहीं है।

यह भी देखें

संदर्भ

  1. "Chapter 5 Inversion" (PDF).
  2. "हाइपरबोलिक ज्यामिति का पॉइंकेयर डिस्क मॉडल" (PDF).